STABILITY ANALYSIS OF FILL SLOPE AT SMK SONG NO. 2'S PROJECT USING SLOPE/W

NORASMAN BIN KADIR

A report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil Engineering)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > January 2015

To Allah S.W.T. who allow me. My dearest wife, children and all my family members; you are my love and inspiration.

ACKNOWLEDGEMENT

I wish to express my high appreciation to UTM and the lecturers, especially my supervisor, Associate Professor Dr Nazri Bin Ali for his guidance and motivation during the development of this masters project.

My sincere thankful extends to my fellow postgraduate course mates for your cooperation. Lastly but not least, thanks to all who are not listed here for helping me in this masters project; I appreciate it.

ABSTRAK

Kerja pemotongan dan penambakan tanah adalah scenario yang biasa. Oleh itu, analysis kestabilan cerun mesti dilakukan untuk memastikan cerun adalah selamat dan mengelak kejadian kegagalan cerun. Dalam kajian ini, aplikasi perisian daripada GEOSTUDIO 2007 (SLOPE/W) digunakan ke atas satu kes kegagalan cerun yang berlaku di kawasan pembinaan sekolah menengah di Song, Sarawak. Sebahagian kawasan cerun yang dibina dari kerja pemotongan dan penambakan telah gagal. Kegagalan cerun ini dimodelkan terlebih dahulu menggunakan applikasi SEEP/W dan kemudianya dengan SLOPE/W untuk menjana Faktor Keselamatan (FOS), didapati adalah 0.854. Seterusnya, kerja pembaikan dicadangkan menggunakan 'sheet piles' dan 'soil nails'. Hasilnya, FOS didapati adalah 1.362 dan 1.021 masing-masing, Ini bermakna, cadangan menggunakan 'sheet piles' adalah lebih baik.

ABSTRACT

Cut and fill works around the slopes are common scenes. Hence, slope stability analysis must be carried out in order to assure the slope is safe and prevent the slope failure. In this study, software application approach by GEOSTUDIO 2007 (SLOPE/W) is used for the case study, an under-going secondary school project which is located at Song, Sarawak. A portion of the slope where is being constructed on a cut and fill area has failed. The failed slope is modelled first by using SEEP/W (as parent file) and then, by SLOPE/W, to generate the Factor of Safety (FOS), which is obtained at 0.854. The proposed remedial works are subsequently determined by using sheet piles and soil nails. The obtained FOS is at 1.362 and 1.021 respectively. Therefore, the proposal using sheet piles is more acceptable.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iv
	ACKNOWLEDGEMENTS	V
	ABSTRACT	vi
	ABSTRAK	vii
	TABLE OF CONTENTS	viii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF ABBREVIATIONS	XV
	LIST OF SYMBOLS	xvi
	LIST OF APPENDICES	xvii
1	INTRODUCTION	1
	1.1 Background of the Problem	1
	1.2 Statement of the Problem	1
	1.3 Objectives of the Study	2
	1.4 Scope of the Study	2
	1.5 Significance of the Study	3
2	LITERATURE REVIEW	4
	2.1 Introduction	4
	2.2 Types of Slope	4
	2.2.1 Natural Slope	4

	2.2.2 Cut Slope	5
	2.2.3 Fill Slope	5
2.3	Basic of Slope Failure	6
	2.3.1 Sliding	6
	2.3.2 Rock Fall and Toppling	7
	2.3.3 Spreading	8
	2.3.3 Fast Debris Flows	9
2.4	Slope Failure Driving Force	9
2.5	Factors of Slope Failure	10
2.6	The Speed of Slope Failure	11
2.7	Slope Stability Analysis	12
2.8	Limit Equilibrium Method	13
	2.8.1 Introduction	13
	2.8.2 Method basic	13
	2.8.3 Slip Surface Shapes	17
	2.8.4 Limitations	21
2.9	General Limit Equilibrium Method	22
2.10	Ordinary or Fellenius Method	26
2.11	Bishop's Simplified Method	28
2.12	Janbu's Simplified Method	29
2.13	Spencer Method	30
2.14	Morgenstern-Price Method	32
2.15	Janbu's Generalized Method	33
2.16	Corps of Engineers Method	34
2.17	Lowe-Karafiath Method	37
2.18	Sarma Method	39
2.19	SLOPE/W	40
RESE	EARCH METHODOLOGY	41
3.1	Data Collection	41
	3.1.1 Material Propeties	42
3.2	Numerical Modelling	43
	3.2.1 Geometry	44

3

		3.2.2 Region	45
		3.2.3 Rainfal Data	47
		3.2.4 Surcharge Load	48
		3.3.5 Tension Crack	48
	3.3	Analysis	49
		3.3.1 Slope's Model in SEEP/W	49
		3.3.2 Slope's Model in SLOPE/W	50
		3.3.3 Proposed Remedial Works	51
4	4 RESULTS AND DISCUSSION		45
	4.1	Analysis Results	45
5	CONCLUSION		59
	5.1	Conclusion	59
	5.2	Recommendation	59
REFEREN	CES		61
Appendices A – J		63-77	

LIST OF TABLES

TABLE NO.

TITLE

1	Equations of Statics Satisfied	15
2	Interslice Force Characteristics and Relationships	16
3	Material Properties for Soil 1	42
	Material Properties for Soil 2	42

LIST OF FIGURES

FIGURE	NO.
--------	-----

TITLE

1	a) Sliding Failure with Multiple Planes. b)	7
	Translational Failure	
2	Typical Rock Fall	7
3	Rock Toppling	8
4	Spreading	8
5	Debris flows	9
6	Effect of Gravitational Forces on a Mass	10
7	Increasing Slope Will Cause the Sliding of the	10
	Material On It	
8	Relative Failure Speed for Different Types of Slope	12
	Failure	
9	Slice Discretization and Slice Forces in a Sliding	14
	Mass	
10	Condition for a Simple Circular Slip Surface	18
11	Situation for a Planar Slip Surface	19
12	Situation for a Typical Composite Slip Surface	19
13	Typical Situation for a Block Slip Surface	20
14	A Deep Stability Analysis of a Shoring Wall	21
15	Half-Sine Interslice Force Function	23
16	A Factor of Safety versus Lambda (λ) Plot	24

FIGURE NO.

TITLE

17	Ordinary FOS computed by SLOPE/W	27
18	Bishop's Simplified FOS	29
19	Janbu's Simplified FOS	30
20	Spencer Typical Slope Stability Situation	31
21	Interslice Functions for the Spencer Method	31
22	Results of M-P Analysis	33
23	M-P FOS with Half-Sine Function	33
24	Corps of Enginneers Assumption #1	35
25	Corps of Engineer #1 Interslice Function	36
26	Corps of Enginneers Assumption #2	36
27	Corps of Engineer #2 Interslice Function	37
28	L-K FOS	38
29	L-K Interslice Function	38
30	Data Collection	41
31	Analysis Type in SEEP/W	43
32	Analysis Type in SLOPE/W	44
33	Geometry of Slope's Model	44
34	Region for Slope's Model	45
35	Material Properties in SEEP/W	46
36	Material Properties in SEEP/W	46
37	Material Properties in SLOPE/W	47
38	Input of Unit Flux	47
39	Input for Building's Load	48
40	Tension Crack Line	49
41	Slope Model in SEEP/W	50
42	Slope Model in SLOPE/W	50
43	Proposed of Sheet Piles and Location	51
44	Proposed Sheet Piles and Properties	52
45	Proposed of Soil Nails and Location	52
46	Proposed Soil Nails and Properties	53

FIGURE NO.

TITLE

Model of Failed Slope (Pore Water Pressure Profile)	55
Model of Failed Slope (FOS $= 0.854$)	55
Proposal of using Sheet Piles (Optimum FOS =	56
1.362)	
Sheet Piles - Free Body Diagram and Force Polygon	57
(Slice 1)	
Proposal of using Soil Nails (Optimum $FOS = 1.040$)	57
: Soil Nails - Free Body Diagram and Force Polygon	58
(Slice 1)	
	Model of Failed Slope (Pore Water Pressure Profile) Model of Failed Slope (FOS = 0.854) Proposal of using Sheet Piles (Optimum FOS = 1.362) Sheet Piles - Free Body Diagram and Force Polygon (Slice 1) Proposal of using Soil Nails (Optimum FOS = 1.040) : Soil Nails - Free Body Diagram and Force Polygon (Slice 1)

LIST OF ABBREVIATIONS

LEM Limit Equilibrium Method Factor of Safety FOS -Morgenstern-Price M-P -L-K Lowe-Karafiath _ _ _

-

- _ _ _ _ _
 - -_
 - -

LIST OF SYMBOLS

$ au_{\mathrm{f}}$	-	resisting force or moment
$ au_{ m m}$	-	driving force or moment
Х	-	interslice shear force,
E	-	interslice normal force,
λ	-	the percentage (in decimal form) of the function
		used
c'	-	effective cohesion
Ø'	-	effective angle of friction
U	-	pore-water pressure
Ν	-	slice base normal force
W	-	slice weight
D	-	line load
β, R, x,	-	geometric parameters
f, d, ω	-	geometric parameters
α	-	inclination of slice base

LIST OF APPENDICES

APPENDIX

TITLE

А	Site Plan	63
В	Earthwork (Slope's Geometry)	64
С	Site Photos	65
D	Site Photos	66
E	SI Position	67
F	Borelog (BH1)	68
G	Borelog (BH1)	69
Н	Borelog (BH1)	70
Ι	Borelog (BH1)	71
J	Borelog (BH1)	72
Κ	Summary of Lab Test	73
L	Material Properties: BS8002	74
Μ	Material Properties: PLAXIS Manual	75
Ν	DID Manual	76
0	Rainfall Data	77

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Construction activities on hillside slopes have increased significantly in recent years due to the rapid development of buildings and infrastructure project. Cut and fill works around the slopes are common scenes. These constructed slopes are actually exposed to slope failures if they are not being proper designed and constructed or not well protected enough by weather event, such as heavy raining. As the result, these slope failures can cause losses of life and economic losses.

Slope failure can occur due to many factors, but it is more likely to occur in certain season if they are triggered by weather event, that is raining. A heavy intensity of raining can trigger a process that lead to the slope failure by infiltration, seepage and an increase of pore water pressure. It is normally observed that for a soil, there will be an increase of moisture content and reduction of shear strength. As the result, it affects the stability of a soil mass and thus the factor of safety (FOS) for the slope.

1.2 Statement of the Problem

The case study of the slope failure is located at Song, Sarawak, the undergoing construction project of "Cadangan Membina dan Menyiapkan Sekolah Menengah Kebangsaan Song No. 2, Di Atas Lot 1615, Blok 17, Katibas Land District, Song, Sarawak Untuk Kementerian Pelajaran Malaysia (18 BD)". This school complex is being constructed on a cut and fill area, where is actually located at the centre of a valley area, flanked by hills on surroundings. A portion of slope at the project area has failed. It was observed that for a few days before the occurrence of the slope failure, Song area has been experiencing an intense rainfall. Therefore, it is important to study and doing the analysis of the case problem in order to determine the suitable action for the proposed remedial works.

1.3 Objectives of the Study

Followings are the objectives proposed for this study:

- 1) To generate the slope model by using SLOPE/W.
- 2) To simulate the failure mechanism of the failed slope.
- 3) To propose the remedial works for the failed slope.

1.4 Scope of the Study

This study covers the analysis of cut and fill slope failure at under-going construction project of "Cadangan Membina dan Menyiapkan Sekolah Menengah Kebangsaan Song No. 2, Di Atas Lot 1615, Blok 17, Katibas Land District, Song, Sarawak Untuk Kementerian Pelajaran Malaysia (18 BD)". The analysis is carried by a software application, GEOSTUDIO 2007 (SLOPE/W). The input data, such as soil properties are based on Soil Investigation (SI)'s Report, sourced from the consultant of the project and rainfall data, collected from Drainage and Irrigation Department (DID), Sarawak.

1.5 Significance of the Study

This study provides the understanding of the mechanism of the slope failure, specifically through the case study. Therefore, the subsequent remedial works can be proposed to resolve the slope problem by assuring the FOS and hence to build up the confidence level of the public.

REFERENCES

- Fredlund, D.G. and Rahardjo, H. (1994). *Hillside Slope Stability Assessment In* Unsaturated Residual Soils. Proceedings of Seminar On Geotechnical Aspects of Hillside Developments, Kajang, Malaysia.
- D.G. Fredlund.(2001). The relationship between Limit Equilibrium Slope Stability Methods, Department of Civil Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada pp 1-8.
- 3. Rahardjo, H., Lee, T. T., Leong, E. C. and Rezaur, R. B. (2003). *Response of a Residual Soil Slope to Rainfall*. Canadian Geotechnical Journal. 42: 340-351.
- Krahn, John (2003). *The Limits of Limit Equilibrium Analyses*. NRC Research Press Website.
- Krahn, John. Stability Modelling with SLOPE/W (GEOSTUDIO 2007). GEO-SLOPE/W International, Ltd., Calgary, Alberta, Canada.
- Gue, S.S. & Cheah, S.W. (2008). *Geotechnical Challenges in Slope Engineering* of *Infrastructures*. International Conference on Infrastructure Development, Putrajaya Mariott Hotel, 7 - 9 May 2008.
- Gue, S.S.; Wong, S.Y. & Cheah, S.W. (2010). *Geotechnical Engineering for Hillsite Development*. National Geoscience Conference 2010, Grand Bluewave Hotel, Shah Alam, Selangor, 11 - 12 June 2010.
- Slide (2010). 2D Limit Equilibrium Slope Stability for Soil and Rock Slopes. Slope Stability Verification Manual Part 2. Rocscience Inc.
- Baba, K., Bahi, L., Ouadif, L. and Akhssas, A. (2012). Slope Stability Evaluations by Limit Equilibrium and Finite Element Methods Applied to a Railway in the Moroccan Rif. Open Journal of Civil Engineering, February 2012, 27-32.
- 10. Rickard, O.C. and Sitar, N. (2013). *bSLOPE: A Limit Equilibrium Slope Stability Analysis Code for iOS.* Geotechnical Engineering Report No. UCB/GT/12-01.
- 11. Krisna Prasad Aryal (2006). Slope Stability Evaluation by Limit Equilibrium and Finite Element Methods. Doctor Philosophy, Norwegian University of Science & Technology.
- Jahidin, M.R. (2010). Slopes Stability Analysis of Critical Slope along North South Highway (Southern Region) Using Limit Equilibrium Method. Master Degree, University Technology Malaysia.

- Shen, N.K. (2005). *Reliability Analysis on the Stability of Slope*. Master Degree, University Technology Malaysia.
- Whitlow, Roy. Basic Soil Mechanics (Fourth Edition 2004). Pearson Education South Asia Pte. Ltd.
- 15. British Standards Institution (1981). BS 5930: Code of Practice for Site Investigations. London: British Standards Institution.
- British Standards Institution (1881). *BS 6031: Code of Practice for Earthworks*. London: British Standards Institution.
- 17. British Standards Institution (1994). BS 8002: Code of Practice for Earth Retaining Structures. London: British Standards Institution.
- Department of Irrigation and Drainage. DID Manual: Volume 6 Geotechnical Manual, Site Investigation and Engineering Survey. Kuala Lumpur, Malaysia.
- 19. Hydrological Year Book 2013. *Volume 40*. Department of Irrigation and Drainage (DID), Sarawak.
- Construction Drawing. Civil and Structural Cadangan Membina dan Menyiapkan Sekolah Menengah Kebangsaan Song No. 2, Song, Sarawak. Perunding TRA.