DESIGN OF A CIRCULAR POLARIZATION MICROSTRIP ANTENNA AT 2.4GHZ

ZURAIDAH BT HARITH

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Electronics and Telecommunication)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > NOVEMBER, 2005

In the loving memory of my father.....

To my beloved family.....

ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with many people, friends and academicians. They have contributed towards my understanding and thoughts. In particular, I would like to express my gratitude to my supervisor, Dr. Mohd Kamal, for encouragement, guidance, and critics. Without his continued support and interest, this thesis would not have been the same as presented here.

I also would like to extend my sincere appreciation to all my friends especially Nurul Rodziah, who have provided assistance at various occasions. To my colleagues who have helped me through out this project, their views and tips are useful indeed.

Finally, I would like to thank my loving mother and siblings. Their loves, supports and prayers have given me strength to finish what I have started. Last but not least, to my late father, who unable to witness this, you will always be in my heart.

May Allah bless all of you.

ABSTRACT

Microstrip patch antennas represent one family of compact antennas that offer a conformal nature and the capability of ready integration with communication system's printed circuitry. In this project, a 2.4 GHz circular polarization microstrip antenna is designed, constructed and measured. The microstrip antenna chose is a dual –fed circular polarized microstrip antenna. The antenna consists of rectangular patch and 3 dB hybrid. The dual – fed circular polarized microstrip antenna is etched on a FR4 with dielectric substrate of 4.5 with the height of 1.6 mm. Circular polarization is obtained when two orthogonal modes are equally excited with 90° phase difference between them. Circular polarization is important because regardless of the receiver orientation, it will always able receiving a component of the signal. This is due to the resulting wave having an angular variation.

ABSTRAK

Antena mikrojalur mewakili salah satu kumpulan antena termampat yang mempunyai sifat penyesuaian dan kebolehan untuk berintegrasi degan litar bercetak di dalam sistem komunikasi. Dalam projek ini, antena mikrojalur polarisi bulat pada frekuensi 2.4 GHz direka, difabrikasi dan diukur. Antena mikrojalur yang dipilih untuk projek ini ialah antena mikrojalur dua – suapan polarasi bulat. Antena ini terdiri daripada bahagian segiempat tepat dan 3 dB hibrid. Antena mikrojalur dua – suapan polarasi bulat difabrikasikan di atas FR4 dengan pemalar dielektrik 4.5 dan tinggi 1.6 mm. Polarasi bulat diperolehi apabila dua mod bertentangan diuja bersama dengan 90° perbezaan fasa di antara mereka. Polarasi bulat sangat penting kerana tidak kira kedudukan antena penerima, ia akan sentiasa dapat menerima komponen isyarat. Ini kerana, gelombang yang dihasilkan mempunyai variasi bersudut.

CHAPTER	TITLE		PAGE
	TIT	i	
	CEF	ii	
	DEL	DICATION	iii
	ACH	KNOWLEDGEMENT	iv
	ABSTRACT		
	ABS	TRAK	vi
	TAE	vii	
	LIST	xi	
	LIST OF FIGURES		
	LIST	Γ OF SYMBOLS	xiii
1	INT	RODUCTION	1
	1.1	Introduction	1
	1.2	Wireless Local Area Network (WLAN) System	2
	1.3	Objective	3
	1.4	Scope of work	3
	1.5	Outline of thesis	4
	1.6	Summary	5
2	MIC	CROSTRIP ANTENNA	6
	2.1	Introduction	6
	2.2	Antenna properties	10
		2.2.1 Radiation pattern	10

CHAPTER			TITLE	PAGE
		2.2.2	Return loss	12
		2.2.3	Gain	12
		2.2.4	Half power beamwidth	13
		2.2.5	VSWR	14
		2.2.6	Efficiency	14
		2.2.7	Bandwidth	14
	2.3	Feedin	g methods	15
		2.3.1	Microstrip line feed	16
		2.2.2	Coaxial feed	16
		2.3.3	Aperture coupled feed	17
		2.3.4	Proximity coupled feed	18
	2.4	Summa	ary	20
3	MIC	ROSTF	RIP ANTENNA POLARIZATION	21
	3.1	Polariz	ation type	21
		3.1.1	Linear polarization	22
		3.1.2	Circular polarization	25
		3.1.3	Elliptical polarization	28
	3.2	Circula	arly polarized microstrip antenna	29
		3.2.1	Dual- fed circular polarization (CP) patch	31
			antenna	
		3.2.2	Singly fed circular patches	32
	3.3	Summa	ary	33

CHAPTER	TITLE			PAGE
4	MICROSTRIP DESIGN, SIMULATION AND			34
	FABRICATION			
	4.1	Design	of antenna	35
	4.2	Microst	rip patch design	36
		4.2.1	Rectangular patch	37
		4.2.2	3 dB hybrid coupler	39
	4.3	Feeding	methods for the dual -fed CP patch antenna	40
	4.4	Simulation		41
	4.5	Fabricat	tion process	41
		4.5.1	UV exposure	43
		4.5.2	Developing	44
		4.5.3	Etching	45
	4.6	Measure	ement	45
	4.7	Summar	ry	46
5	SIM	ULATIO	N AND MEASUREMENT RESULTS	47
	5.1	Designe	ed antenna	48
	5.2	Simulati	ion results	51
	5.3	Measure	ement	57
	5.4	Summar	ry	60
6	CON	CLUSIC	DN	61
	6.1	Conclus	sion	61
	6.2	Future v	vork	62

CHAPTER

TITLE

PAGE 63

REFERENCES

APPENDICE

APPENDIX A Calculation of axial ratio

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Advantages and disadvantages of microstrip antenna	9
2.2	Comparing the different feed techniques	19
4.1	Performance of microstrip antenna	36
5.1	Length and width for the calculated microstrip patch	48
	antenna	

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Microstrip antenna	7
2.2	Common shapes of microstrip patch elements	7
2.3	Operations of a Microstrip Patch	8
2.4	3D representation of a radiation pattern	11
2.5	Microstrip Line Feed	16
2.6	Coaxial probe feed	17
2.7	Aperture coupled Feed	18
2.8	Proximity – coupled Feed	19
3.1	Linear polarized EM wave	22
3.2	Vertical linear polarization	22
3.3	Horizontal linear polarization	23
3.4	Linear polarization	23
3.5	Circularly polarize EM wave	25
3.6	Left – hand circular polarization	26
3.7	Right – hand circular polarization	26
3.8	Various type of circularly polarized microstrip	30
	antenna	
3.9	Dual – fed CP patches	31
3.10	Singly fed circular patches	32
4.1	Design methodology	35
4.2	Dual – fed CP patch antenna with 3dB hybrid	37
4.3	Rectangular Patch Antenna	38
4.4	3 dB hybrid coupler	39
4.5	Flow chart for fabrication process	42

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
4.6	UV exposure machine	43
4.7	Developing the antenna	44
4.8	Microwave Test set	45
5.1	Layout of the microstrip patch antenna	47
5.2	Schematic diagram of the antenna	49
5.3	2D view of the microstrip patch antenna	50
5.4	3D view of the microstrip antenna	50
5.5	Return loss of the microstrip patch antenna	51
5.6	VSWR for the antenna	52
5.7	Radiation pattern	53
5.8	Half power beamwidth	54
5.9	Left hand circular polarization	55
5.10	Right hand circular polarization	56
5.11	Axial ratio for the microstrip antenna	57
5.12	Photo of the fabricated microstrip patch antenna	58
5.13	Microwave Test Set	58
5.14	Measurement of the return loss	59
5.15	Comparison between simulation and measurement	59

LIST OF SYMBOLS

mm	-	milimeter
dB	-	decibel
Hz	-	hertz
Κ	-	kilo
d	-	diameter
h	-	height
L	-	length
W	-	width
Г	-	reflection coefficient
Z_0	-	characteristic impedance
λο	-	free-space wavelength
\mathcal{E}_r	-	dielectric constant of the substrate
t	-	patch thickness
с	-	speed of light 3x 10 ⁻⁸ m/s

CHAPTER 1

INTRODUCTION

1.1 Introduction

Microstrip antenna technology began its rapid development in the late 1970s. By the early 1980s basic microstrip antenna elements and arrays were fairly well establish in term of design and modeling [1]. In the last decades printed antennas have been largely studied due to their advantages over other radiating systems, such as light weight, reduced size, low cost, conformability and possibility of integration with active devices.

Therefore, this project is aimed to design a circularly polarized antenna at 2.4 GHz. The main advantage of using circular polarization is that regardless of receiver orientation, it will always receive a component of the signal. This is due to the resulting wave having an angular variation [2].

This microstrip antenna consists of a radiating patch on the dielectric substrate. There are various shapes that can be used as the radiating patch. However, for this project, square patch with 3 dB hybrid will be designed. With dual feeding methods, two orthogonal modes are equally excited with 90° phase difference

between them, thus the antenna will polarize circularly. The microstrip antenna is simulated and tested using Microwave Office, where electromagnetic analysis tools will be used.

The designed is fabricated and tested with network analyzer. Both simulated and measured results will be compared.

1.2 Wireless Local Area Network (WLAN) System

Wireless LAN can be used either to replace wired LAN, or as an extension of the wired LAN infrastructure. There are in general two types of antennas for WLAN applications, fixed WLAN base stations or access points, and the other is for mobile communication terminals.

For base station applications, impedance matching for WLAN bandwidth should be better than 1.5:1 VSWR or about 14 dB return loss [3], similar to the cellular system base station. Antenna that capable to excite circular polarization is very attractive because it can overcome the multipath fading problem, thus enhance the system performance, especially indoor WLAN operation [3].

Currently, the most commonly used WLAN system is the IEEE 802.11b system [4]. A key requirement of WLAN system is that it should be low profile, where it is almost invisible to the user. For this reason, the microstrip patch antennas are the antennas of choice for WLAN use due to their small real estate area and the ability to be designed to blend into the surroundings.

1.3 Objective

The objective of this project is to design, simulate, and fabricate a circular polarization microstrip antenna at 2.4 GHz frequency. The microstrip antenna uses dual feed techniques. The microstrip antenna is then simulated, fabricated and measured.

1.4 Scope of work

The project started with designing the microstrip antenna. Then, the microstrip antenna is simulated using the Microwave Office software. After the simulation, the microstrip antenna is fabricated using FR4, with dielectric constant (ϵ_r) 4.5 and height of 1.6 mm. Finally the microstrip antenna is measured using the network analyzer and the measured values are compared with the simulated values.

1.5 Outlines of thesis.

The outlines of the thesis are as follows:

- Chapter 1: This chapter provides the introduction to the project, objective and scope of work.
- Chapter 2: This chapter covers the literature review on the microstrip antenna, the antenna properties, and the feeding methods.
- Chapter 3: This chapter covers polarization topic, such as linear and circular polarization. This chapter also covers the available microstrip antenna that excites circular polarization.
- Chapter 4: Chapter 4 consists of the microstrip design, simulation and fabrication process of the microstrip antenna.
- Chapter 5: This chapter provides the results that are obtained from the simulation as well as from the measurement.
- Chapter 6: This chapter gives the conclusion and future work for this project.

1.6 Summary

This chapter provides introduction of the project, followed by a brief explanation about wireless local area network (WLAN). This chapter also covers the objective of the project, as well as scope of work that involved. Finally, a summation of each chapter is briefly outlined.

CHAPTER 6

CONCLUSION

6.1 Conclusion

There is various type of microstrip antenna that is able to excite a circular polarization. For this project, dual – fed circular polarization microstrip antenna is chosen. The microstrip antenna is design to operate at 2.4 GHz frequency. The dual –fed circular polarization microstrip antenna is successfully implemented and fabricated. The microstrip antenna resonates at 2.47 GHz and gives a good return loss, which is -23.25 dB. This is a good value because only 0.47 % power is reflected and 99.53 % power is transmitted. The VSWR of the microstrip antenna is 1.2:1, which shows that the level of mismatched for the microstrip antenna is not very high. High VSWR means that the port is not properly matched. The bandwidth of this microstrip antenna is also good, which is 17.04 % and the maximum radiation occurs at -40° with gain of 4.28 dB. The microstrip antenna is said to be circular if the axial ratio is 0 dB. From the calculation of axial ratio, most of the angles give 0 dB value, thus prove that the microstrip antenna polarize circularly.

6.2 Future work

There is various type of antenna that can excite circular polarization. In dual feed circular polarization, the rectangular patch can be changed to circular patch. There is also off line feeding method in dual –fed circular polarization microstrip antenna. Besides dual fed, there is also a singly – fed circular polarization. Therefore, in future work, different type of circular polarization can be designed and studied, so that, a comparisons can be made to the antennas, thus better microstrip antenna that excites circular polarization can be obtained.

The dual – fed circular polarization microstrip antenna can also be arranged in an array and become the phase array antenna. This phase array antenna can steer the radiation without physically moving the antenna. This antenna can be applied to satellite communication. The circular polarization is particularly desired since the polarization of linear polarized radio wave may be rotated the signal passes any anomalies (such as Faraday rotation) in the ionosphere. Furthermore, due to the position of the Earth with respect to the satellite, geometric differences may vary especially if the satellite appears to move with respect to the fixed Earth bound station. Circular polarization will keep the signal constant regardless of these anomalies.

REFERENCES

- Pozar, D. M.(1996). A Review of Aperture Coupled Microstrip Antennas: History, Operation, Development, and Applications, University of Massachusetts: Article review.
- Saed, R. A., and Khatun, S. (2005). Design of Microstrip Antenna for WLAN, *Journal of Applied Sciences*. 5 (1): 47 – 51
- Lu Wong, K (2003). Planar Antennas for Wireless Communications. Hoboken, N. J: John Wiley & Sons.
- 4. Haider, S. (2003). *Microstrip patch antennas for broadband indoor wireless system*. University of Auckland: Maters Thesis.
- Balanis, C. A. (1997). Antenna Theory, Analysis and design. 2nd ed. Hoboken, N. J: John Wiley & Sons.
- 6. Clarke, R. W. Lecture notes and lab scripts. University of Bradford
- 7. Mohd. Kamal bin A. Rahim. *Teaching Module, RF / Microwave and Antenna Design.* UTM
- 8. Nakar, P. S. (2004). *Design of a compact microstrip patch antenna for use in wireless / cellular devices.* Florida State University: Masters Thesis

- Haneishi, M., and Suzuki, Y. (2000). Circular polarization and bandwidth. In: Garg, R., Bharti, P., Bahl, I., and Ittipiboon, A. *Microstrip Antenna Handbook*. Artech House, Boston. 219
- 10. Raisert, J. H. Antenna polarization application note.
- Ramirez, R. R. (2000). Single Feed Circularly Polarized Microstrip Ring Antenna and Arrays. *IEEE Transactions on Antennas and propagation*. 48 (7): 1040 – 1047
- Li, Q., and Shen, Z. (2002). An Inverted Microstrip Fed Cavity backed Slot Antenna for Circular Polarization. *IEEE Antennas for Wireless* propagation letters. 1: 190 – 192
- 13. Lu Wong, K (2003). *Compact and Broadband Microstrip Antennas*. Hoboken, N. J: John Wiley & Sons.
- 14. Dafalla, Z. I., Kuan, W. T. Y., Abdel Rahman, A. M., and Shudakar, S. C. (2004). Design of a Rectangular Microstrip Patch Antenna at 1 GHz. 2004 *RF and Microwave Conference*. October 5 6: 145 149
- 15. Setian, L. (1998). *Practical Communication Antennas with Wireless Applications*.Upper Saddle River, NJ: Prentice Hall