ELECTRICAL DISCHARGE MACHINING OF HYBRID MATERIAL USING COPPER ELECTRODE

AMIRUL AKMAL BIN MOHAMMAD YAZID

UNIVERSITI TEKNOLOGI MALAYSIA

ELECTRICAL DISCHARGE MACHINING OF HYBRID MATERIAL USING COPPER ELECTRODE

AMIRUL AKMAL BIN MOHAMMAD YAZID

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical-Advanced Manufacturing Technology)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > JUNE 2015

Bismillahirahmanirahim

I strongly dedicated this project to my beloved father (Mohammad Yazid Bin Harun), mother (Faridah Bte Abdul Ghani) and my siblings (Helmi Husaini, Raimi Ruhaizat, Azrin Amirudin, Muhammad Hafeezudin and Leeqa Nurjannah), with their sincere prayers and endless support afforded me to successfully accomplish this thesis.

ACKNOWLEDGEMENT

First and foremost, I would like to thank Allah Almighty for blessing and giving me strength to accomplish this thesis. Sincere appreciation to my supervisor Mr. Khidzir Bin Zakaria who constant support during my study at UTM and greatly helped me until this project completed. Other than that, the technicians who help me in completing the project, Mr.Aidid, Mr. Ali, Mr. Sazali, Mr. Rashid, Miss Norasikin and Mr. Salleh.

Deepest gratitude to my beloved father, mother, brothers and sister and all of my family and friends for their real love, pray, spirit, continuous encouragement and patience within this study period.

ABSTRACT

In recent years, there has been a great of interest in copper alloy (FeCuSn) hybrid metal material due to several industrial applications. Extreme hardness and high brittleness properties of FeCuSn makes the machining of such material very difficult and time consuming, especially using traditional machining methods such as grinding and lapping techniques. Due to this, the cost of machining FeCuSn is very high. Despite high demand in electrical discharge machining (EDM) process by modern manufacturing industries, the mechanism of the process is quite complex. It is difficult to generate a model that can accurately correlate the input parameters with the responses. Optimum parameters play a significant role in increasing production rate and reducing the machining time. In this work, study on parametric optimization of surface roughness (Ra), material removal rate (MRR) and tool wear ratio (TWR) on die-sinking EDM of copper alloy (FeCuSn) was carried out. This study also establishes the models that relate the responses and the most significant design parameters like pulse-on time (Ton), discharge current (Ip) and servo voltage (SV) will be achieved . Full factorial design was applied to select the most influential design parameters. The experimental data was analyzed using the analysis of variance (ANOVA). The ANOVA results revealed that Ton, Ip and SV were the most influential parameters which affect the Ra, MRR and TWR. The optimum responses (Ra, MRR and TWR) were achieved through the optimum parameters setting predicted by the design expert software. The developed models were validated through confirmation runs, and the error between the experimental and predicted values of the responses lies within the acceptable limit.

ABSTRAK

Aloi kuprum (FeCuSn) merupakan bahan besi hibrid yang semakin mendapat perhatian disebabkan kepelbagaian aplikasinya dalam industri. FeCuSn mempunyai sifat kekerasan dan kerapuhan yang amat tinggi menjadikan ia sukar untuk dimesin serta memerlukan masa yang lama, terutama apabila menggunakan kaedah pemesinan tradisional seperti teknik pengisaran dan pencanaian. Meskipun permintaannya dan kos yang tinggi dalam industri pembuatan termaju khasnya dalam proses electrical discharge machining (EDM) mekanisme untuk proses ini adalah kompleks. Ini disebakan kesukaran untuk menghasilkan model yang tepat dalam menghubungkaitkan kemasukan input dan respon dan ini memainkan peranan yang penting dalam peningkatan kadar pengeluaran dan pengurangan masa pemesinan. Kajian untuk mengoptimumkan parameter dari segi kekasaran permukaan (Ra), kadar pemotongan bahan (MRR) dan nisbah kehausan mata alat (TWR) untuk diesinking EDM bagi FeCuSn telah dijalankan dengan menghasilkan model yang berkaitan antara respon dan rekabentuk parameter utama seperti tempoh masa denyutan (Ton), arus puncak (Ip) dan voltan puncak (SV) akan diperolehi. Rekabentuk faktorial penuh adalah untuk menentukan rekabentuk parameter yang paling dominan. Permukaan tengah sentral bagi rekebentuk komposit telah digunakan untuk menentukan koefisien model bagi parameter terpilih dan akan dianalisiskan melalui analisis varians (ANOVA). Didapati bahawa Ton, Ip dan SV merupakan parameter yang paling ketara yang mempengaruhi Ra, MRR dan TWR. Manakala itu, respon optimum (Ra, MRR dan TWR) telah dicapai dengan menetapkan ramalan optimum parameter menggunakan perisian Design Expert. Model yang terhasil telah disahkan melalui ujian pengesahan sementara ralat antara eksperimen dan nilai ramalan bagi respon terletak dalam had boleh terima.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DECLAR	ATION	ii
	DEDICA	ΓΙΟΝ	iii
	ACKNOV	VLEDGEMENT	iv
	ABSTRA	СТ	V
	ABSTRA	K	vi
	TABLE (DF CONTENTS	vii
	LIST OF	TABLES	Х
	LIST OF	FIGURES	xii
	LIST OF	SYMBOLS	XV
	LIST OF	APPENDICES	xvi
1.	INTROD	UCTION	1
	1.1. Pro	ject Background	1
	1.2. Pro	blem Statement	2
	1.3. Ob	jective of The Research	3
	1.4. Pro	ject Scope	3
2.	LITERA	URE REVIEW	5
	2.1. Ele	ctrical Discharge Machining (EDM)	5
	2.2. Die	e Sinking EDM	6
	2.2	.1 Formation of Sparks	6
	2.2	.2 Basic Principle of Die Sinking	10
	2.2	.3 Parameter of Die Sinking EDM	11
		2.2.3.1 Pulse-On Time	11
		2.2.3.2 Pulse-Off Time	12

		2.2.3.3 Electrical Discharge Peak Current	12
		2.2.3.4 Main Supply Voltage	12
		2.2.3.5 Servo Voltage	12
		2.2.3.6 Polarity	13
	2.2.4	Copper Electrode	13
2.3.	EDM]	Dielectric System	14
	2.3.1	Dielectric Fluid	14
		2.3.1.1 Types of Dielectric Fluids	14
		2.3.1.2 Powder Mixed Dielectric Fluid	15
	2.3.2	Tecniques For Proper Flushing of Dielectric Fluid	16
2.4.	Hybrid	l Material – Copper Alloy (FeCuSn)	17
2.5.	Surfac	e Integrity	18
	2.5.1	Surface Roughness	20
	2.5.2	Micro Cracks	22
	2.5.3	Recast Layer	24
2.6.	Design	n of Experiment (DOE)	25
	2.6.1	Full Factorial Design	26
	2.6.2	Analysis of Variance (ANOVA)	29
MET	HODOI	LOGY	31
3.1.	Introdu	uction	31
3.2.	Theory	y of The Experimental Design	32
	3.2.1.	Two Level Full Factorial Design	33
	3.2.2.	Machining Parameters	34
		3.2.2.1 Selection of Die-Sinking EDM Parameters	35
		3.2.2.2 Constant Machining Parameters	36
	3.2.3	Response Variables	37
		3.2.3.1 Material Removal Rate	37
		3.2.3.2 Tool Wear Ratio	38
		3.2.3.3 Surface Morphology	38
		3.2.3.4 Surface Roughness	38
3.3.	Experi	mental Set-Up and Procedure	39
3.4.	Machi	ning Instruments	41
3.5.	Data C	Collection	42

3.

	3.6.	Data A	analysis	42
4.	RESU	LTS A	ND DISCUSSION	43
	4.1.	Introdu	action	43
	4.2.	Experi	ment Results	43
	4.3.	Analys	sis of Results	45
		4.3.1	Analysis Result of Surface Roughness	45
		4.3.2	Analysis Result of Material Removal Rate	51
		4.3.3	Analysis Result of Tool Wear Ratio	58
	4.4.	Confir	mation Runs	63
	4.5.	Analys	sis of Surface Morphology	65
	4.6.	Analys	sis of Recast Layer, RL	67
	4.7.	Discus	ssion	69
		4.7.1	Surface Roughness	69
		4.7.2	Material Removal Rate	71
		4.7.3	Tool Wear Ratio	72
		4.7.4	Image Analyzer Observation of EDMed FeCuSn	
			Surface	73
		4.7.5	FESEM Obeservation of EDMed FeCuSn Rescast	
			Layer	75
5.	CON	CLUSI	ONS AND RECOMMENDATIONS	78
	5.1.	Introdu	action	78
	5.2.	Implic	ation to the Industries	79
	5.3.	Recon	nmendation and Future Work	80

ix

REFERENCES	81
Appendices A – Appendices D	84-99

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Typical copper electrode material prperty	14
2.2	Definition of the major surface defect	20
2.3	Design matrix of 2 ³ full factorial design	27
2.4	The analysis of variance (ANOVA) for the 2 ³ factorial design	29
3.1	Levels for screening of parameters using full factorial design	34
3.2	Input parameters and level selected for the screening DOE	36
3.3	Constant machining condotions	37
3.4	Physical an mechanical properties FeCuSn	40
3.5	Instrument for experiment	41
4.1	Experimental plans	44
4.2	Experimental results	44
4.3	ANOVA for surface roughness	45
4.4	ANOVA for material removal rate	52
4.5	ANOVA for tool wear ratio	58
4.6	Parameters and responses setting	63
4.7	Optimum parameters setting	64
4.8	Point prediction for optimum parameter setting 1	64
4.9	Point prediction for optimum parameter setting 2	64
4.10	Point prediction for optimum parameter setting 3	65

4.11	Evaluation of surface in different parameter setting	67
4.12	Evaluation of RL in different setting	68

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Spark Ignition in Die-Sinking EDM	8
2.2	EDM Pulse Current Train for Controlled Pulse Generator	8
2.3	Discharge Phenomenon in EDM Gap	9
2.4	Variation of Voltage with Time Using an RC Generator	9
2.5	Stages of Sparks in Die-Sinking EDM process	9
2.6	Configuration of Die-Sinking EDM	10
2.7	Die-Sinking EDM Parameters and Machining Performances	
	Measures	11
2.8	Principle of powder mixed EDM	16
2.9	EDM Flushing Techniques	17
2.10	Composition of two or more materials to developed hybrid	
	materials	18
2.11	Simulated section of various layers	19
2.12	Surfsce texture festures	21
2.13	TEM cross-sectional image and diffraction pattern of a	
	monocrystalline silicon turned woth a single-point diamond	
	tool	22
2.14	Micrograph of flaking found at the base of a thread in the	
	fractured bolt	23
2.15	Surface layers division after EDM	24
2.16	General model of a process	25
2.17	Geometry view 2 ³ factorial design	28
2.18	Geometric presentation of contrasts corresponding to the main	n
	effects and interactions in the 2^3 factorial design	28

3.1	Overall step by step experimental methodology	32
3.2	Cause and effect diagram	35
3.3	Diagram of the experimental set-up	39
4.1	Half-normal probability graph for surface roughness	46
4.2	Normal plot of residuals for surface roughness	47
4.3	Residuals versus predicted for surface roughness	47
4.4	Outlier T for surface roughness	48
4.5	Interaction graph of AC factors	49
4.6	Main effect graph of A factors	49
4.7	Main effect graph of B factors	50
4.8	Main effect graph of C factors	50
4.9	Cube graph of A, B and C factors	51
4.10	Half-normal probability graph for material removal rate	53
4.11	Normal plot of residuals for material removal rate	53
4.12	Residuals versus predicted for material removal rate	54
4.13	Outlier T for material removal rate	54
4.14	Interaction graph of AB factors	55
4.15	Interaction graph of AC factors	56
4.16	Main effect graph of A factors	56
4.17	Cube graph of A, B and C factors	57
4.18	Half-normal probability graph for tool wear ratio	59
4.19	Normal plot of residuals for tool wear ratio	60
4.20	Residuals versus predicted for tool wear ratio	60
4.21	Outlier T for tool wear ratio	61
4.22	Main effect graph of A factors	61
4.23	Main effect graph of B factors	62
4.24	Cube graph for surface roughness of A, B and C factors	62

4.25	Image Analyzer micrograph on defect surface material	
	according to significant factors for Ra and TWR	65
4.26	Image Analyzer micrograph on defect surface material	
	according to significant factors for MRR	66
4.27	Effect of pulse-on time and servo voltage on Ra	70
4.28	Effect of discharge current on Ra	70
4.29	Effect of discharge current and pulse-on time on MRR	72
4.30	Effect of discharge current and pulse-on time on TWR	73
4.31	Image analyser showing micrographs of EDMed FeCuSn cross section surfaces by sinking-EDM at Ton = 40 μ s, Ip	
	=4.4 A, SV =40 V.	74
4.32	Image analyser showing micrographs of EDMed FeCuSn cross section surfaces by sinking-EDM at Ton = 10 μ s, Ip =4.4 A, SV =100 V.	75
4.33	FESEM showing micrographs of EDMed FeCuSn cross section surfaces by sinking-EDM at Ton = 40 μ s, Ip =4.4 A,	
	SV =40 V.	76
4.34	FESEM showing micrographs of EDMed FeCuSn cross	
	section surfaces by sinking-EDM at Ton = 40 μ s, Ip =4.4 A,	
	SV =40 V.	77

LIST OF SYMBOLS

ANOVA	- Analysis of Variance
DOE	- Design of Experiment
EDM	- Electrical Discharge Machining
Ip	- Peak Current
MRR	- Material Removal Rate
Ra	- Arithmetical Mean Roughness
SR	- Surface Roughness
SV	- Servo Voltage
Ton	- Pulse-on Time
TWR	- Tool Wear Ratio

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Master Project Gantt Chart	84
Appendix B	Machined Workpiece and Electrode	87
Appendix C	Image Analyser Micrograph For Machined	
	Surface (20x Magnification)	89
Appendix D	FESEM of EDMed FeCuSn Recast Layer At Variable Parameter Settings	96

CHAPTER 1

INTRODUCTION

1.1 Project Background

The electrical discharge machining (EDM) is one of the major manufacturing processes widely applied in die and mold making industry to generate deep and three-dimensional complex cavities in many different classes of materials under roughing and finishing operations.

The best supported theory to the explanation of electrical discharge machining process is the thermoelectric phenomenon and according to Van Dijck et al. (1974) and other researchers such as Zolotych (1955), Crookall and Khor (1974), Dibitonto et al. (1989) and König and Klocke (1997) the material removal in electrical discharge machining is associated with the erosive effect produced when spatially and discrete discharges occur between two electrical conductive materials. Sparks of short duration are generated in a liquid dielectric gap separating tool and workpiece electrodes. The electrical energy released by the generator is responsible to melt a small quantity of material of both electrodes by conduction heat transfer. Subsequently, at the end of the pulse duration a pause time begins and forces that can be of electric, hydrodynamic and thermodynamic nature remove the melted pools.

In this study, EDM machining parameter is highlighted on the effect on the surface of work material of Iron-Copper-Tin (FeCuSn) hybrid metal material. Hybrid materials have been a great interest of researchers and manufacturing industries nowadays because of its strengthening affect. Many of the researchers have developed much kind of material composition in order to fit its application in various field as stated earlier. Therefore it is crucial to provide optimum parameter setting for hybrid material specifically in EDM to machine such material closed to near net shape whilst maintaining its hardness.

It is important to get near net shape component because it is relatively reduce cost, time, energy and may increase the production. In this case, only several parameters will be analysed and evaluated with design of experiment (DOE) method to optimize important parameters in this study in order to achieve the optimum quality surface of FeCuSn by EDM machining.

1.2 Problem Statement

The electrical discharge machining (EDM) is the most famous manufacturing process due to its accuracy cutting, especially for intricate shapes and design, regardless of the material hardness being employed. A few problems are been highlighted, as the selection of machining parameters such as pulse-on time, pulse-off time, peak current and voltage in obtaining good cutting performance is still constricted against the cutting of materials.

A part from that, there is no specific machining parameters for hybrid metal materials that can machine material close to near net shape specifically by EDM. Furthermore, the machining parameters are depending on the operator experiences. There are still needs to study, if the machining parameters have relationship with the surface quality or rates of material removal. In this study, various aspect of surface quality such as, surface roughness, surface finish and surface morphology are considered as a response variables for this study to evaluate the EDM parameters process during experimental work. The aim of this project is to study the effect of machining parameter in EDM to determine optimum input parameters in obtaining a good surface quality, surface finish and surface morphology especially for FeCuSn hybrid metal material.

1.3 Objective of The Research

The objective is crucial in providing a clear purpose and as a guide to the assessment strategies to achieve the goal of studies. There are two main objectives for this study, which are:

- (i) To analyse and evaluate of EDM cutting for FeCuSn hybrid metal material for precision cutting process in term of surface roughness, material removal rate and tool wear ratio
- (ii) To evaluate the input parameters of cutting process for FeCuSn hybrid metal material by EDM process.

1.4 Project Scope

The scope of this experimental study is conducting a machining process by utilizing electrical discharge machining (EDM) which to analyze their cutting performance. The study will be focused upon the effect of the working surface and the surface morphology of work materials. The appropriate machining parameters such as pulse on time, pulse off time and peak current will be reset according to the Design of Experiment (DOE) while the other parameters remain constant. DOE analysis can help to optimize the machining processes by analyzing and evaluating the cutting performance. The material tested is FeCuSn hybrid metal material and utilizing the copper tungsten electrode as the electrode with the diameter of 10 mm. After machining, the material will be evaluated using Surface Texture Machine, Research Microscope and Scanning Electron Microscope (SEM). Thus, from the obtaining results, the comparison will be made based on the surface morphology evaluation such as porosity, cracks formation and recast layer of FeCuSn. The results are then be analyze through Analysis of Variance (ANOVA) to determine the significant effect for every responses involved, in order to obtain high surface quality (SQ) and surface finish for FeCuSn. As a conclusion of this experiment, the guideline of FeCuSn hybrid metal material of EDM can be established.

REFERENCES

- Astakhov, J.P. (2010). Surface Integrity in Machining: Chapter 1: Definition and Importance in Functional Performance, Springer, London, British.
- Atlanda EDM (2013). History of EDM. Retrieved October 5, 2014
- Baraskar, S., Banwait, S.S., Laroiya, S.C., (2011). Mathematical Modeling of Electrical Discharge Machining Process through Response Surface Methodology. International Journal of Scientific & Engineering Research, 2(11), pp. 2229-5518.
- Benedict G., (1987). Nontraditional Manufacturing Processes. New York: Marcel Dekker, INC.
- Broberg, K.B. (1999). *Cracks and Fracture*, Academic Press, Cambridge, Great Britain.
- El-Hofy H., (2005). Advanced Machining Processes. Landon Madrid Mexico City: McGraw-Hill.
- Field, M., Kahles, J.F. and Cammett, J.T. (1972). A Review of Measuring Methods for Surface Integrity, Annals of the CIRP Vol 21/2, 219-238.
- Groover, M.P. (2010). Fundamentals of Modern Manufacturing: Materials, Processes and Systems, John Willey & Sons, U.S.A.
- Guido, K. (2007). *Hybrid Materials; Synthesis, Characterization and Applications,*Wiley-Vch, Weinhem, Germany.
- Habib S., (2009). Study of the parameters in electrical discharge machining through response surface methodology approach. Applied Mathematical Modelling, Volume 33, p. 4397–4407.
- Hassan Abdel-Gawad El-Hofy (2014). Fundamentals of Machining Processes, Conventional and Nonconventional Processes. 2nd edition. CRC Press, Boca Raton, U.S.A.

- Iqbal A.K.M., and Khan A. A., (2010). Modeling and Analysis of MRR, EWR and Surface Roughness in EDM Milling through Response Surface Methodology. American J. of Engineering and Applied Sciences, Volume 3(4), pp. 611-619.
- Jamal, Y.S.A. (2009). *Machining of Polymer Composites*, Springer, Abu Dhabi, United Arab Emirates.
- Kalpakjian, S. and Schmid, S.R. (2010). *Manufacturing Engineering and Technology*, Pearson, Singapore.
- Kansal H.K., Singh S., Kumar P., (2005). Parametric optimization of powder mixed electrical discharge machining by response surface methodology. Journal of Materials Processing Technology, Volume 169, p. 427–436.
- Kern, R., (2008). Electrode Materials Properties that affect EDM. [Online] Available at: www.edmtodaymagazine.com/AAweb2_2010/.../TechTipsM-J-8.pdf [Accessed 25 October 2014].
- Kumara, S., Singh, R., Singh, T.P., Sethi, B.L., (2009). Surface modification by electrical discharge machining: A review. Journal of Materials Processing Technology, Volume 209, p.3675–3687.
- Kunieda M., Lauwers B., Rajurkar K. P., Schumacher B. M., (2005). Advancing EDM through Fundamental Insight into the Process. CIRP Annals Manufacturing Technology, 54(2), pp. 64 - 87.
- Li L, Wong Y, Fuh J, Lu L. Effect of TiC in copper tungsten electrodes on EDM performance. J Mater Process Tech 2001;113:563–7.
- Marc J. Madou, (2011). Fundamentals of Microfabrication and Nanotechnology, Manufacturing Techniques for Microfabrication and Nanotechnology. Vol. 2. CRC Press, Boca Raton, U.S.A.
- Montgomery, D. C., (2013). *Design and Analysis of Experiments*. 8th ed. New York: John Wiley & sons, Inc.
- Nairn, J.A. (2000). Comprehensive Composite Materials: Chapter 13: Polymer Matrix Composite: Matrix Microcracks Composites, Vol.2, Elsevier Science, U.S.A.
- Newman S.T., Ho., K. H., (2003). State of the art electrical discharge machining (EDM). International Journal of Machine Tools & Manufacture, Volume 43, p. 1287–1300.

- Ojha, K., R. K. Garg, R.K., Singh, K. K., (2010). MRR Improvement in Sinking Electrical Discharge Machining: A Review. Journal of Minerals & Materials Characterization & Engineering, 9(8), pp. 709-739.
- Olympus (2014). *Knowledge: Surface Roughness*. Retrieved November 19, 2014 from http://www.olympus-ims.com/en/knowledge/metrology/roughness/
- Puertas, C. L., Luis C.J., (2007). Methodology for developing technological tables used in EDM processes of conductive ceramics. Journal of Materials Processing Technology, Volume 189, p. 301–309.
- Puertas I., Luis C.J., Villa G., (2005). Spacing roughness parameters study on the EDM of silicon carbide. Journal of Materials Processing Technology,
 Volume 164–165, p. 1590–1596.
- Ramasawmy H., Blunt L., (2004). Effect of EDM process parameters on 3D surface topography. Journal of Materials Processing Technology, Volume 148, p. 155–164.
- Rao P. S., Kumar J. S., Reddy V. K., Sidda., Reddy B. S., (2010). Parametric Study of Electrical Discharge Marchining of AISI 340 Stainless Steel. International Journal of Engineering Science and Technology, Volume 2(8), pp. 3535-3550.
- Tomadi, S.H., Hassan, M.A. Hamedon, Z., Daud, R., Khalid, A.A., (2009). Analysis of the Influence of EDM Parameters on Surface Quality, Material Removal Rate and Electrode Wear of Tungsten Carbide. Hong Kong, s.n.
- Whitcomb, P.J., Anderson, M.J., (2004). Screening process factors in the presence of interactions. Annual *quality congress proceedings*, Volume 58, pp. 471 480.
- Zhang, Y., Liu, Y., Ji, R. and Cai, B. (2011). Study of the recast layer of a surfaced machined by sinking electrical discharge machining using water-in-oil emulsion as dielectric, Applied Surface Science 257, 5989-5997.