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ABSTRACT 

 

 

 

 

This study investigates the performance of Reynolds Averaged Navier-Stokes 

technique in predicting the behavior of swirl flames as well as a parametric study on 

the effects of fuel jet velocity and swirl number on the structure of the swirl flames. 

Two turbulence models which are realizable k-ε and standard k-ω from RANS 

technique were chosen and applied as the closure model. Comparison of simulation 

results were done with the experimental evidence obtained from Sydney University 

database and it is found that both models show good performance in predicting the 

turbulent swirl flame near the vicinity of the burner exit plane. However, due to 

isotropic nature of the two-eddy viscosity model, turbulent swirl flows farther 

downstream were not accurately captured.  

 

 

Parametric studies on the effects of fuel jet velocity and swirl number on the 

swirl flame structure were done. Simulation of turbulent unconfined swirl flames 

shows that the structure of the swirl flames is consists of outer and inner recirculation 

zones. The outer recirculation zone occurs due to the bluff-body effect; meanwhile 

the inner recirculation zone occurs farther downstream due to reversed flow. For fuel 

jet velocity, an increase in the velocity causes suspension of the occurrence of 

secondary recirculation zone. In this case, for higher fuel jet velocity, longer time is 

required for the fuel jet to decay and recirculation zone to form. In addition to that, 

the flame height increases with increasing fuel jet velocity. On the other hand, an 

increase in swirl number causes an increase in flame width and flame height. Results 

from the simulation have also shown that for low swirl number of 0.3, recirculation 

zones were absent. As swirl number increases, the tangential momentum of air flow 

increase and therefore greater adverse pressure gradient will be produced. As a result, 

fuel jet is prohibited to travel farther downstream, and flow is reversed back into the 

recirculation zone.   
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ABSTRAK 

 

 

 

 

Kajian ini bertujuan untuk mengkaji prestasi teknik Reynolds Averaged 

Navier-Stokes (RANS) dalam meramal kelakuan api berpusar. Di samping itu, kajian 

parametrik untuk mengkaji kesan halaju bahan api dan nombor pusaran ke atas 

struktur api berpusar juga dilaksanakan. Dua model pergolakan dari teknik RANS 

dipilih dan digunakan sebagai model penutupan iaitu dua-persamaan Eddy-viscosity 

Realizable k-ε dan Standard k-ω. Perbandingan antara keputusan dari simulasi dan 

keputusan eksperimentasi dari pangkalan data Universiti Sydney telah dilakukan dan 

kedua-dua model pergolakan telah mempamerkan prestasi yang baik dalam meramal 

api golak berpusar di persekitaran salur keluar pembakar. Walau bagaimanapun, oleh 

kerana sifat isotropi yang dimiliki dua model tersebut, pergolakan berpusar di hilir 

pembakaran tidak dapat diramalkan dengan tepat.  

 

 

Simulasi pergolakan api berpusar terbuka menunjukkan struktur api berpusar 

adalah terdiri daripada zon edaran semula luaran dan dalaman. Zon edaran luaran 

terjadi akibat dari kesan “bluff-body” manakala zon edaran dalaman terjadi di hilir 

aliran akibat dari aliran berpatah balik. Untuk halaju bahan api, peningkatan dalam 

halaju bahan api menyebabkan kelewatan dalam pembentukan zon edaran semula. 

Dalam kes ini, semakin tinggi nilai halaju bahan api, semakin banyak masa 

diperlukan untuk jet dan pembentukan zon edaran semula. Tambahan dari itu, 

ketinggian api juga meningkat selari dengan peningkatan halaju bahan api. 

Manakala, peningkatan nombor pusaran akan mengakibatkan peningkatan dalam 

kelebaran api dan ketinggian api. Keputusan simulasi menunjukkan bahawa untuk 

simulasi pada nombor pusaran rendah iaitu 0.3,zon edaran semula tidak terbentuk. 

Apabila nombor pusaran meningkat, momentum tangent aliran udara meningkat dan 

kecerunan tekanan yang tidak diingini akan terbentuk. Akibatnya, jet bahan api 

terhalang dari terus mengalir ke hilir, dan aliran di edarkan semula ke dalam zon 

edaran semula.   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

The increasing demand of energy consumption and the concern of fossil fuels 

depletion motivate the search and discoveries of alternative energy conversion 

technologies. However, the alternative technologies are not capable of replacing the 

internal combustion engines in generating the required energy, for example hydrogen 

fuel cells. Therefore, researches and development of efficient, low polluting 

combustion systems are still an on-going process. Researchers and engineers have 

been collaborating to achieve the goal and making sure that the new combustion 

systems are reliable and acceptable for the industry. 

 

 

One of the major concerns with combustion system is the emission of 

pollutants especially nitric oxide. Recent years has shown a progress in the 

development of combustion system to reduce NOx emissions. Many countries have 

implemented the law of which every internal combustion engines of automobiles 

have to be installed with catalytic converters to reduce the emission of pollutants. 

Another major concern in the field of combustion is the development of efficient 

combustion systems and the objective is to ensure complete process of combustion.   

 

 

In combustion field, employing swirl-stabilised turbulent flames offers 

favourable features which are enhanced flame stability and pollutant emission 

reduction (Radwan et al., 2014). The reverse flow through swirl kept the reactants 

inside the combustor for an enhanced residence time, allowing for better mixing and 
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complete reaction (Kempf et al., 2008). Understanding the mechanism of swirl-

stabilised turbulent flames will help to enhance the performance of a combustor, 

ensuring in complete combustion by better mixing, thus reducing the emission of 

pollutants.  

 

 

Computational approach is a powerful tool in predicting and analysing 

complex flow problems. The primary concern of computational approach is to 

predict flow separation which greatly influences the efficiency of a device. In 

computational approach, there are several computational methods available in 

analysing complex flow problems such as Reynolds averaged Navier-Stokes 

(RANS), Large Eddy Simulation (LES) and the most advanced Direct Numerical 

Simulation (DNS). The present study focuses on swirl-stabilised turbulent flame by 

using RANS methodology to investigate the features and mechanisms of swirling 

flames. The device of interest for current study is the Sydney swirl burner which is 

described in this study.  

 

 

 

 

1.2 Background and Rationale 

 

 

Swirling flows are frequently found in nature and are also common in many 

practical applications. Naturally occurring tornados, dust devils or waterspouts are 

dominated by swirl flows. Turbulent swirl flows also play a major role in many non-

reacting and reacting engineering applications such as internal combustion engines, 

burners, vortex shedding from aircraft wings, and cyclone separators. In reacting 

turbulent combustion systems, swirling flows are favourable due to several benefits. 

In order to take advantage of swirling flow, one has to understand the mechanism 

and features of swirling flow. The mechanism of swirling flow is that it produces an 

adverse pressure gradient that can cause flow reversal or vortex breakdown 

(Shamami and Birouk, 2008). As a result of flow reversal, some of the combustion 

products return to the flame fronts to mix with the fresh combustible product 

(Radwan et al., 2014). In combustion systems, the effects of flow reversal are 

favourable as it enhanced mixing which leads to better combustion efficiency and 
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less pollutant formation. In addition to that, another feature of swirling flow in 

combustion is that it stabilizes the flame by reducing the flame length (Meester, 

Naud and Merci, 2009).  

 

 

Swirl-stabilised turbulent flames are appealing and relevant for a lot of 

industrial applications. The aforementioned benefits of swirl-stabilised flames 

motivate researchers around the world to study the mechanism of swirling flows 

especially in combustion systems which involve interaction between the flowfield 

and chemistry. Despite vast amount of study regarding swirling flows, it is yet to be 

fully understood. Issues concerning complex mechanism of vortex breakdown and 

precessing vortex core (PVC) are still not fully understood. Vortex breakdown is one 

of the complex phenomena involved in swirl flames which leads to flow instability 

such as precessing vortex core (PVC) and periodically expanding or shrinking of 

recirculation zone (Meester, Naud and Merci, 2009). Therefore, it is in need to 

further investigate the mechanism and behaviour of swirling flow in order to achieve 

optimum performance in any swirl-stabilised combustion systems.  

 

 

The present study focuses on swirl in combustion systems using 

computational approach. The structures of swirling flows such as the vortex 

breakdown, recirculation zone, and precessing vortex core are to be studied.  

Swirling flow is characterised by swirl number which represent the degree of swirl. 

This study will investigate the effect of fuel jet velocity and swirl number on the 

structure of swirl flames by observing the mean axial velocity, velocity contours, 

streamlines, and temperature distribution of the swirling flame. RANS methodology 

is adopted in analysing complex turbulent swirl-stabilised flame considering the 

computational cost and time. Evaluation of different RANS turbulence models will 

be done by comparing the accuracy of the simulation results with experimental data.  
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1.3 Problem Statement 

 

 

Efficient combustion means complete combustion of reactants and minimal 

amount of pollutants released. This is achievable by better mixing of fuel and 

oxidants during combustion process and by recirculation of combustible products 

back into combustion process to reduce emission of pollution. The most common 

method to achieve efficient combustion process is by introducing swirling flow in the 

combustion system. However, the precession, recirculation, vortex breakdown, and 

instabilities of swirling flows are the major concerns and have received much 

attention. In addition, the effects of swirl number from low swirl number to high 

swirl number on non-premixed combustion is still not fully understood. Therefore, 

understanding the features and behaviour of swirling flame and investigating factors 

that could affects the structure are urgently needed to cater these problems.  

 

 

 

 

1.4 Significance of the Study 

 

 

The purpose of this study is to gain in-depth understanding of the behaviour 

of turbulent unconfined swirl flames. For confined swirling flow, the boundary 

conditions are complicated and such flows are extremely difficult to predict 

computationally (Al-Abdeli and Masri, 2003). Furthermore, sudden expansion and 

confinement are known to aggravate jet precessing and acoustic instabilities (Al-

Abdeli and Masri, 2003).  In this study, computational work is made tractable by 

employing unconfined swirl flames with simplifications to the boundary conditions.  

 

 

Numerical investigation is essential for such complex swirl flames as 

experimental works are extremely expensive and time consuming. Therefore, using 

computational approaches in predicting and analysing swirling flow features is an 

outstanding effort.  This study focuses on predicting flow of unconfined swirl flame 

using RANS methodology and evaluating different RANS turbulence models. 

Computational work is done using ANSYS FLUENT software.  
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1.5 Objectives of the Study 

 

 

i. To develop and validate a 3D time-averaged CFD model for 

unconfined swirl flames. 

 

ii. To conduct parametric study using the CFD model to study various 

features of swirl flames. 

 

iii. To investigate the effect of fuel jet velocity and swirl number on 

flame structure and temperature. 

 

 

 

 

1.6 Scope of the Study 

 

 

The research scope focuses on the modelling of unconfined swirl flames. The 

general-purpose software ANSYS Fluent will be used to develop the CFD model. 

Experimental measurements of Sydney burner will be used to validate the model. 

The scope of the parametric study includes the effect of fuel jet velocity and swirl 

number on the flame structure and temperature.  
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