OPTICAL AND THERMOLUMINESCENCE PROPERTIES OF SAMARIUM OR DYSPROSIUM DOPED LITHIUM BORATE GLASS

RAGHDA SAIFEDDIN SAID DAWAUD

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science (Physics)

> Faculty of Science Universiti Teknologi Malaysia

> > MAY 2015

I dedicate this work

To my dear parents Saifeddin Said Nazzal Intisar Mohammad Nazzal Ina'am Yousef Dawaud

To my lovely husband Dr. Waheeb Abdel rahman Abu-Ulbeh To my kids

,

Aon and Azm

Whose love, kindness, patience and prayer have brought me this far

To my siblings

For their endless laughs and tears

To my niece and nephew Whose presence fills my life with joy

To my friends

For their love, understanding and support through my Endeavour

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious, Most Merciful. Praise to Allah S.W.T, Peace and blessings of Allah upon His Messenger, Muhammad S.A.W, and all his family and companions.

I would like to express my deepest thanks and gratitude **to my supervisor Dr. Suhairul Hashim** UTM-Malaysia, for his keen supervision, initiating and planning this study, great help, and scientific guidance.

Sincere thanks and appreciations to all my friends in the Physics Department who are supported me during my study. Many thanks to all people who helped me in my study, in particular Dr. Yasser Alajermi

Last but not least, special thanks to my husband (Dr. Waheeb), my father (Saifeddin) and my mother (Intesar) who supported me with patience and forbearance, to my kids Aon and Azm, and to my brothers and sisters for their encouragement.

ABSTRACT

Borate glass is widely used in many scientific studies. By using melt-quenching technique ten samples of lithium sodium borate (LNB) doped with different concentrations of samarium oxide (Sm₂O₃) and dysprosium oxide (Dy₂O₃) were prepared. To investigate the influence of dopant on the optical and physical characteristics of the glass, X-ray Diffraction, DTA, FTIR, UV-vis-Spectroscopy and Photoluminescence analyses were performed. The amorphous nature was confirmed by X-ray diffraction technique. The physical parameters involved are density, molar volume, ion concentration, inter-nuclear distance and Polaron radius. The absorption transitions of Sm^{3+} starts from ${}^{6}H_{5/2}$ with hypersensitive transition at 1221 nm and the Dy^{3+} starts from ${}^{6}\text{H}_{15/2}$ with hypersensitive transition at 1256 nm. The photoluminescence emission spectra of LNB:Sm have been associated with the excitation of 544 nm, 600 nm, 613 nm, 720 nm and 747 nm, and generated at ${}^{4}I_{7/2} \rightarrow {}^{6}H_{5/2}$ (green color), ${}^{4}I_{7/2} \rightarrow {}^{6}H_{7/2}$ (orange color), ${}^{4}I_{7/2} \rightarrow {}^{6}H_{9/2}$ (orange color), ${}^{4}I_{7/2} \rightarrow {}^{6}H_{11/2}$ (red color) and ${}^{4}I_{7/2} \rightarrow {}^{6}H_{13/2}$ (red color) respectively. LNB:Dy was due to the transition of Dy^{3+} at $^4F_{5/2} \rightarrow \ ^6H_{15/2}$ and ${}^{4}F_{5/2} \rightarrow {}^{6}H_{13/2}$, the photoluminescence studies showed two peaks at 479 nm (blue color) and 587 nm (green color) for all samples except the pure glass sample of lithium sodium borate. The glow curve exhibited a single peak at 164 °C. The results show that the appropriate annealing procedure for dysprosium doped LNB is 300 °C for 30 minutes. Regarding the heating rate optimization, it was found that the appropriate heating rate of the proposed dosimeter is 6 °C. s⁻¹. A linear dose response has been observed for photon $(R^2 = 0.998)$ and electron $(R^2 = 0.977)$ irradiation at 6 MV and 6 MeV, respectively. The glass dosimeter showed higher sensitivity for electron compared to photon response. The proposed TL dosimeter with concentration of 0.7 mol% of Dy_2O_3 has been observed to be 80 times less sensitive than TLD-100.

ABSTRAK

Kaca borat digunakan secara meluas dalam banyak kajian saintifik. Dengan menggunakan teknik sepuh-lindap, 10 sampel litium natrium borat yang telah didopkan dengan kepekatan oksida samarium (Sm₂O₃) dan oksida dysprosium (Dy₂O₃) yang berbeza telah disediakan. Untuk mengkaji kesan pendopan ke atas ciri-ciri optikal dan fizikal kaca, pembelauan sinar-X, DTA, FTIR, Spektroskopi UV-vis dan analisis fotoluminesens (PL) telah dijalankan. Sifat amorfus telah disahkan dengan teknik pembelauan sinar-X. Parameter-parameter fizikal yang terlibat adalah ketumpatan, isipadu molar, kepekatan ion, jarak antara nuklear dan jejari Polaron. Peralihan penyerapan Sm³⁺ bermula dari ⁶H_{5/2} dengan peralihan hipersensitif pada 1221 nm dan Dy³⁺ bermula dari ⁶H_{15/2} dengan peralihan hipersensitif pada 1256 nm. Spektrum pancaran fotoluminesens daripada LNB:Sm yang berkaitan dengan pengujaan pada 544 nm, 600 nm, 613 nm, 720 nm dan 747 nm, masing-masing dijanakan pada ${}^{4}I_{7/2} \rightarrow {}^{6}H_{5/2}$ (warna hijau), ${}^{4}I_{7/2} \rightarrow {}^{6}H_{7/2}$ (warna oren), ${}^{4}I_{7/2} \rightarrow {}^{6}H_{9/2}$ (warna oren), ${}^{4}I_{7/2} \rightarrow {}^{6}H_{11/2}$ (warna merah) dan ${}^{4}I_{7/2} \rightarrow {}^{6}H_{13/2}$ (warna merah). LNB:Dy adalah disebabkan oleh peralihan Dy^{3+} ion pada ${}^{4}F_{5/2}$ - ${}^{6}H_{15/2}$ dan ${}^{4}F_{5/2} \rightarrow {}^{6}H_{13/2}$, kajian fotoluminesens menunjukkan dua puncak pada 479 nm (warna biru) dan 587 nm (warna hijau) untuk semua sampel kaca kecuali sampel tulen litium natrium borat. Lengkung berbara menunjukkan puncak tunggal pada 164°C. Dapatan menunjukkan bahawa prosedur sepuh-lindap yang sesuai untuk LNB didopkan dysprosium ialah 300 °C selama 30 minit. Untuk kadar pemanasan optimum, didapati bahawa kadar pemanasan yang bersesuaian bagi dosimeter adalah 6 °C.s⁻¹. Sambutan dos linear terhadap penyinaran foton ($R^2 = 0.998$) dan elektron ($R^2 = 0.977$) masing-masing telah dicerap pada 6 MV dan 6 MeV. Dosimeter kaca ini menunjukkan kepekaan yang lebih tinggi untuk elektron berbanding sambutan foton. Dosimeter Luminesens Terma (TL) yang dicadangkan pada kepekatan 0.7 mol% Dy₂O₃ telah menunjukkan kepekaan 80 kali lebih rendah berbanding TLD-100.

TABLE OF CONTENTS

CHAPTER TITLE

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xvi
LIST OF SYMBOLS	xviii
LIST OF APPENDICES	xix

1

INTRODUCTION 1

1.1	Background	1
1.2	Lithium Borate Glass	2
1.3	Modifiers and Activators	4
	1.3.1 Lithium Carbonate and Sodium	4
	Carbonate Modifiers	
	1.3.2 Samarium Oxide and Dysprosium	5
	Oxides Activators	
1.4	Problem Statement	6
1.5	Objectives	7
1.6	Scope of Study	8

1.7	Organization of Study	10
LIT	ERATURE REVIEW	11
2.1	Introduction	11
2.2	General Structure of Glass	11
2.3	Structure of Lithium Borate	13
	2.3.1 Borate Glass	13
	2.3.2 Modifiers Borate Glass	15
	2.3.2.1 Sodium and Lithium	15
	2.3.2.2 Glass Properties	15
	Improvement	
	2.3.3 Structure of Lithium Sodium Borate	17
	2.3.3.1 Lithium Sodium Borate	18
	2.3.3.2 Samarium and Dysprosium	19
	Oxides	
2.4	Optical Properties	21
2.5	Luminescence Dosimetry	23
2.6	Thermoluminescence	23
	2.6.1 Thermoluminescence Dosimeter	24
	System	
	2.6.1.1 Glow Curve	25
	2.6.1.2 Annealing	27
	2.6.1.3 Sensitivity	27
	2.6.1.4 Dose Response	27
	2.6.1.5 Heating Rate	28
2.7	Previous Studies	29
	2.7.1 Related to Optical Properties of Borate	29
	2.7.2 Thermoluminescence Properties of	31
	Borate	
MA	FERIAL AND METHODS	33
3.1	Introduction	33
3.2	Sample Preparations	34

2

3

3.3	Sample Characterizations	36
	3.3.1 X-ray Diffraction Analysis	37
	3.3.2 Infrared Spectroscopy	37
3.4	Physical Parameters	37
	3.4.1 Density and Molar Volume	38
	3.4.2 Ion Concentration	38
	3.4.3 Reflection measurement	39
	3.4.4 Oscillator Strengths	40
	3.4.5 Differential Thermal Analysis	41
3.5	Optical Properties	42
	3.5.1 UV-Vis-NIR Measurements	42
	3.5.2 Photoluminescence Measurement	42
3.6	Thermoluminescence Measurement	44
	3.6.1 Preparation the chips for	44
	(LNB:Dy,Sm)	
	3.6.2 TLD-Reader Harshaw	45
	3.6.2.1 Dark Current	46
	3.6.2.2 PMT Nose	47
	3.6.2.3 Background Noise	47
	3.6.3 Exposure to Iradiation	47
	3.6.3.1 University of Malaya Medical	48
	Center, Clinical Oncology Unit, KL	
	3.6.3.2 Photons	48
	3.6.3.3 Electrons	49
	3.6.4 Annealing	50
	3.6.5 Heating Rate	52
	3.6.6 Sensitivity	52
RESUI	LTS AND DISCUSSION	54
4.1	Introduction	54
Part A	: Li ₂ CO ₃ – B ₂ O ₃ – Na ₂ CO ₃ doped Sm ₂ O ₃	55
4.2	X-Ray Diffraction Analysis	55

4

	4.3	Physical Parameters	57
	4.4	DTA Analysis	60
	4.5	FTIR Analysis	62
	4.6	UV-vis-Absorption Spectra	63
	4.7	Energy Band Gap	68
	4.8	Photoluminescence Spectra	72
	4.9	TL Glow Curve	75
	Part B	: Li2CO3 – B2O3 – Na2CO3 doped Dy2O3	77
	4.2	X-Ray Diffraction Analysis	77
	4.3	Physical Parameters	79
	4.4	FTIR Analysis	81
	4.5	UV-vis-Absorption Spectra	83
	4.6	Energy Band Gap	87
	4.7	Photoluminescence Spectra	92
	4.8	TL Glow Curve	95
	4.9	Golden Card	96
	4.10	Annealing	98
	4.11	Heating-Rate Effect	101
	4.12	Linearity	103
	4.13	TL – Sensitivity	107
5	CONC	LUSION	109
	5.1	Introduction	109
	5.2	Recommendation and Future Studies	112
REFERENCES			114

5

Х

LIST OF TABLES

TITLE

TABLE No.

3.1	Raw materials employed in the concentration of each chemical	35
4.1	Physical parameters calculated for LNB doped with Sm ³⁺	57
4.2	DTA studies of LNB with different dopants	60
4.3	The variation between the transition levels and their oscillator strengths of Sm^{3+}	67
4.4	Optical parameters calculated for LNB doped with Sm ³⁺	71
4.5	Physical parameters calculated for LNB doped with Dy ³⁺ .	79
4.6	The variation between the transition levels and their	87
4.7	oscillator strengths of Dy ³⁺ . Optical parameters calculated for LNB doped with Dy ³⁺	91
4.8	ions. TLD yield obtained after photon irradiation for LNB:Dy.	105
4.9	TLD yield obtained after electron irradiation for LNB:Dy	107
4.10	The Sensitivity of the proposed dosimeters and TLD-100 using fixed incident energy and different absorbed dose.	108

PAGE

LIST OF FIGURES

Figure No. TITLE

PAGE

1.1	Structure of borate glass network (Bekker et al., 2012).	3
1.2	Scope of study	9
2.1	Structural groups postulated for borate glasses (Krogh-Moe, 1965).	14
2.2	A schematic diagram of structure for lithium sodium borate glass (Bekker <i>et al.</i> , 2012).	17
2.3	A schematic diagram of TLD reader (Podgorsak, 2005).	24
2.4	Glow curve of LiF:Mg,Ti measured with a TLD reader (Podgorsak, 2005).	26
3.1	The flow chart of LNB:Sm, Dy glass preparation	36
3.2	The steps to calculate the oscillator strength	41
3.3	The machines performed to characterize and determine the optical properties of the new glasses (a: XRD; b: FTIR; c: UV-Vis spectrometer; d: PL spectroscopy).	43
3.4	Preparation of sample LNB:Sm and LNB:Dy, a) sample preparation; b) annealing; c) read out process using TLD-reader.	44

3.5	A Harshaw 4500 TL reader belonging to Physics	46
	Department, UTM.	
3.6	The position of LINAC and solid phantom for irradiation to	50
	determine response of doped optical fibre and TLD-100 for	
	various electron energies at 200 MU min ⁻¹ dose rate.	
3.7	A furnace (Harshaws) used to anneal TL materials.	51
4.1	XRD pattern obtained for Li ₂ CO ₃ -Na ₂ CO ₃ -B ₂ O ₃ doped with	56
	mol% of Sm_2O_3 .	
4.2	The glass density with different concentration of Sm^{3+} ions.	58
4.3	The refractive index with different concentration of Sm^{3+}	59
	ions.	
4.4	DTA studies of LNB: (A: 0.0 mol % of Sm_2O_3 and B: 0.3	61
	mol % of Sm_2O_3).	
4.5	IR spectra of Li ₂ CO ₃ -Na ₂ CO ₃ -B ₂ O ₃ glasses doped Sm ₂ O ₃	62
	regions from 0.3 - 1.3 mol% indicate by G2 to G6.	
4.6	UV-vis-NIR absorption of Li ₂ CO ₃ - Na ₂ CO ₃ - B ₂ O ₃ doped	64
	with (0.3, 0.5, 0.7, 1.0, 1.3 mol%) Sm ³⁺ ions.	
4.7	Absorption spectra of Sm^{3+} ions with (0.3 - 1.3 mol%)	65
	doped $Li_2CO_3 - Na_2CO_3 - B_2O_3$.	
4.8	Indirect Band Gap of $Li_2CO_3 - Na_2CO_3 - B_2O_3$ doped with	68
	Sm ³⁺ ions.	
4.9	Indirect Band Gap of $Li_2CO_3 - Na_2CO_3 - B_2O_3$ doped 0.7	69
	mol% of Sm_2O_3 .	
4.10	Direct Band Gap of Li ₂ CO ₃ - Na ₂ CO ₃ - B ₂ O ₃ doped with	70
	Sm ³⁺ ions.	
4.11	Direct Band Gap of Li ₂ CO ₃ - Na ₂ CO ₃ - B ₂ O ₃ doped 0.7	71
	mol% of Sm_2O_3 .	
4.12	Emission spectra of Li ₂ CO ₃ -Na ₂ CO ₃ -B ₂ O ₃ doped with (0.3,	72
	0.5, 0.7, 1.0, 1.3 mol%) Sm^{3+} ions, $\lambda_{\text{excitation}}$ is 400nm.	
4.13	Emission energy levels diagram of Li2CO3-Na2CO3-B2O3	74
	glass doped Sm ³⁺ .	

4.14	Optimization of LNB:Sm samples.	76
4.15	XRD pattern obtained for Li2CO3- Na2CO3-B2O3 doped	78
	with mol% of Dy_2O_3 .	
4.16	The glass density with different concentration of Dy^{3+} .	80
4.17	The refractive index with different concentration of Dy $^{3+}$	81
	ions.	
4.18	IR spectra of Li ₂ CO ₃ -Na ₂ CO ₃ -B ₂ O ₃ glasses doped (1) 0.3,	82
	(2) 0.5, (3) 0.7, (4) 1.0, (5) 1.3 mol% of Dy ₂ O ₃ .	
4.19	UV-vis-NIR absorption of $Li_2CO_3 - Na_2CO_3 - B_2O_3$ doped	84
	with (0.3, 0.5, 0.7, 1.0, 1.3) mol% of Dy ₂ O ₃ .	
4.20	Absorption spectra of Dy^{3+} ions with (0.3 - 1.3 mol%) doped	85
	$Li_2CO_3 - Na_2CO_3 - B_2O_3.$	
4.21	Indirect Band Gap of $Li_2CO_3 - Na_2CO_3 - B_2O_3$ doped with	88
	Dy ³⁺	
4.22	Indirect Band Gap of Li ₂ CO ₃ - Na ₂ CO ₃ - B ₂ O ₃ doped 0.5	89
	mol% of Dy $_2O_3$.	
4.23	Direct Band Gap of $Li_2CO_3 - Na_2CO_3 - B_2O_3$ doped with	90
	Dy^{3+}	
4.24	Direct Band Gap of Li ₂ CO ₃ - Na ₂ CO ₃ - B ₂ O ₃ doped 0.5	91
	mol% of Dy $_2O_3$.	
4.25	Emission spectrum of Li ₂ CO ₃ -Na ₂ CO ₃ -B ₂ O ₃ doped with	92
	(0.3, 0.5, 0.7, 1.0, and 1.3 mol%) Dy^{3+} ions, $\lambda_{excitation}$ is	
	380nm.	
4.26	Emission energy levels diagram of Li ₂ CO ₃ -Na ₂ CO ₃ -B ₂ O ₃	94
	glass doped Dy^{3+} .	
4.27	Optimization of LNB:Dy samples	95
4.28	Golden Card of LNB:Dy samples (σ represents the standard	97
	deviation)	
4.29	The behavior of TL response as a function of the annealing	99
	temperature.	

4.30	The behavior of TL response as a function of the annealing	100
	time.	
4.31	The effect of heating rate (2, 4, 6, 8 and 10 °C.s ⁻¹) on glow	102
	Curve of Dy ³⁺ doped LNB.	
4.32	TL photon response of LNB:Dy versus the doses obtained	104
	using linear accelerator.	
4.33	TL electron response of LNB:Dy versus the doses obtained	106
	using linear accelerator.	

LIST OF ABBREVIATIONS

BOHC	- Boron Oxygen Hole Center
B_2O_3	- Boron Oxide
BO ₃	- Trigoal Borate
BO ₄	- Tetrahedral Borate
DTA	- Differential Thermal Analysis
Dy ₂ O ₃	- Dysprosium Oxide
ECC	- Elemental Correlation Coefficient
FTIR	- Fourier transform infrared spectroscopy
FWHM	- Full Width at Half Maximum
GFA	- Glass Former Ability
GeO ₂	- Germanium Dioxide
IR	- Infra-Red
H ₃ BO ₃	- Boric Acid
HC	- Hole Center
LiB ₃ O ₅	- Lithium Triborate
$Li_2B_4O_7$	- Lithium Tetraborate
LiF	- Lithium Fluoride
Li ₂ CO ₃	- Lithium Carbonate
Li ₂ B ₄ O ₇ :Mn	- Lithium Tetraborate Doped with Manganese
LET	- Linear energy transfer
LINAC	- Linear accelerator
LNB	- Lithium Sodium Borate
MDD	- Minimum Delectable Dose
Na	- Sodium

Na ₂ O	- Sodium Oxide
Na ₂ CO ₃	- Sodium Carbonate
NBO's	- Non-Bridge Oxygen's
P_2O_5	- Phosphorus Pentoxide
PL	- Photoluminescence
PMT	- Photomultiplier Tube
PMMA	- Poly Methyl Metha Crylate
RCF	- Read Calibration Factor
SiO ₂	- Silicon Dioxide
STD	- Standard Deviation
Sm_2O_3	- Samarium Oxide
SSD	- Source Skin Distance
SSDL	- Secondary Standard Dosimeter Lab
TL	- Thermoluminescence
TSL	- Thermally Stimulated Luminescence
TLD	- Thermoluminescence dosimetery
UMMC	- University of Malaya Medical Center
UTM	- University Technology Malaysia
UV	- Ultra Visible
XRD	- X-Ray Diffraction

LIST OF SYMBOLS

- Alpha Particle
- Weight of glass sample in the toluence
- Speed of light
- Distance between atomic layers in a crystal
- Charge of electron
- Activation Energy for Trapped Electron
- Optical band gap
- Electron Volt
- Oscillator strengths
- Ion Concentration
- Inter-nuclear distance
- Polaron radius
- Temperature
- Glass Transition
- Maximum Temperature
- Crystaline Temperature
- Molar Volume
- Density
- Frequency
- Wavelength
- Standard deviation

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	The quantity needed to prepare glass samples	122
В	The refractive index of samarium and dysprosium with different concentration	148
С	The oscillator strength of samarium and dysprosium with different concentration	149
D	List of Energy Band Gaps	154
E	List of the Optimization of LNB:Dy samples	174
F	The standard deviation of Golden Card for the samples	175
G	Rate of annealing for timing and temperature.	178
Н	Rate of heating rate for samples	180
Ι	List of Publications	181

CHAPTER 1

INTRODUCTION

1.1 Background

Glass shows various colors in the visible region due to its optical absorption. In the field of communications and optical switching, glasses have been used widely. Borate and silicate glasses contain boron oxide for optical lenses. Such glasses have high indices of refraction and dispersion characteristics. Absorption and transmission in the visible region are important in optical devices. The aforementioned of three areas can be used to examine the structure of glasses. The structural relationship between density and refractive index was first determined by Fanderlik in 1991.

Addition of alkali oxide B_2O_3 shows different behavior from the corresponding silicate glasses. Cohesive structure in borate glass can be observed due to additions of alkali oxide while shattered network is responded by silicate glass. The structure of borate glass can change by the addition of oxygen. The bond structure becomes more stringent due to three dimensional networks. (Anishia *et al.*, 2010; El-Fayoumi *et al.*, 2009; Gaafar *et al.*, 2009; Joseph *et al.*, 2002 and Ratnakaram *et al.*, 2004).

Characteristic of color center in glasses is associated with the rate of gamma rays irradiation. Defects are produced due to color centers. Boron E Center, silicon E Center, nonbridging oxygen holes centers are the types of color centers. These color centers are defined as HC. BOHC1 and BOHC2 includes; single non-bridging oxygen and HC2 hole trapped on two nonbridging oxygen. Other types include center defect (Pb³⁺) and transition metal center defect (ie, Cu, Zn and Mn); (El-Alaily and Mohamed, 2003).

1.2 Lithium Borate glass

The glass preparation without glass network former like boron requires high temperature to soften it for applications of optical fiber. Several companies suggested that the release of carbon dioxide into the atmosphere requires high energy. Various methods can be followed in order to synthesize pure glasses such as silicon glass (SiO₂), boron glass (B₂O₃), phosphorus glass (P₂O₅) and germanium glass (GeO₂). Borate glass was first introduced in the field of thermolumniscence (Schulman *et al.*, 1965). Lithium carbonate (Li₂CO₃) and boric acid (H₃BO₃) were prepared by melt quenching technique for the applications of thermolumniscence. In this present study, the focus is on the glasses formation corresponding to boric acid (West, 1989).

In 1965, lithium borate was introduced by Schulman and his colleagues in the dosimetric world. Host glass was doped with manganese to enhance the TL sensitivity. The mixture was prepared based on the glassy formation at 917 °C and was cooled rapidly. The same mechanism caused formation of crystallized material by subsequent and repeated heating at 650 °C (Schulman *et al.*, 1965). Numerous studies confirmed that lithium borate is cost effective, highly sensitive and more precise than lithium fluoride. In 1974, the thermally stimulated luminescence of borate compounds was used by Kazanskaya. Several attractive properties were remarked such as sensitivity, linearity and low fading (Kazanskaya *et al.*, 1974).

From the literature, it can be summarized that variety of atom groups are formed due to the ability of boron atom to link with either three or four oxygen atoms. The structural change between BO₃ and BO₄ is occurred as a result of adding metal oxides (as shown in Figure 1.1). It is due to transition stage, low cost and relative stability, high transparency, easy preparation and shape, ionic conductivity (Gaafar *et al.*, 2009; Joseph *et al.*, 2002; Mustafa Alajerami *et al.*, 2012a; Alajerami *et al.*, 2012b and Alajerami *et al.*, 2013b). In addition, glass is a good host of different transition metals and rare earths. Borate is considered a good source in the field of industry and medicine. Borate glasses are very helpful in the field of dosimetry due to its effective atomic number which is very close to human body's tissue. Previous studies confirmed that the effect of alkali and alkaline reduced the hygroscopic property of borate. It is known as alkali borate glasses (Anishia *et al.*, 2010; Alajerami *et al.*, 2013b; Rao *et al.*, 2002; Alajerami *et al.*, 2012a and Balaji Rao *et al.*, 2008).

Figure 1.1: Structure of borate glass network (Bekker et al., 2012).

Figure 1.1 displays the structure of BO_4 with different shape, the structural change between BO_3 and BO_4 is occurred as a result of adding metal oxides. In this study the addition of lithium carbonate affects to change the structure of BO_3 .

The increment of alkali oxide as a glass modifier causes an obvious change in the characterizations and luminescence properties of borate glass. Balaji Rao *et al.*, 2008 show two considerable states are already identifies as a results of incorporating alkali and alkaline oxide to the boron host. These states are the trigonal and the tetrahedral states which are greatly attributed to the creation of ionic bond with oxygen atom. The modified borate glasses have an amorphous structure close to the binary borate glasses, and all states have large phonon energy.

1.3 Modifiers and Activators

The efficiency of borate glass needs to examine by using the modifiers and activators, the modifiers as lithium carbonate and sodium carbonate to improvement the luminescence intensity and increase the strengthen glass network. The activators as samarium oxide and dysprosium oxide used to increment the luminescence properties.

1.3.1 Lithium Carbonate and Sodium Carbonate Modifiers

Lithium is one of the most suitable modifiers that used to increase/improve the host strengths (mechanical stability), but the energy level of lithium ion is recorded 10 eV. But energy that more than 10 eV is required and it does not show any effect directly in the luminescence. Although it was an activator during the exposing process.

The addition of lithium ions to the glass mixture creates number of non-bridge oxygen's (NBO's). These ionic bonds enhance the network, and strengthen the formation of color-center during the excitation process. Furthermore, the addition of Li^+ ions leads to support the formation of borate rings by replacing the two BO₄ units with one BO₄ unit (Ratnakaram *et al.*, 2006; Alajerami *et al.*, 2012a and Alajerami *et al.*, 2013b).

Sodium with symbol Na $[3s^1]$ has a free electron in the outer L-shell. This sequence describes the stability of sodium. The addition of sodium on the borate system leads to enhance the luminescence intensity and strengthen its network after the excitation process (Farouk *et al.*, 1995 and Alajerami *et al.*, 2013b).

1.3.2 Samarium Oxide and Dysprosium Oxide Activators

Samarium (4f⁶) is one of the transition elements that includes in the lanthanides group. Samarium ions (Sm³⁺) usually found in triply ionized Sm³⁺. It has specific advantages. The uses of Samarium in various optical devices such as storage of high optical density, sea contacts and screens, as well as lasers in the solid state devices. Samarium exhibited relatively high quantum efficiency, and showed different emission cooling where they appear, including emissions shining in the orange/ red, emitting ${}^{4}G_{5/2}$ level (Ratnakaram *et al.*, 2005; Lakshminarayana and Qiu, 2009; Venkateswarlu *et al.*, 2011; Ratnakaram *et al.*, 2012 and Vijaya *et al.*, 2013). The Sm³⁺ ions is important activator for inorganic lattices such as the emission of reddish orange light to electronic transitions ${}^{4}G_{5/2}$, ${}^{4}G_{3/2}$, ${}^{4}I_{7/2}$ and ${}^{4}I_{5/2}$.

 $\rm Sm^{3+}$ ions as local structure are utilized in condensed matter due to electric dipole $\rm ^4G_{5/2}$ and $\rm ^6H_{5/2}$ transition. Hypersensitivity of $\rm Sm^{3+}$ ions increases due to reduction in the intensity of luminescence. Although previous researcher have been paid less attention on samarium glasses from other lanthanides. Dy^{3+} (4f⁹) ion is one of the best ions in lanthanides group. It plays a great role in the luminescence behaviour and glass configuration. In the visible and NIR regions, the analysis of luminescence of Dy^{3+} ions from the ${}^{4}F_{9/2}$ level is very interesting. Previous studies showed difficulties to interpret the spectra of dysprosium (Karunakaran *et al.*, 2010 and Venkateswarlu *et al.*, 2011). These barriers attributed to the approach of a large number of energy levels laying to each other, and the electronic structure of complex configuration of 4f⁹ that has limited attention paid to the emission of visible source state ${}^{4}F_{9/2}$ (Jayasankar *et al.*, 2004 and Lakshminarayana *et al.*, 2008).

The proper selection of the host to facilitate the extraction of the primary colors of yellow transition ${}^{4}F_{9/2} - {}^{6}H_{13/2}$ and blue transmission of ${}^{4}F_{9/2} - {}^{6}H_{15/2}$ from Dy³⁺ ions. Although a number of spectral studies on Dy³⁺ ion doped materials is performed. A systematic analysis of the thermal behaviour of the optical and structural Dy³⁺ based anaesthetic borate glasses by changing the alkali element has not been published.

The attracted optical properties of Dy^{3+} ions in solid-state laser increased the optical up transformation emission. Several studies have been reported to identify the emission of Dy^{3+} doped crystals and glasses (Lakshminarayana *et al.*, 2008 and Rajesh *et al.*, 2012). All these studies recommended the performing of dysprosium oxide as activator to enhance the luminescence.

1.4 Problem Statement

The first TL material based on lithium borate which was introduced in dosimetry was Li₂B₄O₇:Mn. Li₂B₄O₇:Mn phosphor with low TL sensitivity caused partly by the emission in the 600 nm region. The borate glass has many advantages: low cost, high ionic conductivity, low melting point, high transparency, high thermal stability, however it has some disadvantages such as formation of crystal.

Generally, there are some specific features that should fulfill with the proposed composition to be used as dosimeter i.e. shapes of the glow curve, effective atomic number, linearity, sensitivity. Some of drawbacks are appeared by using the conventional dosimeter TLD-100 (LiF:Mg,Ti). It can be summarize that the disadvantages for TLD-100 (LiF:Mg,Ti) are due to annealing complexity, dose response linearity, and the energy response.

Several studies have been carried to examine the efficiency of lithium borate with different activators (Rare earths or transition metals) to improve the dosimetric properties (Furetta *et al.*, 2000; Prokic, 2002; Sangeeta and Sabharwal, 2004) and glass preparation (Pontuschka *et al.*, 2001; Venkateswara *et al.*, 2002; Rojas *et al.*, 2006).

In the present study we attempt to prepare new dosimeter by using borate glass modified with lithium carbonate and sodium carbonate and activated by samarium and dysprosium oxides.

1.5 Objectives

The objectives of this study are:

- I. To fabricate new glass composition of lithium sodium borate glass undoped and doped with different concentration of samarium and dysprosium.
- II. To determine the optical and the thermoluminescence properties of the doped and undoped lithium sodium borate glass with different concentration of samarium and dysprosium samples.

III. To investigate relationship between the optical and thermoluminescence properties of the doped and undoped lithium sodium borate glass with different concentration of samarium and dysprosium samples.

1.6 Scope of Study

In order to achieve the above mentioned objectives the study will be focused on the following scopes as being summarized in Figure 1.2:

- i. Preparation of glass samples from lithium sodium borate doped different concentration of samarium and dysprosium by using melt quenching technique.
- ii. The used of X-ray diffraction to identify the amorphous phase.
- iii. The used of UV-vis-NIR spectroscopy to investigate the absorption properties of the obtained glass.
- iv. The used of Photoluminescence spectroscopy to determine the excitation and emission spectra of the samples.
- v. Irradiation of TL materials in order to investigate the thermoluminescence characteristics

1.7 Organization of study

The thesis is organised to five chapters. Chapter one has the background of borate glass, describes the significant of the proposed samples in term of its optical and thermoluminescence properties. Lithium sodium borate glass doped with samarium and sodium is to introduce a new thermoluminescence material. Three main objectives are listed in this chapter to be accomplished.

In chapter two, general descriptions will be reported regarding the glass structure and lithium sodium borate by using dysprosium and samarium oxide as rare earth activators. The optical and thermoluminescence properties also will be discussed.

In chapter three, the glass preparation process and the methodology used to investigate the optical properties (UV and PL) and physical properties are described in details. The techniques that are being used for the characterization are XRD, FTIR and DTA. The thermoluminescence studies will be carried out using ionizing radiation.

In chapter four, a full analysis and discussion of the optical, physical and TL results are presented.

Finally, chapter five conclude the obtained results and suggests some recommendations for the future studies.

References

- Abdel-Rahim, M.A., El-Korashy, A., Hafiz, M.M., Mahmoud, A.Z. (2008). Kinetic study of non-isothermal crystallization of BixSe 100- x chalcogenide glasses. *Physica B*, 403, 2956.
- Alajerami, Y. S. M., Hashim, S., Wan Hassan, W. M. S., Termizi Ramli, A. Kasim,
 A. (2012a). Optical Properties Of Lithium Magnesium Borate Glasses Doped
 With Dy³⁺ And Sm³⁺ Ions. *Journal of Physica B : Condensed Matter*, 407(13), 2398-2403.
- Alajerami, Y. S. M., Hashim, S., Wan Hassan, W. M. S., and Ramli, A. T. (2012b). The Effect Of Titanium Oxide On The Optical Properties Of Lithium Potassium Borate Glass. *Journal of Molecular Structure*, *1026*, 159-167.
- Alajerami, Y. S. M., Hashim, S., Hassan, W. M. S. W., Ramli, A. T., and Saleh, M.
 A. (2013b). The Effect Of MgO On The Optical Properties Of Lithium Sodium Borate Doped With Cu⁺ Ions. *Optics and Spectroscopy*, *114*(4), 537-543.
- Alajerami, S.M.Y., Hashim, S., Ramli, A.T., Saleh, M.A., Abdul Kadir, A.B., Saripan, M.I. (2013a). Dosimetric Characteristics of LKB:Cu,Mg Solid Thermoluminescence Detector. *Chin. Phys. Lett.* 30(1)..
- Anishia, S. R., Jose, M. T., Annalakshmi, O., Ponnusamy, V., Ramasamy, V., (2010). Dosimetric properties of rare earth doped LiCaBO₃ thermoluminescence phosphors. *Journal Luminescence*, 130, 1834–1840.
- Anishia, S. R., Jose, M. T., Annalakshmi, O., and Ramasamy, V. (2011). Thermoluminescence properties of rare earth doped lithium magnesium borate phosphors. *Journal of Luminescence*, 131(12), 2492-2498.
- Balaji Rao, R., Krishna Rao, D., and Veeraiah, N. (2004). The Role Of Titanium Ions On Structural, Dielectric And Optical Properties Of Li₂O–MgO–B₂O₃ Glass System. *Materials chemistry and physics*, 87(2), 357-369.
- Balaji Rao, R., Gerhardt, R. A., and Veeraiah, N. (2008). Spectroscopic Characterization, Conductivity And Relaxation Anomalies In The Li₂O–MgO–B₂O₃ Glass System: Effect Of Nickel Ions. *Journal of Physics and Chemistry of Solids*, 69(11), 2813-2826.
- Balakrishna, A., Rajesh, D., Ratnakaram, Y. C. (2012). Structural And Photoluminescence Properties Of Dy³⁺ Doped Different Modifier Oxide-Based Lithium Borate Glasses. *Journal of Luminescence*, 132, 2984-2991.

- Bekker, T. B., Rashchenko, S. V., Bakakin, V. V., Seryotkin, Yu. V., Fedorov, P. P., Kokha, A. E. and Stonoga, S. Yu. (2012). *Cryst Eng Comm*, 14, 6910–6915.
- Bos, A. J. J. (2007). Theory of thermoluminescence. *Radiation Measurements*, 41, S45-S56.
- Clavaguera-Mora, M. T. (1995). Glassy materials: thermodynamic and kinetic quantities. J. Alloys Compd. 220, 197-205.
- Dimitrov, V., Sakka, S. (1996). Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys., 79, 1736.
- Dyrba, M., Miclea, P. T., and Schweizer, S. (2010). Spectral Down-Conversion In Sm-Doped Borate Glasses For Photovoltaic Applications. In SPIE Photonics Europe (pp. 77251D-77251D). International Society for Optics and Photonics.
- El-Alaily, N. A. And Mohamed, R. M. (2003). Effect Of Irradiation On Some Optical Properties And Density Of Lithium Borate Glass. *Materials Science and Engineering: B*, 98(3), 193-203.
- El-Fayoumi, M. A. K., and Farouk, M. (2009). Structural properties of Li–borate glasses doped with Sm³⁺ and Eu³⁺ ions. *Journal of Alloys and Compounds*, 482(1), 356-360.
- Elfayoumi, M. A. K., Farouk, M., Brik, M. G., Elokr, M. M. (2010). Spectroscopic Studies Of Sm³⁺ And Eu³⁺ Co-Doped Lithium Borate Glass. *Journal of Alloys and Compounds*, 492, 712-716.
- Fanderlik, I. (1991). Silica Glass and Its Application, (Glass science and technology). *Elsevier*, Amesterdam.
- Farouk, H., Abo-Zeid, Y. M., Khaled, M. A., Kashif, I., and Sanad, A. M. (1995). Structure And Physical Properties Of Sodium Borate Glasses Containing Nickel Oxide. *Journal of Materials Science: Materials in Electronics*, 6(6), 393-396.
- Furetta, C. Prokic, M. Salamon, R. Prokic, V. and Kitis, G. (2000). "Dosimetric characteristics of tissue equivalent thermoluminescent solid TL detectors based on lithium borate", *Nucl. Instrum. Methods*, 456, 411-417.
- Furetta, C., Prokic, M., Salamon, R., Prokic, R. (2001). Dosimetric characteristics of tissue equivalent thermoluminescent solid TL detectors based on lithium borate. *Nuclear Instruments Methods Phys Res A*, 456, 411-417.
- Furetta, C. (2003).Handbook of Thermoluminescence. World Scientific: New Jersey, London, Singapore, Hong Kong.

- Gaafar, M. S., El-Batal, F. H., El-Gazery, M., and Mansour, S. A. (2009). Effect of Doping by Different Transition Metals on the Acoustical Properties of Alkali Borate Glasses. *Acta Physica Polonica A*, 115(3), 671-678.
- Gorbics, S. G. Nash, A. E. and Attix, F. H. (1968).in: Proc. 2nd Int. Conf. on Lumin. Dosimetry, Gatlinburg, TN, USA,587.
- Griscom, D. L. (1978). in: "Borate Glasses, Structure, Properties, Applications" L.D. Pye, V. D. Frechette, and N. J. Kreidl, eds. Plenum, New York, P. 11.
- Hashim, S., Ramli, A.T, Bradley, D.A. and Wagiran, H. (2007). The Thermoluminescence Response of Ge-Doped Optical Fibres to X-Ray Photon Irradiation. *Regional Annual Fundamental Science Seminar 2007 (RAFSS 2007)*, not published.
- Hashim, S., Al-Ahbabi, S., Bradley, D.A., Webb, M., Jeynes, C., Ramli, A.T., Wagiran, H. (2009). The thermoluminescence response of doped SiO₂ optical fibres subjected to photon and electron irradiations. *Applied Radiation and Isotopes*, 67(3), 423-427.
- Hashim, S., Alajerami, Y.S.M., Ghoshal, S.K., Saleh, M.A., Saripan, M.I., Kadir, A.B.A., Bradley, D.A., Alzimami, K. (2013). Dosimetric characteristics of LKB:Cu,P solid TL detector.*Radiation Physics and Chemistry*, 10, 1016.
- Hurby, A. (1972). Evaluation of glass-forming Tending by Means of DTA. Journal Physica B, 22, 1187.
- Jain, H., Downing, H. L., and Peterson, N. L. (1984). The Mixed Alkali Effect In Lithium-Sodium Borate Glasses. *Journal of Non-Crystalline Solids*, 64(3), 335-349.
- Jayasankar, C. K., Venkatramu, V., Surendra Babu, S., and Babu, P. (2004). Luminescence Properties Of Dy³⁺ Ions In A Variety Of Borate And Fluoroborate Glasses Containing Lithium, Zinc, And Lead. *Journal of Alloys and Compounds*, 374(1), 22-26.
- Joseph, C. M., Binu, P. R., Shreekrishnakumar, K., and Menon, C. S. (2002). Preparation And Physical Properties Of CuPc Substituted Sodium Borate Glass Matrix. *Materials Letters*, 53(4), 326-328.
- Judd, B. R. (1962). Phys. Review. 127, 511.
- Kamitsos, E. I., Karakassides, M. A., Chryssikos, G. D. (1987). Vibrational spectra of magnesium-sodium-borate glasses. 1. Far-infrared investigation of the cationsite interactions. *Journal Phys. Chem.*, 91 (5) 1073.

- Karunakaran, R. T., Marimuthu, K., Surendra Babu, S., and Arumugam, S. (2010). Dysprosium Doped Alkali Fluoroborate Glasses—Thermal, Structural And Optical Investigations. *Journal of Luminescence*, 130(6), 1067-1072.
- Kauzmann, W., (1948). The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures. Chem. Rev. 43, 219
- Kazanskaya, V.A., Kuzmin, V. V., Minaevaand, E. E. and Skolov, A. D. (1974). Proceedings of the Fourth International Conference on Luminescence Dosimetry, Krakow, Poland, Polish Academy of Sciences, 581.
- Krogh-Moe, J. (1965). Interpretation of the infra-red spectra of boron oxide and alkali borate glasses. *Phys, Chem Glasses*, 6, 46.
- Lakshminarayana, G., Vidya Sagar, R., Buddhudu, S. (2008). Emission Analysis Of Dy³⁺ And Pr³⁺:Bi₂O₃–ZnF₂–B₂O₃–Li₂O–Na₂O Glasses. *Journal of Physica B*, *Condensed matter*, 403(1), 81–86.
- Lakshminarayana, G., and Qiu, J. (2009). Photoluminescence Of Pr³⁺, Sm³⁺ And Dy³⁺: SiO₂-Al₂O₃-LiF-GdF₃ Glass Ceramics And Sm³⁺, Dy³⁺: GeO₂-B₂O₃-ZnO-LaF₃ Glasses. *Physica B Condensed Matter*, 404, 1169-1180.
- Li, J., Hao, J.Q., Zhang, C.X., Tang, Q., Zhang, Y.L., Su, Q., Wang, S.B., (2004). Nucl. Instrum. *Methods Phys. B*, 222,577.
- Li, J., Hao, J.Q., Li, C.Y., Zhang, C.X., Tang, Q., Zhang, Y.L., Su, Q., Wang, S.B. (2005). Thermally Stimulated Luminescence Studies For Dysprosium Doped Strontium Tetraborate. *Radiation Measurements*, 39(2), 229-233.
- Limsuwan, P., Kaewkhao, J., Chewpraditkul, W., Limkitjaroenporn, P., and Tuscharoen, S. (2010). Structural Studies Of Lead Sodium Borate Glasses. Advanced Materials Research, 93, 439-442.
- Liu, L., Zhang, Y., Hao, J., Li, C. H., Tang, Q., Prokic, M. (2001). "Lithium borate solid TL detectors", *Radiat. Meas.*, 33, 393-396.
- Mayles, P., Nahum, A. and Rosenwald, J. C. (2007). *Handbook of Radiotherapy Physic Theory and Practice*. France. Taylor and Francis.
- McKeever, S. W., Moscovitch, M., and Townsend, P. D. (1995). *Thermoluminescence dosimetry materials: properties and uses*. Ashford: Nuclear Technology Publishing. 1–4, 67–71.
- Motke, S. G., Yawale, S. P., Yawale, S. S. (2002). Infrared spectra of zinc doped lead borate glasses. B. *Mater. Sci.*, 25 (1), 75.

- Murthy, D.V.R., Jamalaiah, B.C., Mohan Babu, A., Sasikala, T., Rama Moorthy, L. (2010). The luminescence properties of Dy³⁺⁻doped alkaline earth titanium phosphate glasses. *Opt. Matter.* 32, 1112.
- Mustafa Alajerami, Y. S., Hashim, S., Saridan Wan Hassan, W. M., and Ramli, A. T. (2012). The Effect Of CuO And MgO Impurities On The Optical Properties Of Lithium Potassium Borate Glass. *Physica B: Condensed Matter*, 407(13), 2390-2397.
- Nogami, M., Abe, Y., Hirao, K., and Cho, D. H. (1995). Room temperature persistent spectra hole burning in Sm²⁺ doped silicate glasses prepared by the solgel process. *Applied physics letters*, 66(22), 2952-2954.
- Nogami, M., and Abe, Y. (1997). High-temperature persistent spectral hole burning of Eu-doped SiO glass prepared by the sol-gel process. *Applied physics letters*, 71, 3465.
- Ofelt, G. S. (1962). J. Chem. Phys. 37, 511.
- Pekpak, E., Yilmaz, A., and Özbayoglu, G. (2010). An Overview On Preparation And TL Characterization Of Lithium Borates For Dosimetric Use. Open Mineral Processing Journal, 3(1), 14-24.
- Podgorsak, E.B. (2005). Radiation oncology physics: A handbook for teacher and students. Vienna: International Atomic Energy Agency.
- Pontuschka, W. M., Kanashiro, L. S., Courrol, L. C. (2001). Luminescence mechanisms for borate glasses: the role of local structural units. *Glass Physics* and Chemistry, 27, 37–47.
- Pradhan, A. S. (1981). Thermoluminescence dosimetry and its applications. *Radiat*. *Prot. Dosim.*, 1, 153-167.
- Prokic, M. (2001). Lithium borate solid TL detectors. *Radiation Measurement*, 33, 393 396.
- Prokic M. (2002). Dosimeteric Charetceristics of Li₂B₄O₇: Cu, Ag, P Solid TL Detectors. *Radiation Protection Dosimetery*, 100, 265–268.
- Pye, L.D., Frchette, V.D., Kreidl, N.J. (1978). Borate glasses: Structure, properties, applications. *Plenum, New York*.
- Rajesh, D., Ratnakaram, Y. C., Seshadri, M., Balakrishna, A., Satya Krishna, T. (2012). Structural And Luminescence Properties Of Dy³⁺ Ion In Strontium Lithium Bismuth Borate Glasses. *Journal of Luminescence*, 132, 841-849.

- Ramasamy, V.V.; Anishia, S. R.; Jose, M. T.; Ponnusamy, V.V. (2011). Synthesis And TL Emission Properties Of RE³⁺ (Tm, Tb, Ce, Gd And Dy) Doped Lithium Based Alkaline (Ca, Mg) Earth Metal Borates. *Archives of Physics Research*, 2 (2), 1-8.
- Rao, G. V., Yadagiri Reddy, P., and Veeraiah, N. (2002). Thermoluminescence Studies On Li₂O–CaF₂–B₂O₃ Glasses Doped With Manganese Ions. *Materials Letters*, 57(2), 403-408.
- Rao, R. B., Veeraiah, N. (2004). Study on some physical properties of Li₂O–MO–B₂O₃: V₂O₅ glasses. *Physica B*, 348, 256-271.
- Ratnakaram, Y. C., Naidu, D. T., Chakradhar, R. P. S., and Ramesh, K. P. (2004). Optical Absorption And Luminescence Properties Of Nd³⁺ In Mixed Alkali Borate Glasses—Spectroscopic Investigations. *Journal of luminescence*, *110*(1), 65-77.
- Ratnakaram, Y. C., Thirupathi Naidu, D., Vijaya Kumar, A., Gopal, N. O. (2005).
 Influence Of Mixed Alkalies On Absorption And Emission Properties Of Sm³⁺
 Ions In Borate Glasses. *Journal of Physica B: Condensed Matter*, 358 (13), 296-307.
- Ratnakaram, Y. C., Naidu, D. T., and Chakradhar, R. P. S. (2006). Spectral Studies Of Sm³⁺ And Dy³⁺ Doped Lithium Cesium Mixed Alkali Borate Glasses. *Journal* of Non-Crystalline Solids, 352, 3914-3922.
- Ratnakaram, Y. C., Balakrishna, A., Rajesh, D., and Seshadri, M. (2012). Influence Of Modifier Oxides On Spectroscopic Properties Of Sm³⁺ Doped Lithium Fluoroborate Glass. *Journal of Molecular Structure*, *1028*, 141-147.
- Reddy, R. R., Nazeer Ahammed, Y., Abdul Azeem, P., Rama Gopal, K., Rao, T. V.
 R., Buddhudu, S., and Sooraj Hussain, N. (2003). Absorption and emission spectral studies of Sm³⁺ and Dy³⁺ doped alkali fluoroborate glasses. *Journal of Quantitative Spectroscopy and Radiative Transfer*, 77(2), 149-163.
- Rojas, S.S., Yukimitu, K., de Camargo, A.S.S., Nunes, L.A.O., Hernandes, A.C. (2006). Undoped and calcium doped borate glass system for thermoluminescent dosimeter. *Journal of Non-Crystalline Solids*, 352, 3608-3612.
- Ryba-Romanowski, W., Dominiak-Dzik, G., Solarz, P., Lisiecki, R. (2009). Transition intensities and excited state relaxation dynamics of Dy³⁺ in crystals and glasses: A comparative study. *Opt. Matter.* 31, 1547.

- Sangeeta and Sabharwal, S.C. (2004). Kinetics of thermally stimulated luminescence from alkaline earth borates. *Journal of Luminescence*, 109, 69-74.
- Schulman, J.H., Kirk, R.D., West, E.J. (1965). Use of lithium borate for thermoluminescence dosimetry.USAEC Symposium series 650637, Luminescence Dosimetry, 113-117.
- Sidike, A., Saliqur, R. A. Z. M., He, J. Y., Lan-Xin, G., Atobe, K., Yamashita, N. (2011).Photoluminescence Spectra Of Thenardite Na₂SO₄ Activated With Rare-Earth Ions,Ce³⁺, Sm³⁺, Tb³⁺, Dy³⁺ And Tm³⁺. *Journal of Luminescence*, 131, 1840–1847.
- Streetman, B. G. (1995), *Solid State Electronic Devices*, Texas, Published by Prentice Hall.
- Taylor, G.C. and Lilley, E. (1982). Rapid readout rate of studies of thermoluminescence in LiF (TLD-100) crystals. III. J. Phys. D15, 20.
- Thomazini, D., Lanciotti Jr. F., Sombra, A. S. B. (2001). Structural properties of lithium borate glasses doped with rare earth ions. *Cerâmica*, 47, 302.
- Tohge, N., and Mackenzie, J. D. (1984). Preparation of 20Na₂O· 80B₂O₃ glasses by sol-gel method. *Journal of non-crystalline solids*, 68(2), 411-418.
- Tripathi, G., Rai, V.K., Rai, S.B. (2006).Optical Properties Of Sm³⁺ :CaO-Li₂O-B₂O₃-Bao Glass And Codoped Sm³⁺ :Eu³⁺. *Appl. Phys. B*,84, 459–464.
- Venkateswara Rao, G., Reddy, P. Y., Veeraiah, N. (2002). Thermoluminescence studies on Li₂O–CaF₂–B₂O₃ glasses doped with manganese ions. *Material Letter*, 57, 403–408.
- Venkateswarlu, C., Seshadri, M., Ratnakaram, Y. C. (2011). Influence Of Mixed Alkalies On Spectroscopic Parameters Of Sm³⁺, Dy³⁺ Doped In Chloroborate Glasses. *Optical Materials*, 33, 799-806.
- Vijaya, R., Venkatramu, V., Babu, P., Jayasankar, C. K., Rodríguez-Mendoza, U.R., Lavin, V. (2013). Spectroscopic Properties Of Sm³⁺ Ions In Phosphate And Fluorophosphate Glasses. *Journal of Non-Crystalline Solids*, 365, 85 – 92.

- Wagiran, H., Hossain, I., Bradley, D., Yaakob, A. N. H., Ramli, T. (2012). Thermoluminescence Responses of Photon and Electron Irradiated Ge- and Al-Doped SiO₂ Optical Fibres. *Chinese Physics Letters*, 29(2). 027802. http://dx.doi.org/10.1088/0256-307x/29/2/027802.
- West, A. R. (1989). Solid State chemistry and Its Application', John Wiley and Sons, New York.
- Wu, L., Chen, X.L., Tu, Q.Y., He, M., Zhang, Y., Xu, Y.P. (2002). Phase Relations In The System Li₂O–MgO–B₂O₃. *Journal of Alloys and Compounds*, 333(1-2), 154-158.
- Yahya, G. A. (2003). Studies On Some Lithium-Borate Glasses Containing Iron And Copper. *Turkish Journal Of Physics*, 27, 255-262.
- Zhang, Y., Chen, X. L., Liang, J. K., Xu, T. (2003). Phase relations of the system Li₂O–Gd₂O₃–B₂O₃ and the structure of a new ternary compound. *Journal of Alloys and Comp.*, 348, 314 - 318.