PRODUCT DEVELOPMENT THROUGH DESIGN FOR ASSEMBLY (DFA) AND THEORY OF INVENTIVE PROBLEM SOLVING (TRIZ) METHODOLOGIES OF ELECTRIC BARBEQUE GRILL

ILYAS TUFAIL BIN BASHARUDIN

UNIVERSITI TEKNOLOGI MALAYSIA

PRODUCT DEVELOPMENT THROUGH DESIGN FOR ASSEMBLY (DFA) AND THEORY OF INVENTIVE PROBLEM SOLVING (TRIZ) METHODOLOGIES OF ELECTRIC BARBEQUE GRILL

ILYAS TUFAIL BIN BASHARUDIN

A dissertation submitted as partial fulfillment of the requirement for the Degree of Master of Engineering (Mechanical – Advance Manufacturing Technology)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > **JUNE 2014**

For my dad, mum, bro and sis... Thank you for your love and support

Alhamdulillah, I managed to complete this project in time and without any hindrances.

For my beloved wife Norlida.. Your help and kindness are so precious and irreplaceable with any valuable thing.

ACKNOWLEDGEMENTS

All praises to the Al-Mighty Allah S.W.T, The Merciful and Beneficent for the strength and blessing throughout the entire time until completion of this Master Project report. Peace be upon our prophet Muhammad S.A.W, whose has given light to mankind.

Firstly, I wish to express my sincere appreciation to my Master Project supervisor Dr. Ariffin Bin Hj Abdul Razak for his guidance, counsels, encouragements, and efforts through his advice in completing this Master Project.

My sincere appreciation also extends to my colleagues Mr Muhammad Hanafi and Mr Mohd Aidil Johari who are always helping and giving me support at various occasions. Their views and tips are useful indeed.

Lastly, for everyone who involved either directly or indirectly in this Master Project, their contribution is highly appreciated. The kindness corporation and support from all of the above mentioned people would always be remembered.

Thank you.

ABSTRACT

Design for Assembly (DFA) is an approach to simplify the product through reducing number of parts by eliminating or merging the particular parts. Meanwhile, Theory of Inventive Problem Solving (TRIZ) is a systematic tool that enhances the decision making through systematic procedure either than trial-and-error method. This project report describes on the integration of DFA and TRIZ methodologies for the design improvement. A household appliances consumer product was selected as a product case study. DFA analysis for the original design of product case study was conducted. The results than are compared to the new design proposed by the DFA methodology. Through TRIZ approach, trimming methods are used in order to develop the specific solution problem solving arise during the process of design improvement. The result than was analyzed using DFA analysis. TRIZ will booster up the design efficiency. Integration of DFA and TRIZ methodologies are able to improve the design efficiency by simplifying the parts.

ABSTRAK

Reka bentuk untuk Pemasangan (DFA) merupakan satu kaedah untuk meringkaskan produk melalui pengurangan bilangan komponen produk dengan menghapuskan atau menggabungkan komponen produk. Manakala Teori Mencipta Penyelesaian Masalah (TRIZ) merupakan alat yang sistematik dalam membuat keputusan yang lebih mantap berbanding kaedah cuba jaya. Laporan projek ini menerangkan tentang integrasi kaedah DFA dan TRIZ bagi peningkatan reka bentuk. Satu barangan kelengkapan rumah telah dipilih sebagai kajian kes produk. Analisis DFA terhadap reka bentuk produk asal dijalankan. Kemudiannya, hasil dapatan dibandingkan dengan reka bentuk baru yang dicadangkan melalui kaedah DFA. Melalui pendekatan TRIZ, pemotongan (*trimming*) digunakan untuk membangunkan penyelesaian spesifik bagi percanggahan permasalahan yang timbul semasa proses meningkatkan reka bentuk. Keputusan ini kemudiannya dianalisa menggunakan analisis DFA. TRIZ akan menggalakkan kecekapan reka bentuk. Integrasi di antara kaedah DFA dan TRIZ mampu meningkatkan kecekapan reka bentuk dengan meringkaskan komponen.

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

DECLARATION	ii
DEDICATION	iv
ACKNOWLEDGEMENTS	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xiii
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xvii
LIST OF APPENDICES	xviii

1 INTRODUCTION

1.1	Introduction to the Problem Statement	1
1.2	Objectives of Projects	2
1.3	Scope of Projects	2
1.4	Methodology	3
1.5	Significant of study	7
1.6	Structure of Report	7
1.7	Summary	8

2 LITERATURE REVIEW ON DESIGN

FOR ASSEMBLY (DFA)

2.1	Introd	luction	
2.2	Design	n for Assembly (DFA)	9
	2.2.1	Introduction to DFA	10
	2.2.2	Basic Principle of DFA	10
2.3	Design	n for Assembly (DFA) Methodology	12
	2.3.1	Boothroyd and Dewhurst Methodology	12
		2.3.1.1 Part Handling and Insertion	14
		2.3.1.2 Minimum Theoretical Parts	20
	2.3.2	Lucas – Hull Design for Assembly	20
		2.3.2.1 Functional Analyses	21
		2.3.2.2 Feeding Analyses	22
		2.3.2.3 Fitting Analyses	23
	2.3.3	Hitachi Assemblability Evaluation Method (AEM)	24
2.4	Summ	ary	27

3 LITERATURE REVIEW ON TRIZ

3.1	Introd	uction	28
3.2	The R	oad Map of TRIZ	29
	3.2.1	Model of Problem	29
	3.2.2	Tool	31
	3.2.3	Model of Solutions	32
3.3	Basic	Principle of TRIZ	33
	3.3.1	Ideality	33
	3.3.2	Functionality	36
	3.3.3	Resource	38
	3.3.4	Contradiction	39
	3.3.5	Evolution	44
3.4	Procee	dure of Problem Solving in TRIZ	47
3.5	Summary		49

4 PRODUCT CASE STUDY FOR IMPROVEMENT

4.1	Introduction	51	
4.2	Product as a Case Study		
	4.2.1 Product Tree Structure	53	
	4.2.2 Parts Identification	55	
	4.2.3 Parts Assembly Sequence	57	
4.3	Parts Functions and Critiques	57	
4.4	Summary	64	

5 DESIGNS FOR ASSEMBLY (DFA) ANALYSIS FOR ORIGINAL DESIGN

5.1	Introd	Introduction		65
5.2	Produ	Product Analysis		
	5.2.1	Classification of Manual Handling and Insertion		66
	5.2.2	Theoretical	Minimum Number of Part	78
	5.2.3	DFA Works	sheet	81
		5.2.3.1	Number of Component	82
		5.2.3.2	Assembly Time	82
		5.2.3.3	Assembly Cost	82
		5.2.4.4	Design Efficiency	83
5.3	Summ	nary		84

6 DESIGN FOR ASSEMBLY (DFA) ANALYSIS FOR IMPROVED DESIGN

6.1	Introd	luction	85
6.2	Impro	wement Using DFA Methodology	85
6.3	New I	Design Assembly Drawing	88
6.4	Analysis of New Design		91
	6.4.1	Classification of Manual Handling and	
		Insertion Code	91
	6.4.2	Theoretical Minimum Number of Part	
		for New Design	93

	6.4.3	DFA Worksheet for New Design	95
	6.4.4	Number of Parts for New Design	96
	6.4.5	Assembly Time for New Design	96
	6.4.6	Assembly Cost for New Design	96
	6.4.7	Design Efficiency for New Design	97
6.5	Summ	ary	97

7 INTEGRATION OF TRIZ METHODOLOGY TO THE NEW DESIGN

7.1	Introduction		99
7.2	Model of Problem		
7.3	Functi	ion Analysis	100
7.4	Cause	and Effect Chain Analysis	101
7.5	Trimn	ning Method	102
	7.5.1	Trimming and Merging	103
7.6	Engin	eering Contradiction	105
7.7	Design for Assembly (DFA) Analysis for the TRIZ		
	Impro	vement	106
	7.7.1	Classification of Manual Handling and Insertion	107
	7.7.2	Theoretical Minimum Number of Part	109
	7.7.3	DFA Worksheet for TRIZ New Design	110
	7.7.4	Number of Parts	110
	7.7.5	Assembly Time	111
	7.7.6	Assembly Cost	111
	7.7.7	Design Efficiency	111
7.8	Summ	nary	112

8 **RESULTS AND DISCUSSION**

8.1	Introduction	113
8.2	Comparison of Original and New Design	114
	8.2.1 Number of Part	114
	8.2.2 Assembly Time	115

8.2.3	Assembly Cost	116
8.2.4	Design Efficiency	117
8.2.5	Comparison on Quantitative Aspect	118
Comp	arison of DFA and TRIZ Improvement Results	120
Discus	ssion	121
Summ	ary	122
	8.2.4 8.2.5 Comp Discus	 8.2.3 Assembly Cost 8.2.4 Design Efficiency 8.2.5 Comparison on Quantitative Aspect Comparison of DFA and TRIZ Improvement Results Discussion Summary

9 CONCLUSION

9.1	Introduction	123
9.2	Future Recommendations	123
9.3	Concluding Remarks	124

REFERENCES	125
APPENDICES	128

LIST OF TABLES

TABLE NO.

TITLE

PAGE

1.1	Gantt Chart for Research Schedule Planning for	
	Master Project I	5
1.2	Gantt Chart for Research Schedule Planning for	
	Master Project II	6
2.1	Computation of Design Efficiency	14
2.2	Description of First Digit in Manual Handling Code	15
2.3	Description of Second Digit in Manual Handling Code	15
2.4	Lucas DFA Method-Manual Handling Analysis	22
2.5	Lucas DFA method- Manual Fitting Analysis	24
4.1	Part ID for Electric Barbecue Grill	56
4.2	Part Functions and Critiques	57
5.1	Parts Classification	66
5.2	Theoretical Minimum Part Assessment	80
5.3	DFA Worksheet	81
6.1	Proposed Improvements	86
6.2	Manual Handling and Insertion Code for Modified Parts	91
6.3	Theoretical Minimum Number of Parts	
	for Improved Design	94
6.4	DFA Worksheet for Modified Design	95
7.1	Design Before And After Implementation of TRIZ	104
7.2	Design Before and After of Implementation	
	of TRIZ for Heater Holder	105
7.3	Manual Handling and Insertion Code for Modified Parts	107

7.4	Theoretical Minimum Number of Parts for	
	TRIZ New Design	109
7.5	DFA Worksheet for New TRIZ Design	110
8.1	Summary of DFA Analysis	118
8.2	Summary of DFA + TRIZ Analysis	120

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

1.1	Flowchart Represent the Scope of Work	4
2.1	Material Handling- Estimated Times	16
2.2	Material Insertion- Estimated Times	17
2.3	Alpha (A) and Beta (B) Rotational Symmetries for	
	Various Parts	18
2.4	Effect of Part Size on Handling Time	19
2.5	Evaluation of Assembly Suitability	26
3.1	Road Map of TRIZ Problem Solving Process	30
3.2	S-curve Technology Evolution Trends Consistent	
	With the Ideality Concept	30
3.3	Heat Exchanger Functionality	37
3.4	Type of Contradiction	43
3.5	Geometric Evolution Trend	45
3.6	Object Segmentation Evolution Trend	46
3.7	Action Co-ordination Evolution Trend	46
3.8	Rhythm Co-ordination Evolution Trend	47
4.1	Electric Barbecue Grilled	52
4.2	Product Tree Structure for Electric Barbecue Grill	54
4.3	Part ID for Electric Barbeque Grill	55
6.1	Product Tree Structure for Electric Barbecue Grill	90
7.1	Function Analysis of the Product Case Study	100
7.2	Cause & Effect Chain Analysis of the Product Case Study	101
7.3	Trimming Method Apply for The Product Case Study	103
7.4	Elimination of Heater Stand	104

7.5	Elimination of Heater Holder	104
7.6	New Design Assembly Drawing After Integration of TRIZ	106
8.1	Comparison Between Original Design and New	
	Design Based on Total Number of Part	115
8.2	Comparison Between Original Design and New Design	
	Based on Assembly Time	116
8.3	Comparison Between Original Design and New	
	Design Based on Assembly Cost	117
8.4	Comparison Between Original Design and New Design	
	Based on Design Efficiency (%)	118

LIST OF ABBREVIATIONS

ABBREVIATIONS

TITLE

DFA	Design for Assembly
DFMA	Design for Manufacturing and Assembly
TRIZ	Theory of Inventive Problem Solving
DE	Design Efficiency
TM	Total Manual Assembly Time
СМ	Total Cost of Manual Assembly Time
NM	Theoretical Minimum Number of Parts
BBQ	Barbecue

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Manual Handling – Estimated Times	128
В	Manual Insertion – Estimated Times	129
С	Contradiction Matrix	130

CHAPTER 1

INTRODUCTION

1.1 Introduction to the Problem Statement

Now a day, product design simplification is important due to the rapid changing of customer demands, more competition and so on. Yet, manufacture is being forced to produce product that meet the customer requirement with high expectation such as product functionality but in lower cost. So, designer needs to design product with maximize value in order to fulfil that requirement. In recent decades the search for significant cost-saving effects that characterize major process innovations has driven manufacturers towards simplifying their products. In fact, when compared to process improvements in the production of complex assembled products, product innovations have a more profound impact on productivity, costs and quality.

The significant demands made on engineers to reduce assembly time, improve performance and reliability at a reduced cost requires the ability to improve the design of the existing product. It necessitates the improvement of the existing design to reduce the number of parts and ease of user handling. In addition, the improved design needs to be carry out the same function or more with simplicity of assembly, reduce in cost and ease of handling.

Basically, there are two sort of problems for any given product design or process which are those where the solution is generally known and those where it is not. If the solution is generally known, it can be found in books, journals, or technical paper. Problems where the solutions are not generally known are called inventive problems and often offer contradiction requirements. Mostly, many people will choose a compromised solution, where not all of the requirements are met and those that are met, are not optimized in order to resolve contradictory requirements or conflict. In this case, there are several ways to solve the problem. The use of integrated several VE tools will help to resolve conflict and generate new solutions from outside the experience.

1.2 Objectives of Projects

The objective of this project is to improve product design through Design for Assembly (DFA) methodology and Theory of Inventive Problem Solving (TRIZ) approach.

1.3 Scope of Projects

The study will focus on the:

i. Application of DFA methodology to identify detailed design problems and generate remedial design solutions

- ii. Application of TRIZ method to improve the value added product development.
- iii. Consumer product as case study is Electric Barbeque Grill

1.4 Methodology of Projects

This study will be carried out into two semesters which in Semester 1 is Master Project 1 (MP 1) and in Semester 2 is Master Project 2 (MP 2). The activities will be structured accordingly as shown in Figure 1.1. For the beginning, the literature review on both DFA and TRIZ are studied by reviewing journals, books, articles and others researchers findings. As well as the main idea was gathered, product of the case study will determine which focusing on consumer product to be investigated. DFA evaluation of the original design of the product case study will be analysed. From the result obtained, new design improvements were suggested.

The new design improvements will continue studying in Semester 2 but this time by guiding method and tools in TRIZ. The idea of integration of DFA and TRIZ were implemented in the new design. Furthermore, the evaluation of DFA once again conducted for the new design. Finally, the percentages of Design Efficiency, Estimated Assembly time and numbers of parts reduction will be compared in discussion and conclusion. The general flow of the projects represents by the Figure 1.1.

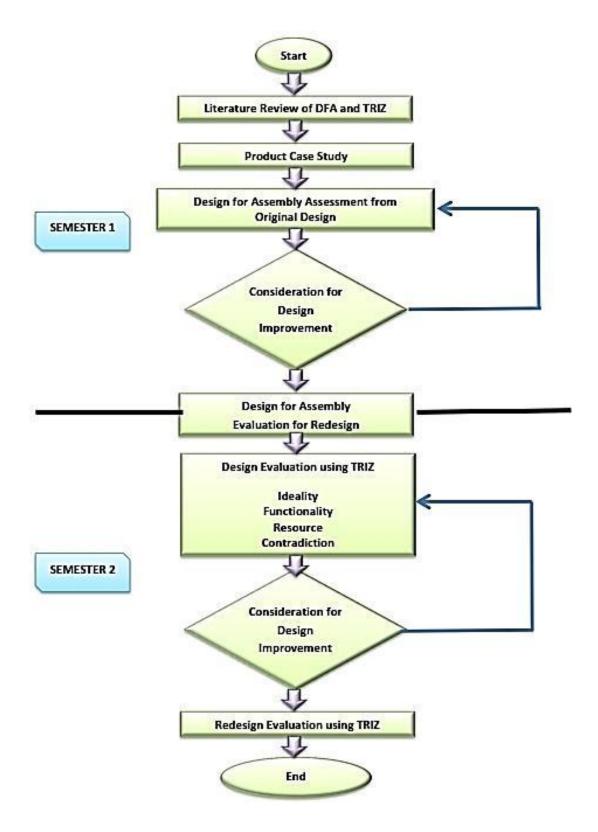


Figure 1.1: Flowchart Represents the Scope of Work

Table 1.1 Gantt Chart for Research Schedule Planning for Master Project I

ACTIVITIES	Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
ACTIVITES	Date	9-13/9	10-20/9	23-27/9	30/9-4/10	7/11/10	14-18/4	21-25/10	28/10-1/1	4/8/11	11-15/11	18-22/11	25-29/11	2-6/12	9-13/12	16-20/12	23-27/12	30/12-3/1	6-10/1	13-17/1
Master Project 1 Briefing & Title	Plan																			
Selection	Actual																			
Literature Decien	Plan																			
Literature Review	Actual																			
Product Case Study	Plan																			
rioduct Case Study	Actual																			
Design for Assembly (DFMA) Evaluation	Plan																			
for Original Design	Actual																			
Consideration for Design Improvement	Plan																			
Consideration for Design Improvement	Actual																			
Design for Assembly (DFMA) Evaluation	Plan																			
for Redesign Design	Actual																			
Duaft / Peneut Writing	Plan																			
Draft / Report Writing	Actual																			
Seminar - Master Project I Presentation	Plan																			
Seminar - Master Project I Presentation	Actual																			
	.iccuui																			

ACTIVITIES	Week	1	2	3	4	5	6	7	8	9	10	12	13	14	15	16	17
ACTIVITIES	Date	0-14/	17-21/2	24-28/2	3-7/3	0-14/:	17-21/3	24-28/3	1-5/4	7-11/4	14-18/4	1-5/5	6-10/5	12-16/5	19-23/5	26-30/5	2-6/6
Design Evaluation using	Plan																
TRIZ	Actual																
Design Improvement using	Plan																
TRIZ	Actual																
Comparison of DFMA &	Plan																
TRIZ Results	Actual																
Denset W. History	Plan																
Report Writing	Actual																
Seminar - Master Project II	Plan																
Presentation & Report Submission	Actual																

Table 1.2 Gantt Chart for Research Schedule Planning for Master Project II

1.5 Significant of Study

The research finding shall be indispensable of improving the existing product design in terms of cost, minimize parts numbers and ease of handling. The capability of Boothroyd Dewhurst DFA methodology should help product design engineer to increase product design efficiency. Additional Theory Inventive Problem Solving (TRIZ) strategies should usefully deploy to qualitatively enhance Boothroyd Dewhurst DFA capability.

With the application of DFA and TRIZ methodology this research will benefits design engineering as a guide on how to apply this two powerful design tools for a more reliable and better functional products at a lower cost. This will indirectly benefit the consumer and the environments.

1.6 Structure of Report

This reports begins with literature review on both design tools DFA and TRIZ. Previous research and reports form industries reveal that the applications of DFA have shown improvement in part design and assembly and there are several TRIZ tools that can be implemented to solve any problem that arise.

The combination of DFA and TRIZ offer many advantages to the product innovation and development process. In particular, as designs are evolve towards minimum part count, during DFA, finding the best solution often requires a shift to a new design, this is where TRIZ can be effectively deployed. The scrutinized on the combination of these two tools on previous researches are also conducted to see the effectiveness of design improvement. A consumer product is selected after clear view on the application of latter tools. The selected product is firstly is analysed using DFA methodology. Then, by application of DFA, a better design is proposed. Components with minor function but roughly bring high impact during assembly will be focused to be improved in future. Before DFA analysis being conducted, each part was identified and given part identification number.

From DFA analysis result, the product design efficiency has been quantified and will act as a guidelines or standard for further improvement. The DFA results for new design show significant impact to the design efficiency of electric barbecue grill. DFA is a helpful tool in order to improve the design efficiency which is directly give positive impact to the assembly time and costs.

The improved design through DFA is then again improved by integrating with TRIZ. The Design Efficiency of DFA methodology is used to evaluate the latest improved design. The Design Efficiency is used as quantitative tool and stressed upon discussion and conclusion of the finding.

1.7 Summary

DFA and TRIZ could be considered as combined design tool that can solve many product design problems during early design stage which capable to deliver simple design with same or better functioning. The outcomes are seen as one of the most reliable after sales.

REFERENCES

- 1. Lucchetta, G., Bariani, P. F., Knight. W. A., *Integrated Design Analysis for Product Simplification*. University of Padova, Italy.
- Triz-journal.com. Utilization of TRIZ with DFMA to Maximize Value [Online]. Available: http://www.triz-journal.com. [2009, July 21]
- Wikipedia. Value Engineering [Online]. Available: http://en.wikipedia.org/wiki/Value_engineering. [2009, July 9]
- Wikipedia. TRIZ [Online]. Available: http://en.wikipedia.org/wiki/TRIZ. [2009, July 20].
- 5. Darell. L. Mann. *Integration and Application of TRIZ and DFMA*. Systematicinnovation.com. 2002.
- Kai Yang., Basem, E.H. Design for Six Sigma A Roadmap for Product Development. New York: McGraw-Hill. 2003.
- 7. Altshuller, G. and Henry. *The Art of Inventiving (And Suddenly the Inventor Appeared).* Technical Innovation Center. 1994.
- Rajesh. J., Philip. S. Design for Six Sigma A Holistic Approach to Design and Innovation. New Jersey: Wiley. 2008.
- 9. Boothroyd, G . and Dewhurst, P. *Product Design for Manufacture and Assembly*. New York: Marcel Dekkel. 2002.
- Zhongsheng Hua, Jie Yang, Solomani Coulibaly, and Bin Zhang. Integration TRIZ with Problem Solving Tools: A Literature Review From 1995 to 2006. *International Journal Business Innovation and Research*, Vol 1. 2006.
- Triz-journal.com (2009). *Innovation; The next Frontier for Six Sigma* [Online]. Available: http://www.triz-journal.com. [2009, July 27]

- Chung-Shing, W. and Teng-Ruey, C. Integrated QFD, TRIZ and FMEA in Conceptual Design for Product Development Process. *Proceedings of the 13th Asia Pacific Management Conference*. Melbourne, Australia: APMR. 2007. 1085-1095.
- Ideationtriz.com. Ideation/TRIZ: Innovation Key to competitive Advantage and Growth [Online]. Available: http://www.ideationtriz.com/paper_ITIRZ_Innovation_Key.htm. 2009.
- 14. Daniela, S., Elena, M., Nicolae, I. and Thomas, R. A TRIZ Approach to Design for Environment. Galway Mayo Institute of Technology. Unpublished.
- 15. Darell. L. Mann. *Beyond Systematic Innovation: Integration of Emergence and Recursion Concepts into TRIZ and Other Tools.* Systematicinnovation.com. 2002.
- Valery, K., Jun-Young, L. and Jeong-Bai, L. TRIZ Improvement of Rotary Compressor Design. *Proceedings of TRIZCON2005, the annual conference of the Altshuller Institute,* Brighton, MI USA: 2005.
- Noel, L. R. A Proposal to Integrate TRIZ into the Design Product Process [Online]. Available: http://www.trizjournal.com/archives/2002/11/b/index.htm. 2002.
- Masaya, T. and Manabu, S. *The Possibility of VE Activities as New Product Planning by Utilizing TRIZ Techniques*. The SANNO Institute of Management, Tokyo, Japan.
- Afzan Binti Rozali, Product Design Improvement Through Design For Manufacture And Assembly (DFMA) And Theory Of Inventive Problem Solving (TRIZ).Master Thesis. Universiti Teknologi Malaysia: 2010.
- Mohd Hafiz Abd Karim, Invention Through Integration of Theory of Inventive Problem Solving (TRIZ) and Design for Manufacture and Assembly (DFMA) for Automotive Front End Structure. Master Project Thesis. Universiti Teknologi Malaysia: 2013.

- Munira binti Muhaammad Nazri. Product Design Improvement Through Integration Of Theory Of Inventive Problem Solving (TRIZ) And Design For Manufacture And Assembly (DFMA). Master Thesis. Universiti Teknologi Malaysia; 2010.
- Nuryusliha binti Hamzah. Invention Through Integration of Design For Assembly (DFA) and Theory of Inventive Problem Solving (TRIZ) Methodologies. Master Thesis. Universiti Teknologi Malaysia; 2008.