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ABSTRACT 

 

 

Electricity load demand forecasting is an important element in the electric power 

industry for energy system planning and operation.  The forecast accuracy is the main 

characteristic in the forecasting process. Hence, in an attempt to achieve a good forecast, 

combined methods of empirical mode decomposition (EMD) and dynamic regression 

(DR), known as EMD-DR is proposed. Besides, the forecast performance of the 

combined model EMD and DR is compared with a single DR model. EMD is a powerful 

analysis technique for detecting non-stationary and nonlinear signal, while DR is a 

method that involves lagged external variables. The data used in this study are retrieved 

from half-hourly electricity demand (kW) and reactive power (var), whereby the reactive 

power data acts as exogenous variable for the DR method. The investigation is 

conducted using Statistical Analysis Software (SAS) for DR method and Matlab 

software for EMD. The findings reveal that the combined method, EMD-DR, give mean 

absolute percentage error (MAPE) 0.7237%, whereas for the DR method, 0.8074% is 

obtained, which suggests percentage improvement of 10.37%. 
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ABSTRAK 

 

 

 Ramalan bebanan permintaan elektrik merupakan elemen yang penting dalam 

industri penjanaan kuasa elektrik; kerana kegunaannya dalam perancangan dan operasi 

jana kuasa elektrik. Ukuran kejituan merupakan karakter utama dalam proses ramalan. 

Untuk mendapatkan model yang terbaik, kajian ini telah mencadangkan kaedah 

penggabungan model penguraian mode empirikal (EMD) dan regressi dinamik (DR) 

yang dikenali sebagai model EMD-DR. Ukuran kejituan kaedah penggabungan EMD 

dan DR dibandingkan dengan model tunggal DR. EMD merupakan satu kaedah analisis 

yang mantap bagi mengesan amaran yang tidak tetap dan tidak linear, manakala kaedah 

DR merupakan kaedah yang melibatkan pembolehubah luaran tersusul. Data setiap 

setengah jam bebanan permintaan elektrik (kW) dan data kuasa bertindak balas (var) 

merupakan data yang digunakan dalam kajian ini, di mana data kuasa bertindak balas 

bertindak sebagai pembolehubah luaran untuk kaedah DR. Kajian dijalankan 

mengunakan perisian analisis statistikal (SAS) bagi kaedah DR dan perisian Matlab bagi 

EMD. Dapatan kajian menunjukkan ukuran peratus purata ralat mutlak (MAPE) bagi 

kaedah penggabungan, EMD-DR, adalah sebanyak 0.7237%, manakala kaedah DR 

sebanyak 0.8074% juga menunjukkan peningkatan kejituan sebanyak 10.37%. 
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CHAPTER 1 

 

 

 

 

            INTRODUCTION 

 

 

 

  

1.1 Introduction 

 

 

Forecasting is a vital activity in commerce, economics, energy industries, and 

marketing (Chatfield, 2004). The quality of forecast and its significance is an essential 

process because its implementation in managerial decision that is extended in numerous 

fields is needed. Throughout the years, diverse methods have been developed for 

forecast.  

 

 

Chatfield (2004) categorized forecasting methods into three types, which are 

judgmental forecasts, univariate methods, and multivariate methods. Basically, 



2 
 

  
 

judgmental forecasts are related to instinctive perception, common sense, „inside‟ and 

commercial comprehension. Meanwhile, univariate methods can be categorized as 

forecasts based only on past and present values of single series forecasting, very likely 

added by a function of time, for example, linear trend. On the other hand, multivariate 

method is a method of forecast of a specified variable that depends, leastwise partially, 

on values of one or extra time series variables, known as explanatory or predictor 

variables. Multivariate forecasts, mostly taking into account on a multivariate model, 

require more than one equation if the variables are jointly dependent.  

 

 

Besides, combined methods can also be categorized as a forecasting method. 

This method could be merged with one of the above methods proposed by Chatfield 

(2004). For example, when univariate or multivariate forecasts are modified intuitively, 

which is also considered as exterior information that fails to show conventional aspect in 

a mathematical model, these combined methods are the most appropriate solution. 

 

 

In this study, combined methods of univariate and multivariate had been 

introduced. The implementation of the combined methods is to improve the accuracy of 

forecast. Thus, in order to examine the effectiveness of the combined methods, a 

comparison study is conducted between single method and combined methods. 

Therefore, the following subsection describes the background of the study. 

 

 

This chapter presents the background of the study. Next, it describes the problem 

statement, the objectives, the scope, and the significance of the study. Finally, a brief 

explanation for each chapter is provided at the end of this chapter. 
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1.2 Background of the Study 

 

 

This study attempted to forecast electricity load demand. The univariate method, 

such as Box-Jenkins (BJ) method, is one of the most famous methods for forecasting 

electricity load demand, while for multivariate method; most studies used regression 

analysis. Meanwhile, for load forecasting, combined methods is also one of the effective 

methods, such as ARIMA-ANN method, GA-ARIMA method, LSSVM-ARIMA 

method, and Gray method with ANN.  

 

The purpose of this study is to forecast electricity load demand using combined 

methods of Empirical Mode Decomposition (EMD) and Dynamic Regression (DR). A 

single method of DR acted as a benchmark for the combined methods. The multivariate 

method, such as Dynamic Regression, has been frequently used for various similar 

studies because this method can include explanatory variables. On the other hand, EMD 

is a new method for load forecasting, and previous studies have proven the efficiency of 

forecasting performances using the EMD method. 

 

 

In addition, this study highlighted the procedures on modeling and forecasting 

electricity load demand using the DR method and the combined methods of EMD and 

DR, thus a comparative study between these two methods is carried out.  

 

1.3 Problem Statement 

 

The main issue in forecasting is the accuracy of forecast. Lately, a combination 

of two methods is believed to improve the forecasting performance compared to a single 

method. To produce accurate forecasts using DR model, the lagged external variables, 

which match the electricity demand series, must be identified first. Moreover, 
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forecasting electricity load demand is usually affected by other causal factors of data or 

disturbances, such as high frequency, non-stationary, non-constant variance and mean, 

and multiple seasonality, which are very likely related to half-hourly, hourly, daily, and 

weekly periodicity, and the calendar effects, for example, holidays and weekends. 

Therefore, modeling such data type poses multitude of challenges and the method must 

satisfy the causal factor that affects forecasting process. One of the methods that 

eliminate the causal factor of electricity demand data is the EMD method. Then, it had 

been necessary to combine the EMD with the DR method, in order to improve forecast 

accuracy, rather than using a single method and also to investigate the elimination of 

causal factor in electricity demand data. 

 

1.4 Objectives of the Study 

 

The purpose of this study is to develop the best model to forecast the Malaysian 

electricity load demand. In an attempt to discover the best model, some specific 

objectives had been needed. The objectives of the study are to: 

 

i) Model the electricity load demand data using DR and EMD methods. 

ii) Forecast electricity load demand using DR model, and a combined model of 

Empirical Mode Decomposition with Dynamic Regression (EMD-DR) 

model. 

iii) Conduct a comparative evaluation on the performance between DR and 

EMD-DR model. 
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1.5 Scope of the Study 

 

The scope of the study is divided into two, which are sample data series and method 

of forecasting. The data used in this studycare half-hourly of electricity demand and 

reactive power from January 1
st
 2013 to May 31

st
 2013. The total data points are 14496 

for both electricity demand and reactive power, and the units of measurements are 

Kilowatts (kW) and Volt-amperes Reactive (var) respectively. 

 

Nevertheless, this study is limited to modeling and to forecasting electricity load 

demand by using DR method and a combined method of EMD-DR. The reactive power 

data acted as explanatory variables in the DR method. Lastly, a comparative study that 

looked into forecasting performance is conducted between a single model (DR) and a 

combined model (EMD-DR). 

 

 

1.6 Significance of the Study 

 

 The results from this study are useful to forecast electricity demand. The load 

forecasting results can be used in electricity generation, such as energy reservation and 

maintenance scheduling. Limitation of energy resources requires the employment of 

electric energy appropriately, more efficient power plants, and transmission lines. Thus, 

it is very important to forecast electricity demand correctly and accurately. 

 

 

Besides, in the attempt to reveal the best model for forecasting electricity load 

demand, contributions have been made. The contribution is by investigating electricity 

load demand forecasting to assist in the expansion of new models that can lead to a 
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decrease in the forecast error of the already existing models, which will result to a rise in 

profit margin for energy industries. 

 

 

Lastly, the results of this study help in contributing new literature pertaining to 

electricity load demand forecasting and the methodologies used. Furthermore, it may 

serve a guideline for those who would want to conduct a similar study. 

 

 

1.7 Thesis Organization 

 

 

This thesis consists of six chapters. The first chapter is the introduction. This 

chapter provides the introduction, the background of the study, the problem statement, 

the objectives of the study, the scope, and the significance of the study. 

 

Meanwhile, the Literature Review is in Chapter Two. This chapter represents the 

literature review on basic definition of load forecasting, short-term load forecast, and 

reactive power. Moreover, some strengths and weaknesses of DR and EMD methods are 

reviewed, and besides, some related researches on DR and EMD are presented. The 

conclusion and the summary are given to close the discussion of the chapter. 

 

Next, Chapter Three is the Research Methodology. This chapter starts with a 

detailed discussion on DR and EMD methodologies, and then, it discusses the technique 

of combining EMD and DR procedures for load forecasting. The chapter ends with 

forecasting evaluation method and concluding remarks. 
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On the other hand, Chapter Four depicts the application of DR method to half 

hourly load demand in Malaysia. It begins with the introduction and a brief discussion 

on data series. Next, it discusses on analyzing the data using regression and correlation 

analyses. Then, it presents the procedures in determining Transfer Function model in 

detail. Finally, the discussions of the chapter are closed with the results of one-step 

ahead in-sample and out-sample forecast, and a conclusion of DR model. 

 

 

 After that, Chapter Five discusses the application of EMD-DR method in 

electricity load demand forecasting. First, it presents the introduction to the chapter, 

followed by the basic concepts of EMD, and the extraction of IMFs for electricity load 

demand and reactive power. Next, it presents EMD-DR implementation and the results 

of load forecasting using EMD-DR method. Lastly, a comparative study between the 

single and the combined models is discussed in this chapter and it ends with a summary. 

 

 

Finally, Chapter Six ends the thesis by drawing up conclusions based on the 

results and findings, and also recommendations for future research. 
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