SPRINGBACK BEHAVIOR AND SURFACE QUALITY OF AUSTENITIC STAINLESS STEEL PLATE DURING BENDING PROCESS

MOHD SHAHRIMAN BIN SUTAN

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical - Advanced Manufacturing Technology)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > JUNE 2014

To my beloved mother and father Hj. Sutan B. Hj.Abd Hamid Hjh. Kasmah Bt. Ismail

My beloved wife & daughter Azrina Bt. Zakaria Airis Zahrah Soffiya Bt. Mohd Shahriman

ACKNOWLEDGEMENT

First and foremost, I would like thank Allah S.W.T for the blessing and the strength he gave me complete this thesis. Zillions of thanks to the my respected supervisor, Prof. Dr. Safian Sharif for his guidance, advise, critics and input throughtout the process of completing this thesis. He never accepted less than my best efforts. His patience and encouragement has opened up my eyes to make him as my inspiration. Haji Shamsudin Man from GMI for being the co-supervisor and also for his encouragement, guidance, advices and motivation. Without their continued support and interest, this thesis would not been a success.

To my beloved family escpecially my wife, words alone cannot express what I owe them for their encouragement and whose endless love and support have made me strong throughtout the years of my study.

I would like also to express my sincere thanks to Majlis Amanah Rakyat (MARA) for funding my study and Director of KKTMBP for her undivided encouragement and consideration. My superiors Mr Azmin Ariffin, Mr. Halimudin Isa and Mr. Asmar Suid in KKTM Balik Pulau should also be recognised for their supports. My sincere appreciation extends to all my colleages and others who have provided assistance at various occasions. Their views and advises are useful indeed. Technicians at UiTM Permatang Pauh and Malaysian-Spanish Institute also deserve special thanks for their assistance in supplying the relevant technical support and literatures. Unfortunately, it is not possible to list all of them in this limited space. I am also indebted to those who had helped me either directly or indirectly. Finally I am really grateful to Universiti Teknologi Malaysia , especially to Faculty of Mechanical Engineering for providing me with all the knowledge until I completed this thesis.

ABSTRACT

This project presents the design development and fabrication of bending dies and spring-back in behaviour and surface quality bending process on a Austenitic Stainless Steel 316 plate by means of stamping machine. A bending die had been designed in 2D and 3D using AutoCad and Solidwork. In order to find spring-back in bending, a "V" shaped die is designed and fabricated. The aims of this study is to investigate how much can 316L stainless steel sheet resile at various angle and to bring forward spring-back graphic to field of knowledge. Spring-back is a common phenomenon in sheet metal forming, caused by the elastic relocation of the internal stresses during unloading. It has been recognized that spring-back is essential for the design of tools used in sheet metal forming operations. Therefore, in this study the subject of bending dies and spring-back in bending process has been investigated rolling direction is one of the factors to control the spring-back. In this study two directions (along & across bending) of the rolling direction were analyzed using optical microscope to check the surface quality. A bending die was fabricated using standard procedure and machining. The special design 316L plates were used as the strip and stamped using Press Machine. Most of the components were fabricated using the various facilities at KKTM Balik Pulau, Pulau Pinang. Hardened Steel punches with various angles (60° , 90° and 110°) were used. The upper surface bending was collected and analysed using microscope. The minimum angle and surface quality of the plates were then recorded.

ABSTRACT

Projek ini membentangkan acuan tekan dan 'spring-back' dalam proses lenturan ke atas plat 'Austenitic Stainless Steel 316' dengan cara menggunakan mesin tekan. Perbezaan penumbuk keluli keras di mana saiz ketebalan besi 316L yang digunakan adalah 1 mm. Lukisan 2D dan 3D acuan lenturan telah direka menggunakan perisian AutoCad dan Solidwork. Untuk mendapatkan 'spring-back' di dalam lenturan, acuan berbentuk, "V" telah direka dengan tujuan untuk mengetahui bahan-bahan logam lembaran keluli boleh berubah dalam pelbagai sudut. 'Spring-back' adalah fenomena biasa dalam lembaran logam membentuk, berpunca daripada daya dalaman yang dialihkan. Ianya telah diiktiraf bahawa 'spring-back' adalah perlu untuk digunakan dalam lembaran logam bagi operasi membentuk. Oleh itu dalam kajian ini subjek acuan lenturan dan 'spring-back' dalam proses melengkung telah dikaji. Arah gelekan merupakan salah satu factor untuk mengawal 'spring-back'. Dalam kajian ini dua arah iaitu sepanjang lenturan dan melalui lenturan telah dianalisis menggunakan mikroskop untuk memeriksa kualiti permukaan plat tersebut. Dalam proses ini, acuan lenturan akan dihasilkan mengikut prosedur standard dan pemesinan. Plat 316L dengan reka bentuk khas telah digunakan sebagai kepingan dan ditekan menggunakan mesin penekan. Kebanyakan komponen telah dihasilkan menggunakan pelbagai mesin dan alatan yang terdapat di KKTM Balik Pulau, Pulau Pinang. Penumbuk keluli keras menggunakan tiga sudut iaitu (60° , 90° and 110°) telah digunakan. Lentur permukaan atas dikumpulkan dan dianalisis menggunakan optical mikroskop. Sudut dan permukaan minimum kualiti plat kemudiannya direkodkan.

TABLE OF CONTENT

TITLE

DECLARATION OF SUPERVISOR	ii
DEDICATION OF AUTHOR	iii
DEDICATION	iv
ACKNOWLEDGEMENTS	V
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENT	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF SYMBOLS	xvii
LIST OF APPENDICES	xviii

1 INTRODUCTION

CHAPTER

1.1 Project Background	1
1.2 Problem Statement	3
1.3 Research Question	4
1.4 Project Objective	4
1.5 Project Scope	5
1.6 Significance of findings	5

PAGE

LITERATURE REVIEW

2.1 Stamping Press	
2.1.1 Hydraulic presses	
2.2 Basic of Bending	
2.2.1 Bending	
2.2.2 Type of Bending	10
2.2.2.1 Air Bending	10
2.2.2.2 Bottoming	11
2.2.2.3 Coining	12
2.2.2.4 V Bending	12
2.2.2.5 U Die Bending	13
2.2.2.6 Wiping Die Bending	13
2.2.2.8 Rotary Bending	14
2.3 Bend Allowance	15
2.4 Bending stress	17
2.5 Spring-back	
2.6 Spring-back Compensation Methods	
2.6.3 Calculation Spring-back	24
2.6.4 Factors Influencing Spring-back	26
2.7 Effect of Bending in Rolling Direction	26
2.7.1 Bend across Rolling Direction	28
2.7.2 Bend along Rolling Direction	
2.7.3 The Importance of Plain Direction	
2.8 Bone Plate	
2.8.1 Type of Material	30
2.8.1.1 Metals	30
2.8.1.2 Polycaprolactone - (PCL)	31
2.9 Stainless Steel	32
2.9.1 Austenitic	34
2.9.2 Ferritic	35
2.9.3 Martensitic	36
2.10 Stainless/Austenitic Steel 316L (AISI 31600)	
2.11 Physical Properties	

3 RESEARCH METHODOLOGY

3.1 Bending Die Design 40 3.2 Die Fabrication & Machining 42 3.3 Experimental Setup 46 3.4 Experimental procedure and data collection 47 3.5 Analysis of Surface Quality On Bending Surface 48 3.6 Die fabrication and materials used 49 3.7 Materials and fabrication 50 3.8 Different Plain Direction Strip 56 3.9 Experimental procedure and data collection 57

3.9.1 Dependent parameters573.9.2 Surface Quality analysis on bending angle58

RESULT AND DISCUSSION

4

4.1 Introduction	
4.2 Complete Drawing of 2D And 3D Bending Die	
Design	61
4.3 Material Preparation & Cost	64
4.4 Force Calculation	66
4.5 Material properties of strip	67
4.6 Die Fabrication and Experiment	67
4.7 Experiment Result and Discussion	69
4.7.1 Experiment 1 for Bending Angle vs	
Spring-back in Bend Across Direction	71
4.7.2 Experiment 2 for Bending Angle vs	
Spring-back in Bend Along Direction	76
4.8 Analysis Result of the Rolling Direction	81
4.9 Comparison Along Band Vs. Across Bend	
Rolling Direction	89

39

5	CONCLUSIONS	91
6	RECOMMENDATION	92
	REFERENCES	93
	APPENDICES	96

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Comparison of Mechanical Property	32
2.2	(Part A) Comparative Properties of Stainless	
	Steel Families	37
2.3	(Part B) Comparative Properties of Stainless	
	Steel Families	37
2.4	Physical Properties of SS 316L	39
2.5	Mechanical Properties of 316L Stainless Steels	39
3.1	CNC Milling Machine Specification (DMU 50)	43
3.2	Okamoto Grinding Surface Specification	44
3.3	EDM Wire Cut Specification	45
4.1	Bill of material bending set	64
4.2	Total Cost for Material for Die Set	65
4.3	Material SS 316L Properties	67
4.4	Experiment Result For Bending Angle Across	
	Direction	71
4.5	Experiment Result For Bending Angle Along	
	Direction	76
4.6	Experiment Result For Different Material	82
4.7(a)	Result Surface Quality Along Bend With Dwell	
	Time 5 Sec (100x mag)	81
4.7(b)	Result Surface Quality Along Bend With Dwell	
	Time 10 Sec (100x mag)	82
4.7(c)	Result Surface Quality Along Bend With Dwell	
	Time 15 Sec (100x mag)	83

4.7(d)	Result Surface Quality Along Bend With Dwell	
	Time 15 Sec (400x mag)	84
4.8(a)	Result Surface Quality Across Bend With Dwell	
	Time 5 Sec (400x mag)	85
4.8(b)	Result Surface QualityAcross Bend With Dwell	
	Time 10 Sec (400x mag)	86
4.8(c)	Result Surface QualityAcross Bend With Dwell	
	Time 15 Sec (400x mag)	87

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Bone Plate	2
2.1	Bending Diagrams	9
2.2	Air Bending	11
2.3	Bottoming Bend	11
2.4	Coining Bending	12
2.5	V-Bending	12
2.6	U-Bending	13
2.7	Wiping Die Bending	13
2.8	Double Die Bending	14
2.9	Rotary Bending	15
2.10	Neutral Axes	15
2.11	Bend Allowance & Bend Deduction	17
2.12	Bending Stresses	18
2.13	Bending	18
2.14	Spring-Back	20
2.15	Spring-Back Phenomena	22
2.16	Stress-Strain Diagram	23
2.17	Molecular Displacement Caused By Bending	24
2.18	Rolling Direction at Strip SS 316L before Bending	27
2.19	Bend across Rolling Direction	27
2.20	Bend along Rolling Direction	28
2.21	Type Bone Plates	29
2.22	Families of Stainless	33
2.23	The Austenitic Stainless Steels	34

2.24	Families of Ferrite Stainless Steels	35
2.25.	The Families of Martensitic Stainless Steels	36
3.1	Process flow chart of project implementation	41
3.2	CNC Milling Machine (Heidenhain DMU 50)	42
3.3	Grinding Machine (OkamotoACC-16 32DX)	43
3.4	EDM Wire Cut Machine (Fanuc a-1iC)	44
3.5	Hydraulic Stamping Machines	46
3.6	Raw material for the bending die assembly	49
3.7	Surface Grinding Operation	51
3.8	EDM Wire Cut Operation	51
3.9	CNC Milling Machine Setting (3 Axes)	52
3.10	Drilling Operation at Top Plate & Lower Plate	52
3.11	Shear Cutters For Cutting Strip Material	53
3.12	Strip Plate by Rolling Direction	53
3.13	Tapping Process	54
3.14	Lower & Upper Plate Bending Die Set	54
3.15	Complete Die Set	55
3.16	(A) And (B) The effect elongated inclusion	
	(stringers) on cracking in the sheets as a function	
	of the direction of bending with respect to the	
	original rolling direction.	56
3.17	Strip Plate Different Rolling Direction	56
3.18	(A) Rolling Direction vs. (B) Bending Angle	57
3.19	Mitutoyo Profile Projectors	58
3.20	Reading Angle & DRO	59
3.21	Strip Product 60°, 90° & 110°	59
3.22	High Euromac Camscope (MSI)	60
4.1	2D Drawing Bending Die (Autocad)	62
4.2	3D Drawing Bending Die (Solidwork)	63
4.3	Complete Assembled Bending Die Set	68
4.4	Spring-back for bending across direction (5sec)	72
4.5	Spring-back for bending across direction (10sec)	73
4.6	Spring-back for bending across direction (55sec)	74

4.7	Comparison of spring-back vs bending angle at	
	different dweel time in across direction	75
4.8	Spring-back for bending along direction (5sec)	77
4.9	Spring-back for bending along direction (10sec)	78
4.10	Spring-back for bending along direction (15sec)	80
4.11	Comparison Bending Vs Spring-Back In Bend Along	
	Direction (15sec)	79
4.12	Rolling Direction Vs. Springback Angle For Dwell	
	Time 5 Sec	89
4.13	Rolling Direction Vs. Springback Angle For Dwell	
	Time 10 Sec	90
4.14	Rolling Direction Vs. Springback Angle For Dwell	
	Time 15 Sec	90

LIST OF SYMBOLS

- D, d diameter
- F Force
- g Gravity = 9.81 m/s
- I Moment of Inertia
- l Length
- m Mass
- N Rotational velocity
- P Pressure
- Q Volumetric flow-rate
- r Radius
- T Torque
- V Velocity
- w Angular velocity
- x Displacement
- z Height
- $\boldsymbol{\theta}$ Angle
- ρ Density
- α_f Final sheet angle
- $R_{f}-Radius$
- α_i Die angle
- R_i Die Radius
- t Thickness
- TS Tensile Strength

xviii

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

1	Stamping Process	96
2	Open & Close Die	97
3	Gantt chart Project Proposal	98
4	Gantt Chart Final Master Project	99
5	2D Drawing Bending Die	100
6	Isometric 3D Drawing Bending Die	101
7	Bill of Material 3D Drawing Bending Die	102
8	Exploded View 3D Drawing Bending Die	103

CHAPTER 1

INTRODUCTION

1.1 Project Background

Sheet metal stamping plays a major role in many industries today. Sheet metals have a wide range of application in industry and commonly used for automobiles, household goods, electronics and medical devices (Ozgu Tekaslan *et al.* 2008). Spring-back can be minimized by means of die design however it cannot be eliminated totally. To reduce spring-back, compression to minimum is one of the most important problems in die design (Ozgu Tekaslan *et al.* 2006). As part components get smaller and tolerances get tighter, the dimensional accuracy of a stamped part becomes a crucial factor in determining the overall quality of the part. In most, if not all, sheet metal forming processes, spring-back is the major problem faced (Y.E. Ling *et al.* 2005).

Stainless steel 316L (SS316L) is widely use in various products and is the common material for the manufacture especially implant bone plate because of corrosion resistance, heat resistance, heat treatment, welding and machining. Bone plates (Figures 1.1) are surgical tools, which are used to assist in the healing of broken and fractured bones.

Figures 1.1 Bone plate (www.gpc-medical.com)

At present, the bone plates are produced by CNC Milling machining, whereby several jigs, fixture and cutting processes are used to produce the bone plates. In order to minimize the machining time and cost, stamping process is much faster to produce the bone plates compared to milling and drilling.

Before that, an investigation must be made to observe and verify that stamping processes are suitable for SS316L in terms of its upper surface & back surface, and in order to minimize the spring-back amount after stamping processes.

1.2 Problem Statement

Some of the issues related to bending or stamping process are highlighted as follows:

- 1. What is the optimum bending angle and dwell time setting to minimize spring-back issue in achieving the desired angle?
- The spring-back problems such as increased tolerances and variability in the subsequent forming operations, in assembly, and in the final part. These effects typically degrade the appearance and quality of the products being manufactured - Robert H. Wagoner *et.al.* (2013)
- Data from previous studies on bending especially on material type 316L is still limited. Mostly used material type include *Stainless Steel, Brass, Cooper, Galvanized & Aluminium – Zafer Tekiner (2003)*

Recently, in medical industry many companies are trying to form the bone plate in single stamping operation while keeping the material costs and the scrap down by using 316L plate. The driver for usage is 316L in the medical industry results from customers demand, high accident rate, lower price than titanium plat and effective production.

Spring-back causes the following problems in sheet-metal forming:

- 1) The assembly of the sheet metal components becomes problematic thereby increasing the assembly time and reducing the productivity.
- Rolling direction affects the spring-back as the strength of the sheet-metal is different in various directions i.e. 316L sheet metal.
- In medical industry different punch corner radius is used for different bending operations which in turn affects the spring-back in components.
- A wide range of thickness are used in sheet-metal components which again affects the spring-back.

However, spring-back characteristic of SS316L has not been investigated widely and very little information is available about its behaviour during bending operations.

2.12 Research Question

- 1. What is the minimum angle after done bending process?
- 2. What is the measured angle for the spring-back after bending process?
- 3. Are there any crack occurs on that angle?

1.4 Project Objective

In the view of above mentioned facts the spring-back has been analysed in Vbending process with the following objectives:

- 1. To design and fabricate bending dies with various angle when bending SS 316L.
- 2. To study the effect of bending parameters on the spring-back and bending rolling direction of SS 316L plate.

- 1. Design bending die using AutoCAD and Solid Work.
- Stamping process (bending) using Hydraulic Press Machine will be employed.
- To studied spring-back at angle 60°, 90°& 110° and dwell time (5s, 10s & 15s) in bending process.
- Austenitic Stainless Steel 316L plate will be used as strip material (0.5mm).
- 5. Harden Steel punches will be used as bending punches.
- 6. To analyse bending plate based on along and across the rolling direction using optical microscope.

1.6 Significance of findings

The significance of this project is to find out whether sheet metal stamping (bending) can be applied to a Austenitic Stainless Steel 316L plate with the desired quality to be used in the bone plates manufacturing industry.

REFERENCES

- A.Albut,G.Brabie. (2006). The Influence Of The Rolling Direction Of The Joined Steel Sheet on the Springback Intensity in the case of angle-shape Parts Made From Tailor Welded Strips. Archieves of Civil And Mechanichal Engineering Vol 6 Issue 3, 5-12.
- Ayers, R. (1984). SHAPESET: A Process to Reduce Sidewall Curl Spring-back in High Strength Steel Rails. *Journal of Applied Metalworking 3*, 127.
- Chuantao Wang, Gary Kinzel And Taylan Altan. (1193). Mathematical Modeling of Plane-strain Bending of Sheet and Plate. *Journal of Material Processing Technology*, 279-304.
- Dae-Kwei. Leu. (1997). A Simplified Approach for evaluating Bendability and spring-back in Plastic Bending of Anisotropic Sheets. *Journal of Material Processing Technology* 66, 9-17.
- Semig Benli, Sami Aksoy, Hasan Havitcioglu, Mumin Kucuk (2008) Evaluation of bone plate with low-stiffness material in terms of stress distribution. Journal of Biomechanic 41, 3229-3235
- Sun P ,Ferreira JA, Gracio JJ. (2006). Close loop control of a hydraulic press for springback analysis. *Journal Material Process Technology* 177, 377-381.

Gardiner.F. (1957). The Springback of metals. Transaction of the ASME 77, 1-9.

Johnson.W. (1981). Spring-back after the biaxial elastic-plastic pure bending of rectangular plate-I. *International Journal of Mechanical Sciences 23*, 619-630.

- Li X, Yang Y, Wang Y, Bao J, Shunping L. (2002). Effect of the Material Hardening Mode on the Spring-back Simulation Accuracy of V-Free Bending. *Journal Material Process Technology 123*, 209-211.
- Liu, Y. (1988). The Effect of Restraining Force on Shape Deviations in Flanged Channels. *Jornal of Material Technology 110*, 389.
- M. G. (2009). Formability and Bend Testing. Parkland Blvd: Inc, Brush Welman.
- Ostergaard, D. (2001). *Basic Diemaking*. New-York,New York Colombus,Ohio Woodland,California Peoria,Illinios: Glencoe/McGraw-Hill.
- Ozgu Tekaslan, Ulvi Seker and Ahmet Ozdemir. (2006). Determining springback amount of steel sheet metal has 0.5 mm thickness in bending dies. *Material and Design 27*, 55-61.
- Ozgur Tekaslan,Nedim Gerger,Ulvi Seker. (2008). Determination od springback of stainless steel sheet metal in "V" bending dies,. *Material and design 29*, 1043-1050.
- R.Hill. (1950). The mathematical Theory of Plasticity. Oxford London.
- Rosochwski. (2001). Die Compensation Procedure to Negate Die Deflection and Component Spring-back. Journal of Material Processing Technology 115, 187-191.
- Tekiner, Z. (2004). An Experimental Study on the Examination of Springback of Sheet Metal with Several Thickness and Properties in Bending Dies. *Journal* of Material Processing Technology 145, 109-117.
- VK.Ganesh. (2005). *Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plate.* Biomed Eng Online.
- Wenner, A. L. (1983). On Work Hardening and Spring-back in Plane Straining Draw Forming. *Journal of Applied Metalworking* 2, 277.
- Woo, D. (1959). The Engineer 208, 135.

Y.C.Chen,H.Fuji,Y.Kitagawa. (2012). Banded structure and its distribution in friction stir processing of 316L austenitic stainless steel. *Journal of Nuclear Material 420*, 497-500.

Y.E.Ling, H.P.Lee and B.T.Cheok. (2005). Finite element analysis of springback in L-Bending of sheet metal. *Material Processing Technology 168*, 296-302.

GMI Syllabus Note Book, 2014

http://web.mit.edu/3.082/www/team1s/background/materials.html (June 2014)

http://classes.engr.oregonstate.edu/mime/winter2010/ie337001/Laboratories/7.Met al%20Forming_bending-1.pdf (June 2014)

http://www.ciri.org.nz/bendworks/bending.pdf (June 2014)

http://www.custompartnet.com/wu/sheet-metal-forming#bending (June 2014)

http://www.pa-international.com/ (June 2014)

http://www.aws.org/w/a/wj/1998/11/kotecki (June 2014)

http://www.azom.com/article.aspx?ArticleID=470 (June 2014)

http://www.castlemetalsuk.com/stainless-steel/grade-316l-uns-s31600-1-4404-sheetplate-bar/ (June 2014)

http://homepage.ntlworld.com/jeff.burrill/ABC_of_bending/Three%20Kinds%20of% 20Bending%20Explained.htm (June 2014)

http://sheetmetal.me/category/sheetmetal/page/5/ (June 2014)

http://www.schwebel.com/userfiles/files/Fractures%281024%29.pdf (June 2014)

http://www.gpc-medical.com/ (June 2014)

http://www.thefabricator.com/article/bending/bending-basics-the-fundamentals-ofheavy-bending (June 2014)