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ABSTRACT 

 

 

 

 

 The aim of this project is to model industrial gantry cranes for investigations 

of dynamic behavior of the system. A gantry crane incorporating a payload is 

considered. The modeling technique which is easier in terms of mathematical 

derivation is chosen. Comparison between the mathematical model derived and 

previous work is conducted to validate the dynamic model. A simulated time 

response and vibration frequency of the system to an input command is presented. 

Furthermore, a vibration control scheme based on an open-loop filtering technique is 

developed. Finally, the effectiveness of the controller is investigated in terms of time 

response, level of vibration reduction, robustness and the capability of handling a 

payload. 
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ABSTRAK 

 

 

 

 

 Objektif projek ini adalah untuk melaksanakan permodelan terhadap kren 

yang disokong oleh rangka besi dengan tujuan untuk mengkaji sifat-sifat dinamik 

sistem tersebut. Pertimbangan terhadap kren yang melibatkan beban akan 

dilaksanakan. Kaedah permodelan dipilih daripada beberapa kaedah yang telah 

dikenalpasti, dimana persamaan matematik bagi sistem tersebut dapat ditunjukkan 

dalam bentuk yang paling ringkas. Perbandingan di antara model matematik dan 

kerja-kerja yang telah dilaksanakan pada masa lampau dilakukan. Simulasi berkaitan 

dengan tindakbalas masa dan frekuensi getaran sistem terhadap masukan akan dikaji. 

Selain daripada itu, kawalan getaran berdasarkan pada gelung bukaan teknik 

penapisan akan dibangunkan. Pengawal yang telah dibangunkan akan dikaji 

keefektifannya dari sudut tindakbalas masa, kadar pengurangan getaran, 

ketegapannya dan kebolehan untuk membawa beban. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 CRANE : OVERVIEW 

 

 

In our environment, there is a necessity to transfer the things like equipment, 

things etc. from one place to another, whether there are far or not. In the workplace, 

for example, at construction or industrial sites, ports, railway yards and other similar 

locations, special equipment is needed to transport the materials. These materials are 

usually heavy, large and hazardous, which cannot be handling by workers. In order to 

make the work easier, cranes have been used to lift, move, position or place 

machinery, equipment and other large objects. There are many types of crane that 

been used for these purposes, such as tower crane, overhead crane, boom crane, 

gantry crane and others. Figures 1.1 and 1.2 shows examples of overhead crane and 

gantry crane, respectively. 
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Figure 1.1 Overhead crane 

 

 

Figure 1.2 Gantry Crane 
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 A crane consists of a hoisting mechanism (usually a hoisting line together 

with a hook) and a support mechanism. A cable with the load hanged on the hook is 

suspended from a point on the support mechanism. The support mechanism will 

moves the hanged load around the crane workspace, while the hoisting mechanism 

will lifts and lowers the load to prevent the obstacles in the path and locate the load 

at the desired location. 

 

 

 In handling the crane, safety is the most important point to consider while 

operating the crane. Hence, the crane must be operated in safe operating manner and 

procedures. For a crane operator, an experience causing by a crane’s accidents can be 

frightening them. There are many cases and incident regarding on the crane’s 

accidents. For example, in April 1993, the crane becomes unbalanced during two 

separate incidents at DOE sites in United States of America, which is in Hanford Site 

and Bryan Mound Site. The first incident occurred in 28th April 1993, where a crane 

becomes unbalanced while the boom was being lowered. The second incident 

occurred 2 days later, on 30th April 1993, which while loading the load, the weight of 

the load caused the crane to tip forward [1]. From these incidents, guidelines have 

been suggested in using the cranes. Some of the guidelines are: 

i. the weight of load must be checked. 

ii. crane operations should be supervised by qualified personnel. 

iii. crane operators must be familiar with their equipment. 

iv. crane operators must be trained and qualified to operate their equipment. 
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Although the guidelines have been sketched in order to prevent the accident, 

the other factors also must be considered so that the probability of accidents occurs is 

small or reduced at an acceptable value. There are many factors that have to be 

considered: the braking systems, hydraulic and pneumatic components, electrical 

equipment, operational aids, operating mechanisms, lifting devices, determining load 

weight, recognizing immediate and potential hazards, control systems and others. In 

term of control systems, the important issue is how to control the load swing. This is 

important in order to have a faster operation while maintaining the safety. 

 

 

 

 

1.2 GANTRY CRANE 

 

 

Generally, crane can be defined as a machine used for lifting and lowering a 

load vertically and moving it horizontally and that has a hoisting mechanism as an 

integral part of it. As mentioned before, a crane type has varies, depend on their 

application: automatic crane, cab-operated crane, cantilever gantry crane, 

floor-operated crane, gantry crane, jib crane, mobile crane, overhead traveling crane, 

power-operated crane, pulpit-operated crane, remote-operated crane, semigantry 

crane, wall-mounted crane and wall-mounted jib crane. In this project, the work will 

be focused on a gantry crane. 
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 Gantry crane is similar to an overhead crane, except that the bridge for 

carrying the trolley or trolleys is rigidly supported on two or more legs running on 

fixed rails or other runway. To implement the operation, the crane operator will seat 

inside the cart, and move the cart with the load hanged with it so that the load can 

achieve the desired location. A real crane may allow a cart movement of 80 to 90 

meters [2], regarding on the desired load location. 

 

 

 

 

1.3 MOTIVATION, RATIONAL, SIGNIFICANCE AND NEED FOR THE  

STUDY 

 

 

 From the previous works, it seems that most researchers have given a lot of 

efforts in developing a control algorithms and designing controllers that can be used 

and realized in nature. This includes the study related on how to reduce the vibration, 

especially in crane, where the controllers that been designed are mostly to control the 

load swing. Since this is relatively simple and well defined problem in dynamics and 

control, it is surprising that, it has not been solved exactly, where an exact solution is 

here understood to be a control strategy that guarantees complete success in a finite 

time. Most of the crane controllers that have been developed until now have been far 

from satisfactory. Once tested in actual operation, there found to be ineffective and 

thus were left unused. This may due to the standard control feedback strategies that 

are not well suited to this problem. Therefore, the problem of controller synthesis for 

a crane is still under consideration. 
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Regarding on this matter, in this study, it seems interesting if multiple point 

of view can be taken in modeling the crane. For this purpose, gantry crane has been 

chosen in order to achieve the aim. This will involves in determining the relation 

between the cart’ mass, load’s mass and the load swing, in order to looking after the 

effect of the cart and load’s mass to the load oscillation. Because the operation of the 

gantry crane is related with the movement of the cart and load, the effect that cause a 

vibration will be, whether from the acceleration that been applied at the cart, or the 

load and cart’s inertia that been exists because the movement of these objects. 

 

  

 

 

1.4 OBJECTIVES AND WORK METHODOLOGY 

 

 

The objectives of this project can be divided as following: 

 To obtain a mathematical model of the gantry crane for further analysis 

(including to study the system’s natural response, transient behavior etc.). 

 To verify the derived mathematical model through comparison with previous 

work and simulation on the model. 

 To investigate the effects of system parameters such as load on the dynamics 

behavior of the system. 

 To design and develop control algorithms for gantry crane based on filtering 

techniques. 

 To investigate the performance of the control technique in term of vibration 

reduction and robustness. 
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In term of work methodology, it can be summarized as in Figure 1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Work methodology 
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1.5 THESIS OUTLINE  

 

This section will give an outlines of the structure of the thesis. The 

following is an explanation for each chapter. 

 

 

Chapter 2 discusses the previous work that been done around the world 

about the crane, in term of modeling, or designing the crane. Literature that been 

done will cover, for instance, modeling, control algorithm design and others. At the 

end of the chapter, conclusion regarding on previous work that have been surveyed 

will be showed. 

 

 

Chapter 3 deals with the gantry crane model, where the mechanical drawing 

and description related on it will be explained. In addition, the assumption and 

limitation that been added to the model will be described. 

 

 

Chapter 4 will discuss along the line regards to model the gantry crane, 

where mathematical expression will be derived and will be showed. For this work, 

consideration will be given to the gantry crane with one degree-of-freedom, which its 

cart and load movement is only along single axis. The derivation will lead to forming 

the state equation, and the critical aspects, for example, natural frequency will be 

focused. Furthermore, the derived equation will be compared with previous work and 

also simulation in order to validate the model. Other than that, the characteristic of 
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gantry crane will be explored through simulation, where the simulation will take 

many factors that seems can give an effect to the gantry crane. 

 

 

Chapter 5 will discuss about control algorithm design for controlling gantry 

crane. In this topic, consideration is given to develop an algorithm to reduce 

oscillation of the load. The method that will be proposed is using command shaping 

via filtering technique, where the method is generally based on open-loop control. 

Analysis regarding on performance of designed controller will be conducted, and 

evaluation will be implemented. 

 

 

Chapter 6 contains conclusion regarding on the topics and recommendation 

for future works. 

 

 

 

 

 

 

 

 

 

 

 

 



 135

evaluate the performances of the gantry crane. With this implementation also, the 

other aspects perhaps can be observed in order to improve the design. 

 

 

 Finally, is to add other consideration in design, such as to take account the 

mass of the bar (which relates calculation regards of moment of inertia of the bar and 

its effect in the system); effect from environment (wind etc). For instance, with 

adding the mass of the bar, the moment inertia of the bar also need to be considered, 

which also have its role in load oscillation. As we know, since the body has a definite 

size and shape, an applied nonconcurrent force system may cause the body to both 

translate and rotate. This will lead to consideration of adding moment of inertia in 

calculation, which is a measure of the resistance body to angular acceleration. 

Regarding on this fact, it is quite beneficial if the other consideration is taken in our 

design. 
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