EFFECT OF HEAT TREATMENT ON THE INTERLAYER AND CORROSION BEHAVIOR OF Zn AND Zn-0.5% AI COATED HIGH CARBON STEEL FOR MARINE APPLICATION

OOI AI LOON

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Materials Engineering)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > SEPTEMBER 2014

Specially dedicated to my beloved family and supervisor for their support and inspiration

ACKNOWLEDGEMENT

My deepest gratitude goes to my supervisor, Professor Dr. Esah Hamzah, who has been extremely patient and helpful throughout the course of my research. Her vast knowledge, experience and constructive ideas have helped me to undertake my study.

I would like to express my appreciation to Kiswire Malaysia Sdn Bhd for providing me with the raw materials and useful information regarding my study.

My study could not have been carried out smoothly without the assistance and co-operation from the technicians in the Material Science Laboratory in Faculty of Mechanical Engineering. Special thanks to En. Ayub, En. Adnan, En. Jefri and En. Azri for assisting me in the laboratory tasks. Their patience in helping me throughout this project execution is very much appreciated.

Finally, I would like to express my greatest appreciation to my beloved family for their support.

ABSTRACT

Hot dip galvanizing has been an important technique for corrosion protection in the industry. In recent years, longer service life for hot dip galvanized steel is thus crucial to offset the rapid rises in cost of maintenance in service. This project is aimed to investigate the effects of heat treatment on the intermetallic and corrosion behaviour of Zn and Zn-0.5% Al coated high carbon steel wire rope for marine application. A total of nine set of heat treatment parameters with heating time one, three and five hours at temperatures 250, 350, 400°C respectively were conducted onto Zn and Zn-0.5% Al coated high carbon steel substrate (0.87%) These parameters were to evaluate the effects of heat treatment time and temperature on the microstructural evolution and formation kinetics of the coating. The coated steels had undergone corrosion tests namely salt spray test and electrochemical test. The samples before and after corrosion test were analyzed with optical microscopy, scanning electron microscopy, energy dispersive X-ray and X-ray diffractometer The result shows that heat treatment affects the coating thickness and weight loss due to powdering effect. Besides, by increasing heat treatment time and temperature, it was observed that the gamma layer for Zn-coated steel was increased. However, the growth rate of gamma layer for Zn-0.5% Al galvanized wire rope was slow. It was also observed that heat treatment affects the corrosion rate of Zn and Zn-0.5% Al coated samples. The optimum heat treatment parameter for Zn coated samples was heating at temperature 350°C for 3 hours which gives the lowest corrosion rate. Optimum heat treatment parameter for Zn-0.5%Al coated samples was heating at temperature 400°C for 5 hours.

ABSTRAK

Celup panas penggalvanian merupakan satu teknik yang penting untuk perlindungan kakisan dalam industri. Sejak kebelakangan tahun ini, jangka masa perkhidmatan yang panjang daripada keluli bergalvani adalah penting untuk mengimbangi peningkatan pesat dari segi kos penyelenggaraan. Projek ini bertujuan untuk menyiasat kesan-kesan rawatan haba pada kelakuan antara logam dan prestasi kakisan salutan Zn dan Zn-0.5% Al pada tali dawai keluli karbon tinggi untuk kegunaan marin. Sejumlah sembilan set parameter rawatan haba dengan masa pemanasan satu, tiga dan lima jam pada suhu 250, 350, 400°C masing-masing telah dijalankan ke atas salutan Zn dan Zn-0.5% Al pada substrat keluli karbon tinggi (0.87% C). Parameter ini adalah untuk menilai kesan masa dan suhu rawatan haba ke atas evolusi mikrostruktur dan kinetic pembentukan lapisan. Salutan keluli tersebut telah diuji dengan ujian kakisan iaitu ujian semburan garam dan ujian elektrokimia. Sampel sebelum dan selepas ujian kakisan dianalisis dengan mikroskop optik, pengimbasan elektron mikroskop, penyerakan tenaga sinar-X dan pembelau sinar-X. Hasilnya menunjukkan bahawa kesan rawatan haba mempengaruhi ketebalan lapisan dan kehilangan berat badan disebabkan oleh kesan powdering. Selain itu, dengan peningkatan masa rawatan haba dan suhu, ia telah diperhatikan bahawa ketebalan lapisan gamma untuk keluli salutan Zn meningkat. Walau bagaimanapun, kadar pertumbuhan lapisan gamma adalah lambat untuk salutan Zn-0.5% Al pada keluli tali dawai, Ia juga diperhatikan bahawa rawatan haba mempengaruhi kadar kakisan sampel salutan Zn dan Zn-0.5% Al. Parameter yang optimum untuk rawatan haba sampel salutan Zn ialah rawatan haba pada suhu 350°C untuk 3 jam yang memberikan kadar kakisan yang terendah. Rawatan haba yang optimum untuk sampel salutan Zn-Al 0.5% ialah rawatan haba pada suhu 400°C selama 5 jam.

TABLES OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	LARATION	ii
	DED	DICATION	iii
	ACK	NOWLEDGEMENTS	iv
	ABS'	TRACT	v
	ABS'	TRAK	vi
	ТАВ	LES OF CONTENTS	vii
	LIST	Γ OF TABLES	xiii
	LIST	r of figures	xiv
	LIST	F OF SYMBOLS AND ABBREVIATIONS	xvii
1	INTI	RODUCTION	
	1.1	Introduction	1
	1.2	Background of study	1
	1.3	Problem Statement	1
	1.4	Objectives of the Research	2
	1.5	Scopes of the Study	2
2	LITI	ERATURE REVIEW	
	2.1	Introduction	3
	2.2	Fe-Zn Phase Equilibrium and Kinetics	4

	2.2.1	Phase Diagram of Fe-Zn	4
		2.2.1.1 Galvanized Steel Chemistry Design	5
		2.2.1.2 Zeta (ζ) phase	8
		2.2.1.3 Delta (δ) phase	9
		2.2.1.4 Gamma1 (Γ 1) and (Γ) phase	9
		2.2.2 Phase Diagram of Zn-Al	9
		2.3.2.1 High Aluminium addition	10
		2.3.2.2 Low Aluminium addition	11
	2.2.3	Phase Diagram of Fe-Zn-Al	12
2.3	Overvi	ew of Heat Treatment	14
	2.3.1	Heat Treatment –(galvannealing)	15
	2.3.2	Heat Treatment time and temperature	16
	2.3.3	Fe-Zn intermetallic phase after galvannealing	17
		2.3.3.1 Eta η	17
		2.3.3.2 Zeta ζ	18
		2.3.3.3 Delta δ	18
		2.3.3.4 Gamma Γ	18
	2.3.4	Optimal coating	20
	2.3.5	Galvanneal microstructure	20
	2.3.6	Powdering	25
	2.3.7	Coating Properties	26
		2.3.7.1 Formability	27
		2.3.7.2 Weldability	28
	2.4	Alloy addition	29
		2.4.1 Effect of alloying Aluminum to the Zn bath	30
2.5	Corros	ion test	34
	2.5.1	Immersion test	34
	2.5.2	Salt spray test	35
	2.5.3	Electrochemical test	35
		2.5.3.1 Tafel extrapolation	35
2.6	Corros	ion of Zn and Zn Alloys	36

	2.6.1	Pitting corrosion	39
		2.6.1.1 Mechanisms of pitting corrosion	40
	2.6.2	Corrosion rate of Zn and Zn alloys in	
		aqueous solution	41
		2.6.2.1 Corrosion rate of Zn alloys	41
2.7	Corros	sion of Hot Dip Galvanized Coatings	42
	2.7.1	Corrosion Products	43
	2.7.2	Effects of addition of Aluminum towards corrosion	44

3 EXPERIMENTAL PROCEDURE

3.1	Introd	uction	45
3.2	Mater	ial	46
	3.2.1	Coating Material preparation	47
3.3	Therm	al Analysis of the Cast Ingot	47
3.4	Hot D	ip Galvanizing Process	48
3.5	Sampl	e Preparation	50
	3.5.1	Sample Preparation for metallography studies	51
	3.5.2	Sample Preparation for electrochemical test	51
3.6	Heat 7	Treatment Process	52
3.7	Corros	ssion tests	53
	3.7.1	Electrochemical corrosion test	53
		3.7.1.1 Electrochemical test plot	54
	3.7.2	Salt Spray Test	56
		3.7.2.1 Corrosion Rate Measurement for salt spray	57
3.8	Metall	urgical analysis of test samples	58
	3.8.1	Optical Microscopy	58
	3.8.2	Scanning Electron Microscopy (SEM)	59
	3.8.3	X-ray Diffraction (XRD) analysis	60

4 **RESULTS AND DISCUSSION**

4.1	Introduction	62
4.2	Samples after coating	62
4.3	Thermal analysis and phase reaction	63
4.4	Analysis on the coating layer	63
	4.4.1 Gamma coating thickness	72
	4.4.2 Powdering effect	74
4.5	Electrochemical test Results	78
4.6	Salt Spray Test	83
	4.6.1 Weight loss measurement after salt spray	88
	4.6.2 Corrosion rate measurement after salt spray to	est 91
	4.6.3 Analysis of the corrosion product after	93
	salt spray test	

5 CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	96
5.2	Recommendations	97

REFERENCES 98

APPENDICES A-F	103
APPENDICES A-F	10

LIST OF TABLES

TAF	BLE.
-----	------

TITLE

PAGE

2.1	Characteristic of Zn-Fe intermetallic phase	6
3.1	Heat treatment process for specimen Zn and Zn-0.5% Al	52
3.2	Input data for Tafel polarization test	54
3.3	Parameters for Salt Spray according to ASTM B117	56
4.1	Powdering test results	75
4.2	Weight loss (g) for Zn coated samples heat treated at different	88
	temperature	
	for 1 hour	
4.3	Weight loss (g) for Zn coated samples heat treated at different	88
	temperature for 3 hours	
4.4	Weight loss (g) for Zn coated samples heat treated at different	88
	temperature	
	for 5 hours	
4.5	Weight loss (g) for Zn-0.5% Alcoated samples heat treated at	89
	different temperature for 1 hour	
4.6	Weight loss (g) for Zn-0.5% Al coated samples heat treated at	90
	different temperature for 3 hours	
4.7	Weight loss (g)Zn coated samples heat treated at different	90
	temperature for 5 hours	
4.8	Salt spray Corrosion Rate for Zn-Al and Zn coated samples.	91

LIST OF FIGURES

FIGURE.

TITLE

PAGE

2.1	Zn-Fe equilibrium phase diagram	5
2.2	Zn rich end of the Fe–Zn equilibrium phase diagram	6
2.3	Microstructure of Zn coating formed after 300s	7
	immersion in the Zn bath without Al addition at 450°C:	
	(1) gamma phase, (2) delta phase, and (3) zeta phase	
2.4	A schematic representation of Fe–Zn phase layer	7
	formation in the Zn bath without Al additions	
	(t_0 corresponds to zero time, and development occurs	
	according to time such that $t1 < t2 < t3 < t4$)	
2.5	Zn-Al equilibrium phase diagram	10
2.6	Zinc-rich corner of the 450°C isothermal section of the	12
	Fe-Zn –Al diagram	
2.7	Isothermal section of the Fe-Al-Zn phase diagram 450°C	13
	overall section	
2.8	Influence of heat treatment on phase transformation	14
2.9	Schematic of a typical continuous hot-dip galvanizing line	15
2.10	Effect of time and temperature on the galvannealing	16
	kinetics for DQSK steel (left) and IF steel (right)	
2.11	Relationship between galvanneal coating properties and	19
	gamma phase ratio:(a) Iron content Fe% in galvanneal	
	coating (b) Powdering width as a function of gamma layer	

2.12	Morphology of galvanneal coatings:	21
	(a) type 0, (b) type 1, and (c) type 2.	
2.13	Crater formation in galvanneal coating (a) cross-section,	22
	(b) planer surface.	
2.14	Schematic of the phenomenological model of	24
	galvanneal morphology development. T0 corresponds to	
	zero time of the as-galvanized structure, and development	
	occurs according to time such as t1 <t2<t3<t4<t5.< td=""><td></td></t2<t3<t4<t5.<>	
2.15	Sequence of outburst formation during simulated in-situ	24
	galvannealing.	
2.16	Represents the powdering and the flaking failures	25
2.17	Micrograph of Fe-Zn outburst at the Fe-Al inhibition layer	31
2.18	Schematic diagram showing the Fe-Zn outburst	33
	growth behaviour.	
2.19	Short circuit diffusion path through Fe ₂ Al ₅	33
2.20	Potential-pH equilibrium diagrams for the Zn-water	37
3.1	Summary of overall research methodology	46
3.2	Schematic drawing of the sample	46
3.3	Preparation of the coating Zn-0.5% Al ingot (a) melting process	47
	and (b) As-Cast Zn-0.5% Al ingot.	
3.4	Thermal analysis set up with ceramic mould, metallic	48
	mould and thermocouple.	
3.5	Hot Dip Galvanized Process.	49
	(a) The Cole furnace.	
	(b) Molten Zinc alloy.	
	(c) The molten zinc temperature maintained by hot plate.	
	(d) The steel substrate was dipped into the molten zinc alloy	
	(e) The coated steels rods	
3.6	Schematic of samples used in the research.	50
	(a) As-received galvanized steel (type1) and	
	(b) the Zn-0.5% Al coated galvanized steel (type 2).	
3.7	Specimens for cross sectional metallography	51
	(after preparation)	
3.8	Sample preparation for Electrochemical test	52

3.9	The Temperature-Time heat treatment Profile	53
3.10	Electrochemical test setup	54
3.11	Semilogarithmic polarization curves for a corrosion system	55
	under activation control (Tafel behavior)	
3.12	Sample condition in salt spray chamber condition	56
3.13	FESEM machine model ZEISS Supra 35vp	60
3.14	Siemens D5000 Kristalloflex X-Ray Diffraktometer	61
4.1	The research sample (a) As received galvanized steel and	62
	(b) Zn-0.5% Al coated galvanized steel.	
4.2	Thermal Analysis for Zn-Al coating	63
4.3	Optical micrograph of Zn-Al Galvanize wire rope	64
	cross-sections.	
4.4	Optical micrograph of Hot Dip Galvanize wire rope	65
	cross-sections.	
4.5	(a) SEM-EDS point scan for Zn coated sample	
	(b) FESEM- elemental analysis line scan across coating	66
	layer for Zn coated sample (c)SEM-EDS point scan	
	for Zn coated sample (d) FESEM- elemental analysis	
	line scan across coating layer for Zn-0.5% Al coated sample.	
4.6	Untreated Zn-Al coated on galvanized wire rope.	67
4.7	(a) SEM-EDS point scan for Zn coated sample	70
	(b) FESEM- elemental analysis line scan across coating	
	layer for Zn coated sample (c)SEM-EDS point scan	
	for Zn-0.5% Al coated sample (d) FESEM- elemental analysis	
	line scan across coating layer for Zn-0.5% Al coated sample	
4.8	(a) SEM-EDS point scan for Zn coated sample	70
	(b) FESEM- elemental analysis line scan across coating	
	layer for Zn coated sample (c)SEM-EDS point scan	
	for Zn-0.5% Al coated sample (d) FESEM- elemental analysis	
	line scan across coating layer for Zn-0.5% Al coated sample.	
4.9	Gamma thickness for Zn coating (a) 350°C for 5 hours	73
	(b) 400°C for 5 hours.Zn-0.5%Al coating (c) 350°C for 5 hours	
	(d) 400°C for 5 hours.	

4.10	Scanning Electron Micrograph (SEM) shows	75
	Zn coated sample heat treated at temperature	
	(a) 400° C for 3 hours and (b) 400° C for 5 hours.	
	(b) Zn-0.5% Al coated heat treated at temperature	
	(c) 400° C for 3 hours and (d) 400° C for 5 hours.	
4.11	Coating powdering failure at heat treatment at temperature	77
	(a) 400°C for 5 and (b) 400°C for 3 hours	
4.12	Scanning electron micrograph showing internal cracking	78
	between Gamma (τ) and Delta (δ) layer for Zn coated sample as	
	shown in (a), (b) and (c) heated at 350°C for 3 hours.	
4.13	Tafel curves of Zn galvanized high carbon steel in	79
	3.5% NaCl solution.	
4.14	Electrochemical test results showing the corrosion	80
	potential for Zn coating	
4.15	Electrochemical test results showing the current density	80
	for Zn coating	
4.16	Electrochemical test results showing the corrosion rate (mpy)	81
	for Zn coating	
4.17	Tafel curves of Zn-0.5% Al galvanized on high carbon steel in	81
	3.5% NaCl solution	
4.18	Electrochemical test results showing the potential for	82
	Zn-0.5% Al coating	
4.19	Electrochemical test results showing the current density for	82
	Zn-0.5% Al coating	
4.20	Electrochemical test results showing the corrosion rate (mpy)	83
	for Zn-0.5% Al coating	
4.21	Visual inspection of heat treated (a) Zn-coated (b) Zn-0.5% Al	84
	coated galvanized steel before salt spray test.	
4.22	Visual Inspection of Heat treated Zn-coated galvanized steel	84
	after salt spray (a)250°C for 5 hours (b) 350°C for 5 hours	
	(c)400°C for 3 hours (d) 400°C for 5 hours.	
4.23	Visual Inspection of Heat treated Zn-0.5% Al coated galvanized	85
	steel after salt spray.(a)250°C for 5 hours (b) 350°C for 5 hours	
	(c)400°C for 3 hours (d) 400°C for 5 hours.	

4.24	Pitting corrosion that occur on Zn coated sample	86
	(a) magnification 250x. (b) magnification 500x	
	(c) magnification 1000x.	
4.25	Pitting corrosion that occur on Zn-0.5% Al coated sample	87
	(a) magnification 250x. (b) magnification 500x	
	(c) magnification 1000x.	
4.26	Weight loss per exposed area (g/cm2) determined from	89
	salt spray test for Zn coated samples.	
4.27	Weight loss per exposed area (g/cm2) determined from salt	90
	spray test for Zn-0.5% Al coated samples.	
4.28	Corrosion rate determined from salt spray test for Zn coated	92
4.29	Corrosion rate determined from salt spray test for Zn-0.5% Al	93
	coated samples.	
4.30	XRD pattern of the corrosion product taken from	94
	Zn-coated samples	
4.31	XRD pattern of the corrosion product taken from	95
	Zn-0.5% Alcoated samples	

LIST OF SYMBOLS AND ABREVIATIONS

°C	Degree Celsius
Κ	Kelvin
μm	Micron
1	liter
М	Mega
Pa	Pascal
Å	Angstrom
Н	Hydrogen
0	Oxygen
SO	Sulphur dioxide
Zn	Zinc
Fe	Ferrous
Al	Aluminum
NaCl	Sodium Chloride
CO_2	Carbon dioxide
t	Time (min)
H ₂ O	Water

CHAPTER 1

INTRODUCTION

1.1 Introduction

Corrosion has been a major problem encountered by many industries and causes RM 500 million annually since 1981. Thus, many researches have been done in order to yield a better way to prevent and control against corrosion.

Hot dip galvanizing is one of the oldest and most important zinc (Zn) coating process. It has been applied for over 200 years and widely used in industry for corrosion protection of steels. The steel is protected by the Zn coating through a barrier effect and a galvanic effect, in which Zn acts as the sacrificial anode while steel acts as the cathode. In most atmospheric environments, Zn corrodes much less than steel, by a factor of 10 to 100 times (X. G. Zhang, 1996) due to the formation of a protective layer consisting of a mixture of Zn oxide, Zn hydroxide and various basic Zn salts depending on the nature of the environment. Thus the protection of steel by a Zn coating is mainly through the barrier effect. However, at the places where the Zn coating is damaged and the steel underneath is exposed, such as at cuts or at scratches, the galvanic action between steel and Zn can protect the exposed steel from corrosion.

In recent years, with the increasing requirements of industry for a longer service life for hot dip galvanized steel to offset the rapid rises in cost of maintenance in service, a need for investigating the effect of heat treatment on the interlayer and corrosion behavior of Zn-Al coated High Carbon Steel for Marine application.

In this work, an investigation into the effect of heat treatment on the Zn, Zn-0.5% Al coating to observe the changes on intermetallic layer will be carried out.

1.3 Problem Statement

Galvanized wire ropes are exposed to seawater for a long period of time. Thus corrosion occurs and causes enormous losses. There are many methods to improve on the corrosion resistance of galvanized steel such as coating thickness, coating quality or perform heat treatment on the coating material. In this research, a study on the effect of heat treatment on the galvanized steel has been carried out in order to obtain better corrosion resistance of the coated layer.

1.4 Objectives of the Research

To investigate the effects of heat treatment of galvanized high carbon wire rope on the interlayer and corrosion behaviour of Zn and Zn-0.5%Al coated high carbon steel for marine application.

1.5 Scopes of the Study

The scopes of the study are based on the followings:

- 1. Selection of heat treatment parameters for coated high carbon steel wire ropes.
- 2. Perform heat treatment on the coated samples using high temperature furnace.
- 3. Microstructure evolutions were characterized by optical microscopy, X-Ray Diffraction, Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-Rays (EDX), elemental analysis.
- 4. The corrosion behavior were investigated by potentiodynamic polarization the on the coated and uncoated steel wire ropes.

REFERENCES

- A.Chakraborty, R.K. Ray, D. Bhattacharjee, M. Dutta: Influence of substrate texture on the formation and growth of phase in the galvannealed coatings on a few industrially produced Interstitial Free High Strength Steels; Galvatech 07; 2007; S. 499–503
- A.T. Alpas, J. Inagaki: Effect of Microstructure on Fracture Mechanisms in Galvannealed Coatings; ISIJ International, Vol. 40 2000, No. 2;2000; S. 172– 181
- Arcelor Mittal. Galvannealed zinc-iron alloy coated steels, p 2. November, 2012
- Badea, G. E., Caraban, A., Sebesan, M., Dzitacs, S., Cret, P., and Setel, A. Polarization measurements used for corrosion rates determination. Journal of sustainable energy. Vol. 1 No. 1, March, 2010.
- Berduque, A., Dou, Z., and Xu, R.. Electrochemical studies for aluminum electrolytic capacitor applications: Corrosion analysis of aluminum in ethylene glycol-based electrolytes. Electronic Components Assoc., 2009; Inc. p 1-10.
- C.E. Jordan, K.M. Goggins, A.R. Marder: Interfacial layer development in hot-dip galvanneal coatings on interstitial free (IF) steel; Metallurgical and Materials Transaction A; 2007; S. 2101–2109.
- C.S. Lin, M. Meshii, C.C. Cheng: Phase Evolution during Galvanneal Process; Galvatech 95; 2005; S. 485–495
- Chen, L., R. Fourmentin, J. R. McDermid. 2008. Met. Mat. Trans .A. 39A: 2008; 2128-2142
- D. J. Paik, S.-G. Han, U.-Y. Son, J.-U. Lee, S.-Y. Choun, M.-H. Hong: Improvement of Galvanneal Coating Properties through the Cooling Control of a fixed Soaking Furnace during Galvannealing Processes; Galvanizers Association Meeting Baltimore; 2008

- Davis, J. R. (Ed.). Corrosion: understanding the basics. United States of America: ASM International; 2000.
- Deits SH, Matlock DK. Formability of coated sheet steels: an analysis of surface damage mechanisms. In: Krauss G, Matlock DK, editors. Zinc-based steel coating systems: metallurgy and performance. Warrendale, PA: TMS, 2000. p. 297.
- 12. F.C. Porter, Corrosion resistance of zinc and zinc alloys, M. Dekker, New York, 2004.
- F.C. Porter, Zinc handbook: properties, processing, and use in design, Marcel Dekker, New York, 2001.47.
- Gallo E, Matlock DK. The importance of microstructure on the formability of galvannealed I.F.sheet steel. GALVATECH '95. Chicago, IL: Iron and Steel Society, 2005. p. 739
- Goggins KM, Marder AR. Crack initiation and propagation in hot-dip galvanneal steel sheet during bending. 3rd International Conference on Zinc Coated Sheet, Barcelona 2001;S4I:1-11.
- Gong, Y.F., T. J. Song, H. S. Kim, J. H. Kwak, B. C. De Cooman. Proceedings of the Asia-Pacific Galvanizing Conference, The Corrosion Science Society of Korea, Jeju, Korea, November 2012, paper B-15.
- Guth J, Mataigne JM. Comparing spot-weldability of galvanneal coated steel sheets: mechanism and base metal infuence. GALVATECH '95. Chicago, IL: Iron and Steel Society, 2005. p. 709.
- Guttmann M, Lepretre Y, Aubry A, Roche M-J, Moreau T, Drillet P, Mataigne JM, Baudin H. Mechanism of the galvanizing reaction. In⁻uence of Ti and P contents in steel and of its surfacemicrostructure after annealing. In: GALVATECH '95. Chicago, IL: Iron and Steel Society, 2005.
- H. B. Chen, K.-M. Hsu: Improvement of the Powdering Resistance of 340H Bake-Hardening GA Sheet Steel; Galvatech 04; 2004; S. 559–564
- H. E. Townsend, in ASM Metals Handbook, American Society for Metals, MaterialsPark, Ohio, 2004.

- 21. Hamed Asgari Moslehabadi, Galvannealing of Dual Phase Steels.MSc (Isfahan University of Technology) 2012
- Hisamatsu Y. Science and technology of zinc and zinc alloy coated sheet steel.
 GALVATECH'89. Tokyo: The Iron and Steel Institute of Japan. 1999. p. 3.
- J. C. Zoccola, H. E. Townsend, A. R. Borzillo, and J. B. Horton, in Atmospheric factors affecting the corrosion of engineering metals, STP 646, p. 165-184, American Society for Testing and Materials, Philadelphia, 1978.
- 24. J. H. Selverian, A. R. Marder, and M. R. Notis, Met. Trans., 20A, 543 2009
- 25. J. Kawafuku, J. Katoh, M. Toyama, H. Nishimoto, k. Ikeda, and H. Satoh, J. IronSteel Inst. Jpn., 77, 995-1002 2001.
- J. L. Murray, Binary alloy phase diagrams, p. 185, T. B. Massalski Editor. ASM, Materials Park, OH, 2006.
- 27. J. Mackowiak and N. R. Short, Int. Met. Rev., No. 1, Review 237, 1999.
- J. O. M. Bockris, Z. Nagy, and A. Danjanovic, J. Electrochem. Soc., 119, 285-295 2002.
- 29. J. P. Landriault, F.W. Harrison: CIM Bulletin, August 2007, pp. 71-78.
- 30. Jordan CE, Goggins KM, Marder AR. Interfacial layer development in hot-dip galvanneal coatings on interstitial free (IF) steel. Met Mater Trans 2004.
- 31. Kanamaru T, Nakayama M. Alloying reaction control in production of galvannealed steel. Mater Sci Res Int 2005;1:150.
- 32. Kim, M.S., J.H. Kwak, J.S. Kim, Y. H. Liu, N. Gao, N.Y. Tang. Proceedings of the Asia-Pacific Galvanizing Conference, The Corrosion Science Society of Korea, Jeju, Korea, November 8-12 2009.
- KoÈ ster W, GoÈ decke T. Das Dreisto€ system Eisen-Aluminum-Zink. Z Metallkde 1970;61:642
- Kubaschewski, Binary alloy phase diagrams, p. 1128, T. B. Massalski Editor.
 ASM, Metals Park, OH, 1996.p. 191-271.p. 295.
- M. Sagiyama, A. Hiraya, and T. Watanabe, J. Iron Steel Inst. Jpn., 77, 251-257 2001.
- Marder AR. E€ ects of surface treatments on materials performance. Materials selection and design. ASM Handbook, vol. 20. 2007. p. 470.

- Marder, A.R., The metallurgy of zinc-coated steel. Progress in Materials Science, 2000
- Maschek W, Hayes SP, Marder AR. Cross sectional studies of zinc iron phase growth in an environmental scanning electron microscope. In: GALVATECH '95. Chicago, IL: Iron and SteelSociety, 2005 p. 309.
- 39. Odnevall and C. Leygraf, Corros. Sci., 36, 1551-1567 2004.
- Opbroek JB, Granzow WG. A deep drawing, hot-dipped galvanized steel for different forming applications, SAE Paper No. 850275. Warrendale, PA: SAE, 2005.
- 41. Osinski K. The influence of aluminum and silicon on the reaction between iron and zinc. Doctoral Thesis. Technical University, Eindhoven, 1983.
- 42. Pourbaix, Atlas of electrochemical equilibrium diagrams in aqueous solutions, p. 406-413, NACE, Houston, TX, 1974.
- 43. S. F. Radtke and D. C. Herrschaft, J. Less Common Met., 93, 253 2003.
- 44. Smith, W. F. and Hashemi, J. Foundations of Materials Science and Engineering.(4th ed.). Mc Graw Hill International.2006.
- 45. Tang N.Y. Thermodynamics and kinetics of alloy formation in galvanized coatings. In: GoodwinFE, editor. Zinc-based steel coating systems: production and performance. Warrendale, PA:TMS, 2008. p. 3
- 46. Urai M, Terada M, Yamaguchi M, Nomura S. CAMP-ISIJ 2008;1:651.
- 47. Urednicek M, Kirkaldy JS. Mechanism of iron attack inhibition arising from additions of aluminum to liquid Zn(Fe) during galvanizing. Z Metallkde 2007;64:649.
- 48. V. Ligier, M. Wery, J. Y. Hihn, J. Faucheu, and M. Tachez, Corros. Sci., 41,1139-1164 1999.
- 49. V. Rangarajan, N.M. Giallourakis, D.K. Matlock, G. Krauss: The Effect of Texture and Microstructure on Deformation of Zinc Coatings; J. Materials Shaping Technology; 1989; S. 217–227
- V. Rangarajan, N.M. Giallourakis, D.K. Matlock, G. Krauss: The Effect of Texture and Microstructure on Deformation of Zinc Coatings; J. Materials Shaping Technology; 1989; S. 217–227

- 51. V. S. Muralidharan and K. S. Rajagopalan, J. Electroanal. Chem., 94, 21-36; 2008.
- 52. Vander Heiden A, Burghardt AJC, van Koesveld W, van Perlstein EB, Spanjers MGJ. Galvanneal microstructure and anti-powdering process windows. In: Marder AR, editor. The physical metallurgy of zinc coated steel. Warrendale, PA: TMS, 2004. p. 251.
- 53. W. van Koesveld, M. Lamberigts, A. van der Heiden, L. Bordignon:Coating Microstructure assessment and control for advanced productproperties of galvannealed IF steels; Galvatech 95; 1995; S. 343–355
- 54. White CL, Lu F, Kimchi M, Dong P. Resistance welding electrode wear on galvannealed steels. In: Zinc-based steel coating systems: production and performance. ed. Goodwin FE. Warrendale, PA: TMS, 2008. p. 219.
- 55. X. G. Zhang, Corrosion and electrochemistry of zinc, Plenum Press, New York, (2006).
- 56. Y. Suzuki, Y. Sugimoto, S. Fujita: Effect of internal oxidation of Galvannealing properties and anti-powdering properties of Si,Mn,P bearing high-tensile Galvanized Sheet steel; Galvatech 07; 2007; p.433–438
- 57. Yang, Y. Calcium and magnesium containing anticorrosion films on mild steel. Doctor Philosophy. Corrosion and Protection Centre, School of Materials. University of Manchester; 2010.