LABORATORY EVALUATION OF HORIZONTAL COEFFICIENT OF CONSOLIDATION. c_h OF FIBROUS PEAT SOIL

WONG LEONG SING

UNIVERSITI TEKNOLOGI MALAYSIA

LABORATORY EVALUATION OF HORIZONTAL COEFFICIENT OF CONSOLIDATION, c_h OF FIBROUS PEAT SOIL

WONG LEONG SING

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil-Geotechnics)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > NOVEMBER 2005

To my beloved mother and father

ACKNOWLEDGEMENT

First of all, I would like to thank my supervisor, Dr. Nurly Gofar for guiding me in the writing of this project report. Her opinion and advice were indeed helpful in the making of this project report a success.

I would also like to express my sincere gratitude to Yulindasari Sutejo, a UTM research student for providing secondary data and assistance in my laboratory work. Without her help, the data for the project would not be available for analysis in this project report.

Acknowledgement is not complete without thanking the technicians in UTM Geotechnical Laboratory for assisting either directly or indirectly in my laboratory work. Their assistance enabled me to complete this project report on time.

ABSTRACT

Encountered extensively in wetlands, fibrous peat is considered as problematic soil because it exhibits unusual compression behaviour. When a mass of fibrous peat soil with both vertical and horizontal drainage boundaries is subjected to a consolidation pressure, rate of excess pore water dissipation from the soil in the horizontal direction is higher than that in the vertical direction. The rates of excess pore water dissipation from the soil in the vertical and horizontal directions are measured by vertical and horizontal coefficient of consolidation (c_v and c_h) respectively. This project report presents laboratory findings on the consolidation behaviour of fibrous peat from Bahru village, Pontian, Johor with respect to onedimensional vertical and radial consolidation. Results from hydraulic consolidation tests indicate that the c_h/c_v ratio of the soil is greater than 1 when the soil is subjected to consolidation pressure of 50 kPa, 100 kPa, and 200 kPa. This implies that the utilization of horizontal drain maybe suitable for soil improvement to accelerate the settlement of fibrous peat soil.

ABSTRAK

Ditemui secara meluas di kawasan paya, tanah gambut berfiber merupakan tanah bermasalah kerana ia mempunyai sifat pengukuhan yang luar biasa. Apabila sesuatu jisim tanah gambut berfiber yang terdedah kepada sistem saliran air secara menegak dan mendatar dikenakan tekanan, kadar lesapan air terlebih secara menegak daripada tanah tersebut. Kadar lesapan air terlebih secara menegak dan mendatar ditentukan oleh kadar pengukuhan tanah secara menegak dan mendatar (c_v dan c_h) masing-masing. Laporan projek ini membincangkan hasil kajian di dalam makmal tentang sifat pengukuhan tanah secara menegak dan mendatar bagi sampel-sampel tanah gambut berfiber yang didapati dari kampung Bahru, Pontian, Johor. Hasil ujian pengukuhan hidraulik menunjukkan bahawa nisbah c_h/c_v untuk tanah tersebut adalah lebih daripada 1 apabila tanah itu dikenakan tekanan 50 kPa, 100 kPa, dan 200 kPa. Ini menandakan bahawa penggunaan sistem saliran air secara mendatar mungkin sesuai bagi mempercepatkan proses pemendapan tanah gambut berfiber.

TABLE OF CONTENTS

CHAPTER				TITLE	PAGE
1	INT	RODUC	CTION		1
	1.1	Backg	ground		1
	1.2	Aims	of project		3
	1.3	Object	tives of st	udy	3
	1.4	Scope	of projec	t	3
2	LITI	ERATU	RE REV	IEW	5
	2.1	Introd	luction		5
	2.2	Fibrou	is peat so	il	6
	2.3	Struct	ural arran	gement of fibrous peat soil	6
		2.3.1	Permeal	pility of fibrous peat soil	9
		2.3.2	Consoli	dation behaviour of fibrous	
			peat soi	1	14
	2.4	Consc	lidation t	heory	
		2.4.1	One-din	nensional consolidation	21
			2.4.1.1	Determination of vertical	
				coefficient of consolidation,	
				C_{v}	26
		2.4.2	Seconda	ary compression	30
		2.4.3	Horizon	tal consolidation	41
			2.4.3.1	Radial drainage to centre	41
			2.4.3.2	Radial drainage to periphery	45

	2.5	Measu	rement of horizontal coefficient of	
		conso	lidation, c_h of fibrous peat soil	48
	2.6	Field e	evidence of fibrous peat soil	
		impro	vement	49
3	MET	HODO	LOGY	53
	3.1	Introd	uction	53
	3.2	Prelim	inary tests	54
	3.3	Hydra	ulic consolidation tests	56
		3.3.1	Cell assembly and connections for	
			hydraulic consolidation tests	56
		3.3.2	Test procedures of hydraulic	
			consolidation tests	63
		3.3.3	Graphical analysis of Rowe cell	
			consolidation test	69
	3.4	Hydra	ulic permeability tests	
		3.4.1	Cell assembly and connections for	
			hydraulic permeability test	71
		3.4.2	Test procedures for hydraulic	
			permeability tests	75
4	RESU	U LTS A	AND DISCUSSION	79
	4.1	Soil id	lentification	79
	4.2	Standa	ard consolidation tests	80
		4.2.1	Determination of range of	
			consolidation pressures	80
		4.2.2	Evaluation of long term compression	
			of the soil	80
	4.3	Hydra	ulic consolidation tests	81

		4.3.1	Vertical consolidation test	82
		4.3.2	Radial consolidation test	88
		4.3.3	Results comparison between	
			hydraulic consolidation tests with	
			radial and two-way vertical drainages	92
	4.4	Perme	ability tests	97
		4.4.1	Initial permeability	98
		4.4.2	Hydraulic permeability	101
		4.4.3	Results comparison between constant	
			head and hydraulic permeability tests	101
5	CON	CLUSI	ONS AND RECOMMENDATION	103
	5.1	Concl	usions	103
	5.2	Recon	nmendation	104
REFERENC	CES			105
Appendices A	A - D			107-121

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Values of natural water content, w_o , initial vertical coefficient of permeability, k_{vo} , and c_a/c_c for peat deposits (Source: Mesri <i>et al.</i> , 1997)	13
2.2	Change in t_p and t_s with pressure for Portage peat (average values for all tests) (Source: Dhowian and Edil, 1980)	18
2.3	Theoretical time factors for one-dimensional consolidation (Source: Leonards, 1962)	25
2.4	Determination of c_h , the horizontal coefficient of consolidation (Source: Hausmann, 1990)	49
3.1	Rowe cell consolidation tests – Data for curve fitting (Source: Head, 1986)	71
4.1	Basic properties of the peat soil	79
4.2	Soil compression parameters of hydraulic consolidation tests on the fibrous peat soil samples under 50 kPa consolidation pressure analyzed by different methods	93
4.3	Soil compression parameters of hydraulic consolidation tests on the fibrous peat soil samples under 100 kPa consolidation pressure analyzed by different methods	94
4.4	Soil compression parameters of hydraulic consolidation tests on the fibrous peat soil samples under 200 kPa consolidation pressure analyzed by different methods	95
4.5	Range of c_h/c_v ratio based on Taylor's method	96
4.6	Range of coefficient of secondary compression, c_{α} ratio evaluated using Casagrande's method	96

4.7	Degree of consolidation (%) at which the secondary compression of the fibrous peat soil begins	97
4.8	Results summary of constant-head and hydraulic permeability tests of the fibrous peat soil	102

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	(a) Schematic diagram of deposition of fibrous peat deposit (b) Schematic diagram of multiphase system of fibrous peat (Source: Kogure <i>et al.</i> , 1993)	7
2.2	Photomicrographs of fibrous peat (Source: Terzaghi et al., 1996)	8
2.3	Micrographs of Middleton fibrous peat; (a) horizontal plane, (b) vertical plane (Source: Fox and Edil, 1996)	9
2.4	Permeability of Middleton peat in vertical and horizontal directions (Source: Mesri <i>et al.</i> , 1997)	11
2.5	Coefficient of permeability versus void ratio for vertical and horizontal specimens of Portage peat (Source: Dhowian and Edil, 1980)	12
2.6	Vertical strain, normalized effluent outflow, and excess pore pressure versus logarithm of time for a Portage peat specimen under the first stress increment (back pressure = 560 kPa) (Source: Dhowian and Edil, 1980)	15
2.7	Consolidation data for a Portage peat specimen (back pressure = 560 kPa) (Source: Dhowian and Edil, 1980)	17
2.8	Log time-compression curve of fibrous peat soil for one-dimensional consolidation	19
2.9	One-dimensional consolidation (a) Terzaghi's model (b) Stress-time curve (Source: Whitlow, 2001)	22

2.10	Average degree of consolidation due to vertical drainage (= percent vertical consolidation) as a function of time factor, T_v (Source: Hausmann, 1990)	24
2.11	Theoretical time factor, T_{ν} (logarithmic scale) related to average degree of consolidation, U_{ν} (%) due to vertical drainage (Source: Head, 1982)	24
2.12	Square-root of theoretical time factor, $T_v^{0.5}$ related to average degree of consolidation, U_v (%) due to vertical drainage (Source: Head, 1982)	25
2.13	Theoretical relationships between time factor and degree of consolidation for vertical drainage for two methods of measurement (Source: Head, 1986)	26
2.14	Typical vertical consolidation test results (Source: Smith and Smith, 1998)	28
2.15	The square-root of time method (Source: Smith and Smith, 1998)	29
2.16	Types of time-compression curve of soil	31
2.17	Relationship between the degree of consolidation of theoretical time-pore water pressure dissipation curve, U_b and the average degree of consolidation, U_{ave} from theoretical time factor- compression curve (Source: Robinson, 2003)	34
2.18	(a) Time-compression curves, and (b) time- degree of consolidation from the measured pore water pressure dissipation curves for peat (Source: Robinson, 2003)	35
2.19	(a)-(f) Degree of consolidation from the pore water pressure dissipation curves (U_b) - compression plots for peat at different load increment ratios (LIR) (Source: Robinson, 2003)	36
2.20	(a) Time-total settlement curves for peat under a load increment ratio (LIR) of 0.33, and (b) Time-settlement curve after removing the secondary compression (Source: Robinson, 2003)	38

2.21	Theoretical log U_v - log T_v plot (Source: Sridharan and Prakash, 1998)	39
2.22	Typical log δ - log <i>t</i> plot of brown Mexico City clay (Sridharan and Prakash, 1998)	40
2.23	Average degree of consolidation for radial flow versus time factor for free strain and equal strain boundary conditions; radial inflow tests with the drain spacing ratio = 5 (Source: Trautwein, 1980)	43
2.24	Different drain patterns: equivalent cylinder (Source: Holtz et al., 1991)	45
2.25	Theoretical curve relating square-root time factor to degree of consolidation for drainage radially outwards to periphery with 'equal strain' loading (Source: Head, 1986)	46
2.26	Theoretical time-factor relationship with degree of consolidation for drainage radially outwards with 'free strain' loading (Source: McKinlay, 1961)	47
2.27	Soil profile at the Dalarovagen site (Source: Larsson, 1986)	50
2.28	Measured settlement, excess pore pressures and load at Dalarovagen site (Source: Carlsten, 1988)	51
2.29	Swelling and settlement versus logarithmic of time at Dalarovagen site (Source: Carlsten, 1988)	52
3.1	Flowchart summarizing the methodology of the project	54
3.2	Two-way vertical drainage and loading condition for hydraulic consolidation test in Rowe cell with 'equal strain' loading (Source: Head, 1986)	56
3.3	Cutting rings containing soil sample are fitted on top of the Rowe cell body	57
3.4	A porous disc is used to slowly and steadily push the soil sample vertically downward into the Rowe cell body	57
3.5	Schematic diagram of filling of distilled water into the diaphragm (Source: Head, 1986)	58

3.6	Realistic view of filling of distilled water into the diaphragm	58
3.7	Diaphragm inserted into Rowe cell body (Source: Head, 1986)	59
3.8	Diaphragm is correctly seated (Source: Head, 1986)	60
3.9	Radial drainage to periphery, and loading condition for hydraulic consolidation test in Rowe cell with 'equal strain' loading (Source: Head, 1986)	61
3.10	Fitting porous plastic liner in Rowe cell: (a) initial fitting and marking, (b) locating line of cut, (c) final fitting (Source: Head, 1986)	62
3.11	Peripheral drain fitted into the Rowe cell body	63
3.12	Arrangement of Rowe cell for consolidation test with two-way vertical drainage (Source: Head, 1986)	64
3.13	Arrangement of Rowe cell for consolidation test with radial drainage to periphery; pore pressure measurement from centre of base of sample (Source: Head, 1986)	68
3.14	Downward vertical flow condition for hydraulic permeability test in Rowe cell (Source: Head, 1986)	72
3.15	Arrangement of Rowe cell for permeability test with vertical flow (downwards) (Source: Head, 1986)	73
3.16	Horizontally outward flow condition for permeability test in Rowe cell (Source: Head, 1986)	73
3.17	Arrangement of Rowe cell for permeability test with horizontal drainage to periphery (Source: Head, 1986)	74
3.18	Arrangement for hydraulic vertical permeability test using one back pressure system for downward flow (Source: Head, 1986)	76

4.1	Oedometer log time-compression curves of a sample of the fibrous peat soil	81
4.2	Graphical plots of hydraulic vertical consolidation test of the fibrous peat soil samples analyzed by Casagrande's method based on settlement	84
4.3	Graphical plots of hydraulic vertical consolidation test of the fibrous peat soil samples analyzed by Casagrande's method based on dissipation of excess pore water pressure at the centre of sample base	84
4.4	Graphical plots of hydraulic vertical consolidation test of the fibrous peat soil samples analyzed by Taylor's method	85
4.5	Degree of vertical consolidation with two-way vertical drainage due to dissipation of excess pore water pressure (U_b) – compression plots of the fibrous peat soil samples at different consolidation pressures (Robinson's method)	85
4.6	Graphical plots for the analysis on the beginning of secondary compression due to vertical consolidation with two-way vertical drainage of the fibrous peat soil samples using Robinson's method (a) Log time-total compression curves for vertical consolidation on the fibrous peat at different consolidation pressures (b) Log time- primary consolidation curves after removing the secondary compression	86
4.7	Graphical plots for the determination of coefficient of secondary compression, c_{α} due to vertical consolidation with two-way vertical drainage of the fibrous peat soil samples analyzed from Robinson's method	87
4.8	Graphical plots of hydraulic vertical consolidation test of the fibrous peat soil samples analyzed by Sridharan and Prakash's method	87
4.9	Graphical plots of hydraulic radial consolidation test of the fibrous peat soil samples analyzed by Casagrande's method based on settlement	89

4.10	Graphical plots of hydraulic radial consolidation test of the fibrous peat soil samples analyzed by Casagrande's method based on dissipation of excess pore water pressure at the centre of sample base	89
4.11	Graphical plots of hydraulic radial consolidation test of the fibrous peat soil samples analyzed by Taylor's method	90
4.12	Degree of radial consolidation with periphery drainage due to dissipation of excess pore water pressure (U_b) – compression plots of the fibrous peat soil samples at different consolidation pressures (Robinson's method)	90
4.13	Graphical plots for the analysis on the beginning of secondary compression due to radial consolidation with radial drainage to periphery of the fibrous peat soil samples using Robinson's method (a) Log time-total compression curves for radial consolidation on the fibrous peat at different consolidation pressures (b) Log time- primary consolidation curves after removing the secondary compression	91
4.14	Graphical plots for the determination of coefficient of secondary compression, c_{α} due to radial consolidation with radial drainage to periphery of the fibrous peat soil samples analyzed from Robinson's method	92
4.15	Graph of coefficient of permeability at standard temperature of 20°C, k_o (20°C) versus initial void ratio, e_o of the fibrous peat soil samples	99

LIST OF SYMBOLS

Α	-	Area of sample
AC	-	Ash content
В	-	Pore pressure parameter
c_c	-	Compression index
c_h	-	Horizontal coefficient of consolidation
Cr	-	Recompression index
C_{v}	-	Vertical coefficient of consolidation
$C_{\alpha}, C_{\alpha l}$	-	Coefficient of secondary compression
$C_{\alpha 2}$	-	Coefficient of tertiary compression
D	-	Diameter of sample
е	-	Void ratio
e_o	-	Initial void ratio
FC	-	Fiber content
G_s	-	Specific gravity
H, H _o	-	Initial thickness of consolidating soil layer
h	-	Head loss due to the height of water in the burette
i	-	Hydraulic gradient
k_h	-	Horizontal coefficient of permeability
k_{ho}	-	Initial horizontal coefficient of permeability
k_{v}	-	Vertical coefficient of permeability

- k_{vo} Initial vertical coefficient of permeability
- L Longest drainage path in consolidating soil layer; equal to half of H with top and bottom drainage, and equal to H with top drainage only
- *m* Secondary compression factor
- m_v Coefficient of volume compressibility
- *OC* Organic content
- *p* Consolidation pressure
- p_o Initial pressure
- p_1 Inlet pressure
- p_2 Outlet pressure
- *Q* Cumulative flow
- q Rate of flow
- *r* Radius of sample
- T_r Radial theoretical time factor
- T_v Vertical theoretical time factor
 - t Time
- t_s Time to reach end of secondary compression
- t_p Time to reach end of primary consolidation
- U_r Average degree of consolidation due to radial drainage
- U_v Average degree of consolidation due to vertical drainage
- *u* Excess pore water pressure at any point and any time
- *u*_o Initial excess pore water pressure
- *w* Natural moisture content
- ΔH_s Change in height of soil layer due to secondary compression from time, t_1 to time, t_2

- ΔH_t Change in height of soil layer due to tertiary compression from time, t_3 to time, t_4
- Δp Pressure difference
 - ε_i Instantaneous strain
- ε_p Primary strain
- ε_s Secondary strain
- ε_t Tertiary strain
- γ_w Unit weight of water
- σ'_v Effective vertical stress
- δ Total compression
- δ_p Primary consolidation settlement
- δ_s Secondary compression

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A	Soil sampling	107
В	Apparatus for constant-head permeability test	109
С	Apparatus for hydraulic consolidation tests	111
D	Steps for various methods used to evaluate vertical and horizontal coefficient of consolidation (c_v and c_h) and coefficient of secondary compression (c_α) of the fibrous peat soil	113

CHAPTER 1

INTRODUCTION

1.1 Background

When a load is applied to a saturated soft soil, it is initially carried by the pore water within a soil mass. The resulting pore water pressure, in excess of the hydrostatic water pressure is termed excess pore water pressure. As water dissipates from the soil pores, the applied load is gradually shifted from water to soil particles. The load transfer is accompanied by a volume change. This process is generally known as consolidation.

Depending on the packing of the soil mass and the drainage boundary condition, the dissipation of excess pore water would naturally take either vertical or horizontal flow path. The packing of the soil mass is usually governed by the soil fabric, the shape of soil particles, and other material content. The term *fabric* describes the geometrical arrangement of soil particles with respect to each other. Generally, the greater the range of particle sizes, the smaller the total volume of void spaces there will be.

Fibrous peat soil has many void spaces existing between the solid grains. Due to the irregular shape of individual particles, fibrous peat soil deposits are porous and the soil is considered a permeable material. Flow of water is occurring not only through the inner voids within organic particles but also the outer voids between organic particles and soil particles in the soil mass. Hence, for saturated fibrous peat soil, the actual path taken by pore water as it flows through void spaces is tortuous and erratic because of the random arrangement of the soil particles and organic coarse particles. In this case, velocity of pore water varies considerably with the flow direction.

The discussion in the preceding paragraph shows that the dissipation of excess pore water pressure would follow a flow path which is dependent on the packing of soil mass and the velocity of flow varies considerably with flow direction. Despite of this fact, conventional consolidation theory developed by Terzaghi (1925) considers that consolidation process takes place in vertical direction only. Up to recently, analysis of consolidation is very often based on this theory where horizontal consolidation of soil is ignored.

The importance of horizontal consolidation emerges with the development of soil stabilization method especially the use of preloading system with vertical drains. Vertical drains are used to provide horizontal drainage system in compressible soil layer so that water would flow radially from the soil into the vertical drains. With the use of surcharge and vertical drains, the consolidation process is accelerated by shortening the length of the drainage path for the pore water escaping from the soil layer. In this case, horizontal drainage flow plays an important role in the consolidation process. Thus, an economic design of vertical drains depends on a rational assessment of the horizontal coefficient of consolidation, c_h (Berry and Wilkinson, 1969).

Horizontal drainage becomes even more important in view of the fact that for most transported soils, horizontal coefficient of consolidation, c_h is normally greater than vertical coefficient of consolidation, c_v . Thus, the knowledge of horizontal coefficient of consolidation, c_h is very important in the selection of suitable soil stabilization method for soft organic soils and peat.

1.2 Aim of project

The project focuses on the study of horizontal coefficient of consolidation, c_h of fibrous peat soil and to compare the results with it's vertical coefficient of consolidation, c_v through laboratory investigation. This is important to emphasize the applicability of knowledge of horizontal coefficient of consolidation, c_h on the development of soil improvement method for construction on fibrous peat soil.

1.3 Objectives of study

In order to achieve the aim of the project, the study consists of the following objectives:

- To study the compressibility characteristics of fibrous peat soil based on the consolidation curves obtained from hydraulic consolidation tests for vertical and horizontal drainage
- 2. To study the effect of secondary compression on the determination of vertical and horizontal coefficient of consolidation (c_v and c_h) of fibrous peat soil
- 3. To compare the vertical and horizontal coefficient of consolidation (c_v and c_h) of fibrous peat soil under a range of consolidation pressures
- 4. To compare the vertical and horizontal coefficient of permeability, $(k_h \text{ and } k_v)$ of fibrous peat soil under a consolidation pressure
- 5. To outline the use of knowledge of horizontal coefficient of consolidation, c_h on the development of soil improvement method for construction on fibrous peat soil

1.4 Scope of project

The project is concentrated on the laboratory measurement of consolidation parameters for fibrous peat soil found in Bahru village, Pontian, Johor with the primary focus on the comparison of vertical and horizontal coefficient of

REFERENCES

- Berry P.L., and Wilkinson, W.B. The Radial Consolidation of Clay Soils. *Geotechnique*. 1969. 19(2): 253-284.
- Dhowian, A.W., and Edil, T.B. Consolidation Behavior of Peats. *Geotechnical Testing Journal*. 1980. 3(3): 105-114.
- Kogure, K., Yamaguchi, H., and Shogaki, T. *Physical and Pore Properties of Fibrous Peat Deposit*. Singapore: 11th Southeast Asian Geotechnical Conference. 1993.
- Terzaghi, K., Peck, R.B., and Mesri, G. Soil Mechanics in Engineering Practice.
 3rd Edition. New York: John Wiley & Sons. 1996.
- 5. Fox, P.J., and Edil, T.B. Effects of Stress and Temperature on Secondary Compression of Peat. *Canadian Geotechnical Journal*. 1996. 33(3): 405-415.
- Mesri, G., Stark, T.D., Aljouni, M.A., and Chen, C.S. Secondary Compression of Peat with or without surcharging. *Journal of Geotechnical and Geoenvironmental Engineering*. 1997. 123(5): 411-421.
- Colleselli, F., Cortellazzo, G., and Cola, S., "Laboratory Testing of Italian Peat Soils," *Geotechnics of High Water Content Materials*, ASTM STP 1374, Edil, T.B., and Fox, P.J. (Eds.), American Society for Testing and Materials, West Conshohocken, PA, 2000.
- Edil, T.B. Recent Advances in Geotechnical Characterization and Construction over Peats and Organic Soils. Putrajaya (Malaysia): 2nd International Conferences in Soft Soil Engineering and Technology. 2003.
- 9. Lan, 1.T. A Model for One-dimensional Compression of Peat. Ph.D. thesis. University of Wisconsin, Madison, U.S.A; 1992.
- 10. Colley, B.E. Construction of Highways over Peat and Muck Areas. Am. Highways. 1950. 29(1): 3-6.
- 11. Bardet, J.P. Experimental Soil Mechanics. New Jersey: Prentice-Hall. 1997.
- 12. Whitlow, R. *Basic Soil Mechanics*. 4th edition. Essex: Pearson Education Ltd. 2001.
- Robinson, R. G. A study on the Beginning of Secondary Compression of Soils. Journal of Testing and Evaluation. 2003. 31(5): 1-10.
- 14. Hausmann, M.R. Engineering Principles of Ground Modification. New York: McGraw-Hill. 1990.

- 15. Head, K.H. Manual of Soil Laboratory Testing, Volume 2: Permeability, Shear Strength and Compressibility Tests. London: Pentech Press Limited. 1982.
- Head, K.H. Manual of Soil Laboratory Testing, Volume 3: Effective Stress Tests. London: Pentech Press Limited. 1986.
- Smith, G.N. and Smith I.G.N. *Element of Soil Mechanics*. 7th edition. Cambridge: Blackwell Science Ltd. 1998.
- Sridharan, A., and Prakash, K. Secondary Compression Factor. *Geotechnical Engineering*. 1998. 131(2): 96-103.
- Holtz, R.D., Jamiolkowski, M.B., Lancellotta, R., and Pedroni, R. *Prefabricated Vertical Drains: Design and Performance*. Oxford: Butterworth-Heinemann Ltd. 1991.
- 20. Head, K.H. Manual of Soil Laboratory Testing, Volume 1: Soil Classification and Compaction Tests. London: Pentech Press Limited. 1980.
- 21. Hartlen, J., and Wolski, W. (Eds.). *Embankments on Organic Soils*. Armsterdam: Elsevier Science B.V. 1996.
- Gofar, N., and Sutejo, Y. Engineering Properties of Fibrous Peat. Senai (Malaysia): Seminar Penyelidikan Kejuruteraan Awam (SEPKA), Universiti Teknologi Malaysia (UTM). 2005.