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ABSTRACT 

To maintain a high level of comfort expected by passengers from transportation 

vehicle while maintaining a high safety standards railway vehicle suspension system 

contribute the most significant impact. The main requirement of a vehicle suspension 

is that, it should be able to minimize the vertical displacement and the acceleration of 

the body in order to improve passenger comfort. A viable alternative to maintain the 

level of comfort is to use a semi-active suspension system with magneto-rheological 

(MR) damper which will reduce the inherent tradeoff between the ride comfort and 

road holding characteristic of the vehicle. Since the behavior of semi-active devices is 

often highly nonlinear, one of the main challenges in the application of this technology 

is the development of appropriate control system. In this thesis, the development of a 

semi-active suspension control of half car model of railway vehicle using stability 

augmentation control system is studied. A mathematical modelling and computer 

simulation model of secondary half car semi-active suspension controller algorithm 

have been developed within Matlab-SIMULINK. The tuning of this controller was 

developed by using Genetic Algorithm (GA). 
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ABSTRAK 

Untuk mengekalkan tahap keselesaan yang tinggi yang diharapkan oleh 

penumpang dari kenderaan pengangkutan di samping mengekalkan tahap keselamatan 

yang tinggi, sistem gantungan menyumbang dengan paling ketara. Keperluan utama 

sistem penggantungan kenderaan adalah, ia mestilah mampu untuk mengurangkan 

anjakan dan pecutan badan menegak / melintang untuk meningkatkan keselesaan 

penumpang. Satu alternatif yang berdaya maju untuk mengekalkan tahap keselesaan 

adalah dengan menggunakan sistem sgantungan separa-aktif dengan peredam 

magneto-reologi (MR) yang akan mengurangkan keseimbangan yang wujud antara 

keselesaan perjalanan dan ciri-ciri yang memegang jalan kenderaan. Oleh kerana 

kelakuan peredam separa-aktif kebiasaannya sangat tidak linear, salah satu cabaran 

utama dalam penggunaan teknologi ini ialah pembangunan sistem kawalan yang 

sesuai. Dalam tesis ini, pembangunan kawalan sistem gantungan separa-aktif model 

kereta separuh daripada kenderaan keretapi menggunakan kestabilan sistem kawalan 

pembesaran dikaji. Pemodelan dan simulasi komputer model matematik kereta 

separuh kedua, algoritma pengawal sistem gantunfgan separa-aktif telah dibangunkan 

dalam Matlab-SIMULINK. The penalaan pengawal ini telah dibangunkan dengan 

menggunakan Algoritma Genetik (GA). 
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CHAPTER 1 

1 INTRODUCTION 

Rail transportation has been the most demanded transport option offering 

safety, speed, and comfort. In parallel with implementation of new technologies, the 

cruising speed has also increased. The effects of vibrations caused by rail disturbances 

on vehicle carbody and passengers are more important in high cruising speeds. Hence, 

safe and comfortable transportation of passengers and goods under high speeds has 

become an important engineering problem to solve. 

The vehicle suspension is used to eliminate unpleasant vibrations from various 

road conditions. There are three main types of vehicle suspension system have been 

effectively implemented. The systems are namely passive, semi-active and active 

systems. Though a passive suspension system featuring oil damper and spring provides 

design simplicity and cost-effectiveness, performance limitations are inevitable due to 

the lack of damping force controllability. On the other hand, an active suspension 

system can provides high control performance in wide frequency range. However, this 

type may require high power sources, many sensors and complex actuators such as 

servo valves. Consequently, one way to resolve these requirements of an active 

suspension system is to adopt a semi-active suspension system. The semi-active 

suspension system offers a desirable performance, enhanced in the active mode 

without requiring large power sources and expensive hardware. 

Today’s vehicles rely on a number of electronic control systems. Some of them 

are self-contained, stand-alone controllers fulfilling a particular function while others 

are co-ordinated by a higher-level supervisory logic. Examples of such vehicle control 
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systems include braking control, traction control, acceleration control, lateral stability 

control, suspension control and so forth. Such systems aim to enhance ride and 

handling, safety, driving comfort and driving pleasure. The thesis focuses on semi-

active suspension control. The thrust of this work is to provide a comprehensive 

overview of modeling and design a vehicle semi-active systems based on smart 

damping devices. Isolation from the forces transmitted by external excitation is the 

fundamental task of any suspension system. The problem of mechanical vibration 

control is generally tackled by placing between the source of vibration and the 

structure to be protected, suspension systems composed of spring-type elements in 

parallel with dissipative elements. Suspensions are employed in mobile applications, 

such as vibrating machinery or civil structures. In the case of a vehicle, a classical car 

suspension aims to achieve isolation from the road by means of spring-type elements 

and viscous dampers (shock absorbers) and contemporarily to improve road holding 

and handling. The elastic element of a suspension is constituted by a spring (coil 

springs but also air springs and leaf springs), whereas the damping element is typically 

of the viscous type. In such a device the damping action is obtained by throttling 

aviscous fluid through orifices; depending on the physical properties of the fluid 

(mainly its viscosity), the geometry of the orifices and of the damper, a variety of force 

versus velocity characteristics can be obtained. This technology is very reliable and 

has been used since the beginning of the last century (Bastow, 1993). 

1.1 Research Background 

There has been a sustained interesting magneto-rheological (MR) device due 

to the controllable interface provided by the MR fluid inside the devices that enables 

the mechanical device to interact with an electronic system, which can be used to 

continuously adjust the mechanical properties of the device. Some examples of devices 

in which MR fluids have been employed include dampers, clutches, and brakes and 

transmissions. 

The most popular of these devices are MR dampers, especially as automotive 

shock absorbers. The automotive shock absorber has been shown to be a very 
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important contributor to the ride comfort and road handling of a vehicle. It can 

conclude that the success of MR damper in semi-active vehicle suspension 

applications is determined by two aspects which is the accurate modeling of the MR 

dampers and the other is the selection of an appropriate control strategy. 

In addition, theoretical and simulation researches have demonstrated that the 

performance of a semi-active control system is also highly dependent on the choice of 

control strategy. Therefore, some semi-active and passive control schemes have been 

discussed and compared the approaches, such as Stability Augmentation controller 

into semi-active control. 

1.2 Objectives 

i. To design a controller for semi-active suspension system employing 

MR actuator for a secondary half car model of railway vehicle. 

ii. To tune the controller to investigate the desired performance of 

controller for body displacement and body acceleration of semi-active 

system using Genetic Algorithm methods. 

1.3 Problem Statements 

The suspension system must support the weight of the vehicle, provide 

directional control during handling maneuvers, and provide effective isolation of 

passengers and payload from disturbances. 

A passive suspension has the ability to store energy via a spring and to dissipate 

it via a damper. The parameters are generally fixed, being chosen to achieve a certain 

level of stability and ride comfort. Once the spring has been selected based on the load-

carrying capability of the suspension, the damper is the only variable remaining to 

specify. Low damping yields poor resonance control at the natural frequencies of the 
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body (sprung mass) and axle (unsprung mass), but provides the necessary high 

frequency isolation required for a comfortable ride. Conversely, large damping results 

in good resonance control at the expense of high frequency isolation. Due to these 

conflicting demands, suspension design has had to be something of a compromise, 

largely determined by the type of use for which the vehicle is designed. 

The other solution is using active control. However this method is expensive 

for a standard train because require high power source, many sensors and complex 

actuator such as servo-valves. Consequently, one way to resolve this matter is to adopt 

the semi-active suspension system, where this system offers a desirable performance 

generally enhanced in the active mode without requiring large power sources and 

expensive hardware. 

1.4 Research Question 

Can Stability augmentation controller effectively control a semi-active 

suspension system leading to passengers’ comfort? 

1.5 Theoretical Frame Work 

This study is to design and tune a stability controller to control a semi-active 

suspension system using half car model with MR damper. 

1.6 Scopes of Research 

i. Modelling of semi-active suspension system using MR damper of a half 

car model within Matlab SIMULINK environment. 

ii. Genetic algorithm is implemented to tune the controller parameters. 
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iii. Genetic algorithm to be implemented using Matlab and linked to 

SIMULINK. 

1.7 Research Methodology and Flowchart 

The methodologies involved in this study are shown in Figure 1.1. The project 

starts by collecting reading materials such as books, journals and technical papers 

specifically on railway vehicle model, passive, semi-active and active suspension 

system, MR damper, stability augmentation controller and evolutionary algorithm 

methods. 

Research has been done continuously throughout this study to get a better 

understanding on the concept of semi-active suspension system and its constraints. 

Besides, consultation sessions with the project supervisor and few colleagues who are 

doing similar research were also held periodically to discuss any arising issues and 

problems encountered pertaining to this study. 

Based on the research conducted, semi-active with MR damper application was 

crucially analyzed and its controller type were justified before used in simulation.  

The study on a half-car railway vehicle suspension system has been divided 

into two main parts which are (1) mathematical modelling and (2) simulation of the 

controller system. 
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Figure 1.1 Flowchart of methodology 
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1.8 Thesis Outline 

This thesis consists of six chapters. Chapter 1 is the introduction chapter. This 

chapter presents the research background, statement of the problem, objectives and 

scopes of the study, research contributions, methodology of research, and the overall 

outline of this thesis. 

Chapter 2 presents the literature review on related subjects concerning this 

thesis. In this chapter, the classification of vehicle suspension system, stages, 

controllers, tuning methods for desired performance and review on published articles 

related to suspension control strategies are described. 

Chapter 3 presents the modelling and validation of the half-car railway vehicle 

model. In this chapter, the mathematical equation of 3DOF half-car model is 

introduced. Other types of suspension systems will be described in detail. Then, the 

mathematical modeling of three different kinds of suspension system for half-car 

model and their SIMULINK model are presented in order to validate the simulation 

results. Two concepts of desired performance and their measurement methods will also 

be explained.  

Chapter 4 describes the implementation of the proposed stability augmentation 

controller to achieve desired performance. In addition controller structure in 

SIMULINK and parameters are shown in SIMULINK. In this chapter, the 

fundamentals and algorithm of the proposed controller are explained.  

Chapter 5 presents one real coded GA and explained in detail. After linking 

simulation model and GA code to tune the controller for the best performance is going 

to be done. In addition effects of GA parameters on the result will derived. At the end 

there is compresence part between two tuning method, sensitivity analysis and GA. 

Results for different inputs are presented and compared. 
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Finally, Chapter 6 is the concluding chapter. This chapter summarizes the 

works done in this entire study. The directions and recommendations for future 

research works are also outlined. 
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