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ABSTRACT 

 

 

 

 

 In optimization, most established search methods are local searches. Thus the 

development of a method that can be relied upon to find global solutions are 

therefore highly significant. Homotopy Optimization with Perturbations and 

Ensembles (HOPE) is such a method. In HOPE, a large storage space is required to 

store the points generated during its execution and subsequently its space and time 

complexity will become higher which causes the operational cost of HOPE to be 

expensive. This is the weakness of HOPE. In this study, a new method which is an 

improvement over HOPE called Homotopy 2-Step Predictor-Corrector Method 

(HSPM) is proposed. HSPM applies the Intermediate Value Theorem (IVT) coupled 

with the modified Predictor-Corrector Halley method (PCH) to overcome the 

weakness of HOPE. In HSPM, subintervals within which the extremizers lie, called 

'trusted' intervals are found based on IVT. A random point is selected from the 

'trusted' interval as an initial point to a local search. Each 'trusted' interval produces 

one local solution. Lastly, the global solution is determined from the local solutions 

accumulated. From the results, HSPM has been very successful as a minimization 

tool.  It is able to cope with various types of functions' landscapes and able to detect 

more than one global solutions. Furthermore, HSPM can identify all the minimizers 

regardless of the step sizes used by the homotopy function. Hence, it has a high 

success rate in getting to a global minimizer compared to HOPE. Complexity 

analysis is employed to show the improvement achieved by HSPM. Based on the 

analysis, HSPM successfully managed to reduce the computational burden suffered 

by HOPE and acts as a good method in solving one dimensional optimization 

problem. However, to cope with the requirements today it needs to be extended to 

deal with multivariable functions for its future work. 
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ABSTRAK 

 

 

 

 

Dalam pengoptimuman, kebanyakan kaedah pencarian yang wujud masa kini 

adalah kaedah pencarian setempat. Oleh itu, pembangunan suatu kaedah yang 

diyakini untuk memperoleh penyelesaian sejagat adalah sangat bererti. 

Pengoptimuman Homotopi dengan Usikan dan Ensembel (HOPE) adalah 

seumpamanya. HOPE memerlukan ruang simpanan yang besar untuk menyimpan 

titik terhasil semasa pelaksanaannya, akibatnya kekompleksan ruang dan masa 

menjadi tinggi yang menyebabkan kos pelaksanaan HOPE mahal. Ini adalah 

kelemahan HOPE. Dalam kajian ini, suatu kaedah baharu yang merupakan 

penambahbaikan kepada HOPE, dikenali sebagai Kaedah Homotopi dengan 

Peramal-Pembetul 2-Langkah (HSPM) dikemukakan. HSPM mengaplikasikan 

Teorem Nilai Pertengahan (IVT) diganding dengan kaedah Peramal-Pembetul Halley 

(PCH) untuk mengatasi kelemahan HOPE. Dalam HSPM, subselang di mana 

pengekstremum berada dikenali sebagai selang 'boleh-percaya' diperoleh berdasarkan 

IVT. Suatu titik rawak dipilih daripada selang 'boleh-percaya' sebagai titik permulaan 

untuk gelintaran setempat. Setiap selang 'boleh-percaya' akan menghasilkan satu 

penyelesaian setempat. Akhirnya, penyelesaian sejagat akan ditentukan daripada 

penyelesaian setempat terkumpul. Berdasarkan keputusan, HSPM sangat berjaya 

sebagai alat peminimuman. Ia mampu menangani pelbagai jenis landskap fungsi dan 

boleh mengesan lebih daripada satu penyelesaian sejagat. Tambahan pula, HSPM 

boleh mengenal pasti semua peminimum tanpa mengira saiz langkah yang digunakan 

oleh fungsi homotopi. Oleh itu, ia mempunyai kadar kejayaan yang tinggi untuk 

sampai ke peminimum sejagat berbanding HOPE. Analisis kekompleksan digunakan 

untuk menunjukkan penambahbaikan yang dicapai oleh HSPM. Berdasarkan analisis, 

HSPM berjaya mengurangkan beban pengiraan yang dialami oleh HOPE dan 

berperanan sebagai kaedah yang baik untuk menyelesaikan masalah pengoptimuman 

satu matra. Walau  bagaimanapun, untuk menangani keperluan semasa, ia perlu 

diperluaskan pada masa hadapan supaya dapat menyelesaikan masalah melibatkan 

fungsi berbilang pembolehubah. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

This chapter is providing the definition and brief explanation to give a basic 

and clearer understanding for central idea of this study and it is structured as follows: 

an introduction of this study optimization is described in Section 1.2 and the 

background of the problem is given in Section 1.3 while statement of the study is 

shown in Section 1.4. Next, we discuss the objectives, scope and significance of this 

study in Section 1.5, Section 1.6 and Section 1.7 respectively. A research outline is 

provided at the last section of the chapter. 

 

 

 

 

1.2 Optimization 

 

 

What is optimization? Optimization is a mathematical method to solve 

decision making problem. It consists of an objective function, ( )F x  which needs to 

be maximized or minimized to find its extremizer or the best solution of that function. 
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Optimization had been used widely in our daily life. For example, optimization can 

be used in engineering design, it helps in choosing the design parameters to improve 

some objectives. It also is useful in data analysis by extracting model parameters 

from data while minimizing some error measures. Optimization also plays an 

important role in business decision, it is a necessary tool to help businessman to vary 

decision parameters to maximize profit hence minimize cost. 

 

 

  A function can have more than one extremizers, if it gives the function a 

minimum value, we call a minimizer while if it gives the function a maximum value, 

we call a maximizer. Since a maximum optimization problem can convert to a 

minimum optimization problem, thus in this study we will concentrate on the 

minimization problem. 

 

 

 Generally finding a global solution in an optimization involves two stages, 

which are local search stage and global search stage. In local search stage, we will 

find the local solution to the given function by using iterative methods such as 

Newton's method, Quasi-Newton method, and Conjugate Gradient method. There are 

many method for solving global optimization problem such as Filled Function 

method, Tunnelling method, Heuristic methods, and Homotopy Optimization with 

Perturbations and Ensembles (HOPE) method. A function can have more than one 

local solution, but not all local solutions are global. Global search stage is a process 

to identify the global solution from the local solutions. A global solution will give the 

function the lowest value among the local solutions in the given function. 

 

 

 

 

1.3 Background of Problems 

 

 

Homotopy is a basic concept in Topology. The basic idea underlying a 

homotopy method is to deform a simple solvable problem continuously into the 
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given (hard to solve) problem, while solving a continuous sequence of deformed 

problems (Arkowitz, 2010). 

 

 

Homotopy Continuation Method (HCM) was introduced to solve the 

problems of nonlinear optimization and also systems of nonlinear equations 

(Allgower and George, 1990). This method deforms a simple function into the 

function of interest by tracing path, computes series of zeros and ends in zero of that 

function of interest. Since the homotopy methods converge to a solution for any 

arbitrary chosen initial condition, they are said to be globally convergent. 

 

 

Dunlavy and Leary (2005) proposed a homotopy method to solve 

optimization problem called Homotopy Optimization Method (HOM), this method 

can solve optimization problem without path-tracing. They also introduced a new 

method called Homotopy Optimization with Perturbation and Ensembles (HOPE). 

HOPE is a method which allows HOM to follow an ensemble of points obtained by 

perturbation of previous one. In other words, we can say that HOPE is an extension 

of HOM. 

 

 

In the work of Dunlavy and Leary (2005), points in the resulting ensemble 

are perturbed in various directions and used as starting points to find the minimizers 

of homotopy function as it deforms the simple solvable function into the target 

function. In each iteration, the ensemble members carried forward the previous 

iteration were perturbed and used as starting points to find other minimizers, and 

hence it produced a lot of calculation works in its inner loops. Thus, the cost of this 

algorithm will increase when the ensemble members increase. In order to overcome 

this problem, we proposed a new method by improve HOPE method with the 

Intermediate Value Theorem (IVT) and Predictor-Corrector Halley's method (PCH). 
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1.4 Problems Statements 

 

 

 This research will embark on the development of a new method, a 

modification of HOPE to yield an algorithm which has a lower time complexity than 

the existing HOPE and also have a higher probability in getting to a global solution 

than HOPE 

 

 

 

 

1.5 Objectives of the Study 

 

 

The main objectives of this research are: 

i. To apply the homotopy concept as a numerical tool in order to find the global 

solution of nonlinear equations. 

ii. To identify a method which can find the "trusted" interval within which 

extremizers lie. 

iii. To develop an algorithm by modifying the HOPE with the concept of IVT 

and PCH method. 

iv. To establish the efficiency of new developed method over HOPE. 

 

 

 

 

1.6 Scope of the Study 

 

 

In this study, the new developed method is designed to deal with one 

dimensional optimization problem and Predictor-Corrector Halley method will be 

used as a local search method to find the solution of the problem. The functions used 

in this research are at least three-times-continuously differentiable, 3C  function over 
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a closed interval. The efficiency of the method proposed will be measured based on 

the time and space complexity analyses. Furthermore, a comparison between HOPE 

and the new developed method based on the percentage of success in arriving to the  

global solution will be shown in this study. 

 

 

 

 

1.7 Significance of the Study 

 

 

The findings of this study will enlarge the knowledge in the usage of 

homotopy to overcome the problem in finding the local solution such as divergence 

and bifurcation. The method proposed here can be used in solving global 

optimization problem. This more efficient method can be useful in data analysis, 

business, and so on. 

 

 

 

 

1.8 Research Outline 

 

 

 This research consists of four chapters and the contents of each chapter is 

described as follow: 

 

 

 Chapter 1 is related to the introduction of the topic of research. The contents 

of this chapter includes background of the problem, statement of the problem, 

objectives of the study, scope of the study and the significance of the study as well. 
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 Chapter 2 is about the literature review on this research. The previous and 

recent studies on this research area are reviewed and discussed. The information 

from the materials such as journal will be stated. 

 

 

 Chapter 3 included the overall research framework and methodology. The 

techniques applied to complete research objectives are described. Chapter 4 is about 

the description of functions chosen for the numerical experiments and also its 

respective results, a trade-off analysis based on the time and space complexity, and a 

comparison for the success rate to getting a global solution in between HOPE and 

HSPM. 

 

 

 Lastly, a summary for the outcomes of each chapter, conclusion of the 

research and the suggestion for future works to extend this study will be given in 

Chapter 5. 
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