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ABSTRACT 

 

 

 

 

Turbulent friction and heat transfer behaviors of magnetic nanofluid (Fe3O4 

dispersed in water) as a heat transfer fluid in three different cross sectional channels 

(circular, rectangular and square) was investigated numerically. The channels with 

hydraulic diameter of 0.014 m and 1.7 m length subjected a uniform heat flux (13500 

w/m
2
)
 
on all their walls has been presented in order to determine the effects of 

geometry change, nanoparticle concentration and flow rate on the convective heat 

transfer and friction factor of nanofluid with neglecting the effect of magnetic flow 

field. Fe3O4 nanoparticles with diameters of 36 nm dispersed in water with volume 

concentrations of 0–0.6 vol. % were employed as the test fluid. The investigation 

was carried out at steady state, turbulent forced convection with the range of 

Reynolds number varied from 5000 to 20000, three dimensional flow, and single 

phase approach. Computational fluid dynamics (CFD) model by using FLUENT 

software depending on finite volume method was conducted. In this study, the result 

exhibited that the Nusselt number of nanofluid for all geometries is higher than that 

of the base liquid and increased with increasing the Reynolds number and particle 

concentrations. But the circular pipe had the highest value of Nusselt number 

followed by rectangular and square tube. On the other hand, for the friction factor, 

the results revealed that the friction factor of nanofluids was higher than the base 

fluid and increases with increasing the volume concentrations and decreases with 

increasing of Reynolds number. In addition the friction factor of square channel is 

higher than others followed by rectangular and circular channel, respectively. 

  



vi 

 

 

 

 

 

 

ABSTRAK 

 

 

 

 

Geseran gelora dan tingkah laku pemindahan haba bendalir nano bermagnet 

(Fe3O4 tersebar dalam air) sebagai bendalir pemindahan haba dalam tiga saluran 

keratan rentas yang berbeza (bulat, segi empat tepat dan segi empat sama) telah diuji 

secara berangka. Saluran-saluran berdiameter hidraulik sepanjang 0.014 m dan 1.7 m 

tersebut adalah tertakluk kepada fluks haba seragam (13500 w/m
2
) pada kesemua 

dinding telah dibentangkan untuk menentukan kesan perubahan geometri, kepekatan 

zarah nano dan kadar aliran pada pemindahan haba perolakan, dan faktor geseran 

bendalir nano dengan mengabaikan kesan medan aliran bermagnet. Zarah nano 

Fe3O4 berdiameter 36 nm tersebar dalam air dengan jumlah kepekatan 0-0.6% 

isipadu diambil sebagai bendalir ujian. Penyelidikan telah dijalankan pada keadaan 

mantap, daya perolakan gelora dengan julat nombor Reynolds diubah daripada 5000 

hingga 20000, aliran tiga dimensi, dan pendekatan fasa tunggal. Model Pengiraan 

dinamik bendalir (CFD) dengan menggunakan perisian FLUENT yang bergantung 

kepada kaedah isipadu terhingga telah dijalankan. Dalam kajian ini, keputusan 

menunjukkan bahawa nombor Nusselt bendalir nano untuk semua geometri adalah 

lebih tinggi berbanding bendalir asas dan meningkat dengan peningkatan nombor 

Reynolds dan kepekatan zarah. Tetapi paip bulat mempunyai nilai tertinggi nombor 

Nusselt diikuti dengan tiub segi empat tepat dan tiub segi empat sama. Sebaliknya, 

bagi faktor geseran, keputusan mendedahkan bahawa faktor geseran bendalir nano 

adalah lebih tinggi berbanding bendalir asas dan meningkat dengan peningkatan 

kepekatan isi padu dan berkurang dengan peningkatan nombor Reynolds. Selain itu, 

faktor geseran bagi saluran segi empat sama adalah lebih tinggi berbanding dengan 

yang lain diikuti oleh saluran segi empat tepat dan saluran bulat. 

 

.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

The usual design requirements for modern heat transfer equipment are 

reduced size and high thermal performance.  In this connection, in the past decades a 

considerable research effort has been dedicated to the development of advanced 

methods for heat transfer enhancement, such as those relying on new geometries and 

configurations, and those based on the use of extended surfaces and/or turbulators.  

On the other hand, according to a number of studies achieved in recent times, a 

further significant contribution may derive by the replacement of traditional heat 

transfer fluids, such as water, ethylene glycol and mineral oils with nanofluids, i.e., 

colloidal suspensions of nano-sized solid particles, whose effective thermal 

conductivity has been demonstrated to be higher than that of the corresponding pure 

base liquid. 

 

 

Straight channels are accounted as prime chambers which used for 

enhancement of heat transfer.  They are widely used in electronic devices, heat 

exchangers, cooling of gas turbine blade, gas-cooled nuclear reactors and solar air 

heater ducts, etc.  The augmentation of heat transfer in channels and pipes is based 

on various factors such as material of walls, types of fluid flow inside them, thermal 

properties of fluids and etc.  Generally, the improvement of heat transfer implies the 

increase of heat transfer rate.  According to Newton’s law of cooling, and the 

equations related to heat transfer can be noticed that increasing in (convection heat 
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transfer coefficient, thermal conductivity, surface area and temperature difference 

between the surface and fluid) leads to increase in the rate of heat transfer.  In recent 

years, many researchers have attempted to develop special classes of heat transfer 

fluids for augmentation of their heat transfer properties.  An innovative method is to 

suspend small solid particles in the common fluid to form fluid slurries.  Different 

types of solid particles, such as metallic, non-metallic and polymeric can be added 

into fluids.  In the early studies, however, use of suspended particles of millimetre or 

even micrometre-size demonstrated unusually high thermal enhancement, but some 

extreme problems are also experienced, such as poor stability of the suspension, 

clogging of flow channels, eroding of pipelines and increase in pressure drop in 

practical applications.  Although the solutions show better thermal performance 

compared to common heat transfer fluids, they are still not suitable for use as heat 

transfer fluids in practical applications, especially for the mini and/or micro-channel 

or even electronic cooling equipment.  With the rapid development of modern 

nanotechnology, particles of nanometre-size (normally less than 100 nm) are used 

instead of micrometre-size for dispersing in base liquids, and they are called 

nanofluids.  This term was first suggested by Choi [1] in 1995, and it has since 

gained in popularity.  Compared with millimetre or micrometre sized particle 

suspensions, a number of researchers have reported that nanofluids have shown a 

number of potential advantages, such as better long-term stability, little penalty in 

pressure drop, and can have significantly greater thermal conductivity. 

 

 

In general, nanofluids are colloidal mixtures of nanometric metallic, magnetic 

or ceramic particles in a base fluid, such as water, ethylene glycol or oil.  Nanofluids 

possess immense potential to enhance the heat transfer characteristics of the original 

fluid due to improved thermal transport properties and according to passive studies 

that the non-metallic materials, such as alumina (Al2O3), CuO, TiO2, carbon and iron 

oxide Fe3O4 that possess higher thermal conductivities than the conventional heat 

transfer fluids. 
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1.2 Problem Statement 

 

 

At the first part of problem statement, numerical investigation of thermal and 

flow fields of three dimensional fully developed turbulent flow with nanofluids in 

circular, rectangular, and square straight channels with constant heat flux. 

 

 

Behaviour of nanofluids and modelling during heat transfer is still in the early 

stages of development and therefore it has not been fully investigated.  Research is 

needed to advance nanotechnology and to determine heat transfer applications for 

nanoparticles/nanofluids. Research will help to understand the relationship of 

nanofluids and heat transfer rates at various operational conditions.  Experiments will 

also help to understand the relationship of deposition of nanoparticles and its effect 

on heat transfer rates. 

 

 

The research being conducted in this study uses nanoparticle of      , then 

studies the effects of three different shapes (circular, rectangular, and square straight 

channels) with different volume fraction on heat transfer enhancement and fluid flow 

without the effect of magnetic field. 

 

 

 

 

1.3 Application of the Study 

 

 

The amount of heat transfer rate through various shapes of straight channels 

considerably relies on the velocity of flow to carry out an impressive heat transfer 

that will be discussed in this study.  This increment should be used in applications to 

keep high efficient system.  Straight channels are largely performed in a wide range 

of applications for instance condensers, evaporators, oil radiators, heat exchangers, 

food industry, nuclear reactors renewable energy, thermal storage tanks in air 

conditioning and paint production to reduce the cost, weight and size.  Therefore, the 

investigation of heat transfer in straight channel using fluids such as nanofluids in the 

present study will provide many details related to the fluid flow and thermal 

processes enhancement in channels.  It could be employed to increase the heat 
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recovery quantity in plants (boilers and furnaces) for different sources of waste heat 

for example high temperature, medium temperature and low temperature range, for 

instance utility and industrial boilers, steel blast furnace, annealing furnaces, cement 

kiln and gas turbine exhaust by using gas to gas, gas to liquid and liquid to liquid 

heat recovery system according to the nature of the streams exchanging energy [2]. 

 

 

Usage of nanofluid is not only ideal for thermal applications but also will be 

used fully turbulent flow with high Reynolds number to enhance the heat transfer in 

this study.  It would be obvious from foregoing notions that nanofluid has the 

potential to be proper alternative working fluid with higher thermal properties 

compared to a conventional fluid. 

 

 

 

 

1.4 Objectives of the Study 

 

 

The objectives of the present study can be outlined as follows 

 

1- To investigate the effects of different Reynolds numbers on the thermal and 

flow fields. 

2- To study the effect of nanofluid with different particles volume 

concentrations on the thermal and flow field Fe3O4 - water  nanofluid on the 

heat transfer efficiency. 

3- To examine the influence of geometry shape on thermal and flow field. 

 

 

 

 

1.5 Scope of the Study 

 

 

The scope of the present study can be limited to 

 

 Reynolds number is ranging from 5000 to 20000. 
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 Assuming the type of flow is fully turbulent and forced heat transfer 

convection in the straight channel with circular, rectangular and square 

cross sections, respectively. 

 Incompressible flow. 

 Three dimensional flow. 

 Steady state flow. 

 Flow assumed to be single phase flow 

 Nanofluid consists of Fe3O4 with volume fraction (0, 0.1, 0.3 and 0.6%) 

suspended in water as a base fluid. 

 Using CFD code FLUENT 15 software to model the internal NF flow in 

the straight channel. 

 

 

 

 

1.6 Dissertation Outline 

 

 

This thesis is divided into five chapters as follows: 

 

Chapter 1 contains introductory information as well as the problem statement and 

scope of this study.  Applications of the study and the objectives of the project are 

also reported. 

 

 

Chapter 2 presents the literature review which is related to the fluid flow and 

heat transfer problem in straight channels with various geometries involving 

experimental and numerical studies with different types of working fluids.  The first 

section presents the fluid flow and heat transfer through straight channels, while the 

last section is related to nanoparticles and nanofluids parameters, application, 

production and thermo physical properties. 

 

 

Chapter 3 focuses on the mathematical and theoretical aspects governing the 

forced turbulent convection heat transfer for three-dimensions in a straight channel.  

This chapter shows the numerical procedures for solving the present problem in 

details as well as the assumptions and limitations of boundary conditions for the 
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computational domain are also mentioned.  Furthermore, the analysis and equations 

of nanofluids thermophysical properties are presented according to their diameter 

and volume fraction. 
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