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ABSTRACT 

 

 

 

Spam detection is a significant problem that is considered by many researchers 

through various developed strategies. Creating a particular model to categorize the 

wide range of spam categories is complex; with understanding of spam types, which 

are always changing. In spam detection, low accuracy and the high false positive are 

substantial problems. So the trend to hire a global optimization algorithm is an 

appropriate way to resolve these problems due to its ability to create new solutions and 

non-compliance with local solutions. In this study, a hybrid machine learning approach 

inspired by Artificial Neural Network (ANN) and Differential Evolution (DE) are 

designed for effectively detect the spams. Comparisons have been done between ANN-

DE with Genetic Algorithm (GA) and ANN-DE with InfoGain algorithm to show 

which approach has the best performance in spam detection. Spambase dataset of 4061 

E-mail in which 1813 were spam (39.40%) and 2788 were non-spam (59.60%) were 

used to training and testing on these algorithms. The popular performance measure is 

a classification accuracy, which deals with false positive, false negative, accuracy, 

precision, and recall. These metrics were used for performance evaluation on the 

hybrid of ANN-DE with GA and InfoGain algorithm as feature selection algorithms. 

Performance of ANN-DE with GA and ANN-DE with InfoGain are compared. The 

experimental results show that the proposed hybrid technique of ANN-DE and GA 

gives better result with 93.81% accuracy compared to ANN-DE and InfoGain with 

93.28% accuracy. The results recommend that the effectiveness of proposed ANN-DE 

with GA is promising and this study provided a new method to practically train ANN 

for spam detection. 
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ABSTRAK 

 

 

Pengesanan spam adalah masalah penting yang dianggap oleh ramai penyelidik 

melalui pelbagai strategi maju. Mewujudkan model tertentu untuk mengkategorikan 

pelbagai jenis kategori spam adalah kompleks; dengan memahami jenis spam, yang 

sentiasa berubah-ubah. Dalam pengesanan spam, ketepatan yang rendah dan positif 

palsu yang tinggi adalah masalah besar. Jadi, trend untuk mendapatkan algoritma 

pengoptimuman global adalah cara yang sesuai untuk menyelesaikan masalah-

masalah ini disebabkan keupayaannya mencipta penyelesaian baru dan tidak 

mematuhi penyelesaian tempatan. Dalam kajian ini, pendekatan pembelajaran mesin 

hibrid diilhamkan oleh Rangkaian Neural Buatan (ANN) dan Berbeza Evolution (DE) 

direka dengan berkesan untuk mengesan spam. Perbandingan dilakukan antara ANN-

DE dengan Algoritma Genetik (GA) dan ANN-DE dengan algoritma InfoGain bagi 

memastikan pendekatan mana mempunyai prestasi terbaik dalam pengesanan spam. 

Dataset Spambase yang mempunyai 4061 emel di mana 1813 adalah spam (39.40%) 

dan 2788 adalah bukan spam (59,60%) telah digunakan untuk latihan dan ujian ke atas 

algoritma ini. Ukuran prestasi popular adalah ketepatan klasifikasi, terdiri daripada 

positif palsu, negatif palsu, ketepatan dan keingatan. Metrik tersebut digunakan untuk 

penilaian prestasi hibrid ANN-DE dengan GA dan InfoGain sebagai algoritma 

pemilihan ciri. Prestasi ANN-DE dengan GA dan ANN-DE dengan InfoGain 

dibandingkan. Keputusan eksperimen menunjukkan bahawa teknik hibrid ANN-DE 

dan GA yang dicadangkan memberikan hasil yang lebih baik dengan ketepatan 

93.81% berbanding ANN-DE dan InfoGain dengan ketepatan 93.28%. Keputusan ini 

mencadangkan bahawa keberkesanan ANN-DE dengan GA yang dicadangkan adalah 

membanggakan dan kajian ini menyediakan kaedah baru yang praktikal untuk melatih 

ANN untuk pengesanan spam. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

As a global network, internet refers to computers that work much like the postal 

system at sub-second speeds. Just as if the postal service allows people to exchange 

envelopes containing messages among themselves, E-mail is one of the services 

provided by the Internet, which enables users to communicate despite distances via a 

free and convenient medium. As we all know, there is a no full secure system because 

the presence of intrusive and vandals. A phenomenon of spam is one of the most 

problems that threat the feasibility of communication via email (Kågström, 2005). 

In fact, there is no precise and specific definition of spam, but all combines on 

it is a bad thing just to hear this term. (Merriam-Webster Online Dictionary, 1994) 

explained spam as “uninvited usually commercial e-mail directed to a large number of 

addresses”. Accordingly, Spam is most often consider to be electronic junk mail or junk 

newsgroup postings (Almeida et al., 2010). To some people, spam can be considered 

more generally as any unsolicited email. Real spam is commonly email advertising, 

sent to a mailing list or newsgroup. In most cases that have been monitored the aim of 

spam can be politically or religiously, fool the recipients with promises of wealth, or 

have viruses may harm the receiver computer. However, if you are signed-up one of 

the websites, it is immediately send an email to your registered email to confirmation 

on the registration. In most cases are dealt with this e-mail as spam, even though if one 

http://www.webopedia.com/TERM/E/e_mail.html
http://www.webopedia.com/TERM/M/mailing_list.html
http://www.webopedia.com/TERM/N/newsgroup.html
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can talk over that what is unsolicited mail for one user can be an exciting email 

message for another. 

Spam email has been increasingly problem, which cause for users exhaust a 

time to take out the messages from inbox, while it ,may be unintentional deleted of 

significant emails may cause a financial losses and even able to cause limit the mailbox 

space and wasting network resources. Based on what has been published by McAfee 

in March 2009, while the spam filter working at 95% accuracy , the cost of lost in 

productivity for the user almost  $0.50 per day, based on user having to expend 30 

seconds per day to deal with two spam messages. Consequently, around $182.50 was 

the annual losses of productivity per employee (Almeida, et al., 2010) 

According to recent study by Kaspersky Lab as a IT Security company, more 

than 70.7% of emails sent in  second quarter (April - June) 2013 were really spam, an 

increase of more than 4.2% over first quarter (January - March) 2013 totals. Spam-O-

Meter is free source of spam statistical and live tools to quantify the actual amount of 

spam in the internet profess 87.4% of all e-mail messages are spam up to this time 

compared to 86.6% a year ago. The incremental number of spam in email, many 

methods have been suggested to filter spam email (Allias et al., 2014; Gudkova, 2013). 

Ferris Research expected the worldwide cost of spam to be in 2005 and 2007 US$ 50 

billion and US$ 100 billion respectively (Bauer et al., 2008). 

Because of these reasons and for the outright infringement on personal space, 

some of preventing the normal delivery of spam is required. The gravity of the spam 

problem can be inferred from the fact that. On December 16, 2003 the U.S. House of  

Representatives had ratified the revised version of  bill, as part of the CAN-SPAM 

Act, to restrict unwanted messages by imposition a financial penalties of $ 6 million 

and five years prison (Lee, 2005a; Sivanadyan, 2003). 

Distinguish how spam has developed about whether and break down the 

development of spam filters. However, that not permitted to take a gander at each kind 



3 

 

of spam filters. By performing this analysis, it may be feasible for spam filters to stay 

one-stage in front of spammers and conceivably even put an end to spam in the end. 

Subsequently, there are numerous associations, and additionally people, who 

have taken it upon themselves to resist spam with several methods. By and by, the 

internet is open, and there is little that might be done in order to restrain spam, in the 

same way that it is unfit to turn away junk-mail. In any case, the steady expand 

movement of spam needs to be expanded labours to hinder, which has created 

significant fear for clients. 

1.2 Background of Problem 

With the proliferation of the Internet and e-mail service, has become essential 

in our lives and be inherent to most of us. With this deployment, spam has been 

appeared, which is a growing problem and the constant threat of users and carriers, 

which drain time, money, and network resources, on the other side there is no cost 

where identical messages sent to various recipients by spammer. 

For the entire algorithms of an email classification, there is the problem of 

discovery, a sensible interchange amongst two kinds of errors: categorising genuine 

mail as spam (False Positive) and classifying spam as genuine mail (False Negative). 

When spam messages are classified as legitimate mail, the user becomes irritated, the 

reverse situation can lead to the real loss of valuable information. Therefore, in spam 

detection, low accuracy and the high false positive are substantial issue. 

The duty of classification is difficult and continuously altering (Carpinter and 

Hunt, 2006). Creating a particular model to categorize the wide range of spam 

categories is complex; with understanding of spam types, which are always changing 

made the task of classification near impracticable. In addition, the majority of users 

find out that false positives and low accuracy are not acceptable.  The ongoing 

http://www.webopedia.com/TERM/I/Internet.html
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evolution of spam could be partly credited to alerting tastes and trends in the market; 

though, spammers frequently change their mails to keep away from detection 

techniques, adding up additional obstruction to true detection. 

The efforts had been started and increased to innovates and develops 

techniques to classifying the emails whether they are legitimate or spam. It is fit has 

spammers to periodically alternate their skills, approach, actions, and to fake their 

messages, to keep away from these techniques. Various spam classification techniques 

had been offered based on email contents. for instants, Bayesian analysis  (Sahami et 

al., 1998), heuristic approaches (Cook et al., 2006), machine learning approaches  

(Guzella and Caminhas, 2009). Therefore, the task requires rapidity response to the 

constant evolution of the spammer by take advantage of user feedback to be employed 

in the learning algorithm (Bratko et al., 2006). 

Machine learning is one of overall techniques proposed for spam detection and 

had achieved success and breathtaking results. Unfortunately, in machine learning, a 

high dimensionality of characteristics space in the wake of preprocessing have to be 

as an enormous obstruction for the classifier. Add to this, the intemperate number of 

characteristics additionally can debase the classification; this was due to large amount 

of words in the messages that can extracted (Allias, et al., 2014). 

The discovery of the back-propagation technique, a lot of modified and new 

algorithms have been proposed for training feed-forward neural networks; many of 

these algorithms having a very fast convergence rate for reasonable size networks. 

However, there was a dramatic decrease in the number of appropriate network training 

algorithms when the neural network training becomes a large scale, i.e. the number of 

network parameters develops considerably. For example, learning a large number of 

hidden layer weights in a multi-layer perceptron (MLP) neural network can be 

regarded as a large-scale optimization problem. Conversely, global optimization 

methods are under continuous development, and recently, studies have identified 

genetic algorithms and evolution strategies as promising stochastic optimization 

methods. 
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1.3 Problem Statement 

A significant issue concerning spam classifiers is the trouble of error 

convergence, i.e. the decrease in error amongst the desired and calculated unit values. 

Many issues to be considered in classification process, precisely the Artificial Neural 

Network (ANN), such as big data size that may contains irrelevant and  redundant 

features , the ANN design, the training algorithm, ANN parameters training, initial 

weights, etc., which decrease the error rate. All these will influence the convergence 

of ANN learning and may be trapped the ANN in a local minima solution. So the trend 

to employ global optimization algorithms in an appropriate way to resolve these 

problems as in preprocessing phase as feature selection algorithms (Combinations 

improvement) and during the classification process as trainer algorithm (Collaborative 

improvement). 

The main objectives and desired outcome in this project are to accessed 

following: 

i) How to pre-process and prepare the email features? 

ii) How to optimize a classifier that can recognize spam email? 

iii) How to evaluate and validate the performance of the classifier? 

1.4 Aim of the Project 

This project seeks to improve detection accuracy and reduce the false positive 

rate in spam detection. This will be achieved by implementing hybrid Artificial Neural 

Network (ANN) with Differential Evolution (DE), seeking to efficiently (ANN) train 

parameter. 
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1.5 Objectives of the Project 

This study will focus on increasing the accuracy and reducing the false positive 

of the spam detection techniques based on classification of email content. The scope 

of the project is as the following:  

i) To select significant features from dataset by applying InfoGain algorithm and 

Genetic Algorithm (GA). 

ii) To develop a classifier to detect spam email based on Genetic Algorithm (GA) 

as a features evaluator and hybrid of Artificial Neural Network (ANN) and 

Differential Evolution (DE) as a trainer algorithm.  

iii) To evaluate the proposed classifier (ANN-DE) and (ANN) classifier using 

InfoGain algorithm and Genetic Algorithm (GA) as features selection, 

depending on the accuracy, false positive, false negative. 

1.6 Scope of the Project 

This study will focus on increasing the accuracy and reducing the false positive 

of the spam detection techniques based on classification of email content. The scope 

of the project is as the following: 

 

i) The implementation of Artificial Neural Network (ANN) and the hybrid of 

ANN and Differential Evolution (DE) will be done based on the email content 

and using InfoGain algorithm and Genetic Algorithm (GA) as a feature 

selection techniques. 

ii) Spambase datasets will be used; it will be collected from UCI website 

(http://archive.ics.uci.edu/ml/datasets/). 

iii) The performance will be evaluated based on accuracy, false positive, false 

negative, recall and precision. 

http://archive.ics.uci.edu/ml/datasets/
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1.7 Significant of the Project  

The amount of spam emails has amplified. Therefore, users need to prevent 

their email. Different method has been created to impact spam, for the automatically 

spam detection technique which are responsible to eliminate such spam email from a 

user email box. Take into consideration spam trouble, users must own filtration 

technique, which can serve them to categorize the email into spam or otherwise. Spam 

can intrude a user mailbox with no agreement of the user. By applying the projected 

technique in this study which is the hybrid of ANN and DE, users will gain a valuable 

techniques and help them to maximise the amount of blocked spam to their mailbox.  

1.8 Organization of the Project  

This project is organized into four chapters; first chapter contains the 

introduction, problem background, statement of problem, aim of the project, project 

objectives, scope of the project and significant of the study. The second chapter 

describes literature on spam such as spam definition, type of spam also; it includes a 

review of spam detection technique. The third chapter explains the methodology of the 

project that will be used to achieve objectives. The initial result will be discussed on 

the fourth chapter with a brief analysis. The fourth chapter discusses the process of 

implementation. Chapter five covers the statistical analyses of results. Lastly, chapter 

six summarizes the whole study. 
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