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ABSTRACT 

 

 

 

 

Damped wave equations have been used particularly in the natural sciences 

and engineering disciplines. The purpose of this study is to apply the technique of 

finite difference and cubic B-spline interpolation to solve one dimensional damped 

wave equation with Dirichlet boundary conditions. In this study, the accuracy of 

numerical methods are compared with exact solution by computing their absolute 

error and relative error.  The computational experiments are conducted using Matlab 

2008 and visualisation using Microsoft Excel 2010. As the result, finite difference 

method and cubic B-spline interpolation are found to give good approximation in 

solving damped wave equation. In addition, the smaller time step size, 𝑇 gives better 

approximations for both finite difference and cubic B-spline interpolation. 
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ABSTRAK 

 

 

 

 

Persamaan gelombang lembap telah digunakan terutamanya dalam bidang 

sains semula jadi dan kejuruteraan. Kajian ini adalah bertujuan untuk menggunakan 

kaedah beza terhingga dan interpolasi B-splin kubik bagi menyelesaikan persamaan 

gelombang lembap satu dimensi dengan syarat sempadan Dirichlet. Dalam kajian ini, 

ketepatan kaedah-kaedah berangka dibandingkan dengan penyelesaian tepat dengan 

mengira ralat mutlak dan ralat relatif masing-masing. Keputusan pengiraan 

dijalankan dengan menggunakan Matlab 2008 dan visualisasi dengan menggunakan 

Microsoft Excel 2010. Hasilnya, kaedah beza terhingga dan interpolasi B-splin kubik 

memberikan anggaran yang baik dalam menyelesaikan persamaan gelombang 

lembap. Tambahan lagi, saiz langkah masa, 𝑇 yang lebih kecil memberikan anggaran 

yang lebih baik kepada kedua-dua kaedah beza terhingga dan interpolasi B-splin 

kubik. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the Study 

 

 

 A partial differential equation (PDE) is a mathematical equation in the form 

of 

  

𝐹(𝑥, 𝑦,   .  .  .  , 𝑢,  𝑢𝑥,  𝑢𝑦 ,   .  .  .  ,  𝑢𝑥𝑥,  𝑢𝑦𝑦,   .  .  .  ) = 0,  

 

that involves two or more independent variables 𝑥, 𝑦,   .  .  .  , an unknown function 𝑢 

and partial derivatives 𝑢,  𝑢𝑥,  𝑢𝑦,   .  .  .  ,  𝑢𝑥𝑥,  𝑢𝑦𝑦,   .  .  .   of the unknown function 𝑢 

with respect to the independent variables. The order of a partial differential equation 

is the order of the highest derivative involved. A solution (or a particular solution) to 

a partial differential equation is a function that solves the equation or, in other words, 

turns it into an identity when substituted into the equation [1]. PDE is used to 

formulate problems involving functions of several variables, and are either solved by 

hand, or used to create a relevant computer model. PDE can be used to describe a 

wide variety of phenomena such as sound, wave, heat, electrostatics, 

electrodynamics, fluid flow, elasticity and quantum mechanics. These seemingly 

distinct physical phenomena can be formalised similarly in terms of PDE [2].  
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 In PDE, there are three types of equation namely elliptic, parabolic and 

hyperbolic equation. The example of elliptic equations are Poisson equation and  

Laplace equation that arise in the temperature or voltage distribution while the 

simplest example of parabolic equation is heat equation. Hyperbolic equations arise 

in wave mechanic, gas dynamics, vibrations and other areas [3]. The most frequent 

hyperbolic equation that always discussed is one dimensional wave equation which is 

given by  

 

𝜕2𝑢

𝜕𝑡2
= 𝑐2

𝜕2𝑢

𝜕𝑥2
  . 

 

However, this research is focused on damped wave equation which include the 

damping factor in the above equation. Hence, the damped wave equation is given as  

 

𝜕2𝑢

𝜕𝑡2
=  𝑐2

𝜕2𝑢

𝜕𝑥2
− 𝑎

𝜕𝑢

𝜕𝑡
 . 

 

 To be specific, this research is about solving damped wave equation of PDE using  

finite difference method (FDM) and interpolation using cubic B-spline.  

 

 

 

 

1.2 Problem Statement 

 

 

 In this research, the finite difference method and cubic B-spline interpolation 

are used to solve the damped wave equation since the analytical solutions are usually 

difficult to obtain. Among several numerical methods, finite difference method is 

widely used for its simplicity. The cubic B-spline interpolation is applied in order to 

overcome the weakness of polynomials which have oscillating properties and consist 

of a high number of arithmetical operations involved in the calculations of 

polynomial.  
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 1.3 Objectives of the Study 

 

 

The objectives of this study are: 

 

1. To study the finite difference method (FDM) and cubic B-spline interpolation. 

 

2. To study the algorithm of FDM and cubic B-spline interpolation. 

 

3. To solve damped wave equation using FDM and cubic B-spline interpolation. 

 

4. To determine the accuracy of FDM and cubic B-spline interpolation by 

computing their absolute error and relative error. 

 

 

 

 

1.4 Scope of the Study 

 

 

 In this research, the method of finite difference and cubic B-spline are applied 

which is focuses in one dimensional damped wave equation. The derivatives in finite 

difference method is approximated to centered difference and forward difference 

only. Beside that, this study is only tested on Dirichlet boundary conditions. 

 

 

 

 

1.5 Significance of the Study  

 

 

 The results of finite difference method and cubic B-spline interpolation are 

compared with exact solutions. The method is very useful to solve real-world 

application since analytical solution is normally hard to obtain.  
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