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ABSTRACT

The second grade fluid is one of the most popular subclass of non-Newtonian fluids.

Due to their importance in industry and engineering, most of researchers have concentrated on

the flows dealing with these fluids. Therefore, the main purpose of this thesis is to obtain exact

solutions for unsteady free convection flows of rotating second grade fluid with the effects of

isothermal and ramped wall temperatures. Specifically, a free convection flow is studied in

the presence of magnetohydrodynamics and porosity. Using the constitutive equations, the

governing equations are modeled. Some suitable non-dimensional variables are used to write

these equations into non-dimensional form. Laplace transform method is used to solve these

equation with imposed initial and boundary conditions. Solutions for velocity and temperature

fields are obtained. Skin friction and Nusselt number are also evaluated. For the sake of

physical understanding, analytical results for velocity are plotted graphically for the emerging

flow parameters. As the velocity is a complex function, the graphs for both real and imaginary

parts are shown separately. Both cases, isothermal and ramped wall temperatures, are discussed.

It is observed that when the second grade parameter increases, the velocity shows an oscillating

behavior which decreases and then increases, for both real and imaginary parts. For larger

values of rotation parameter, the fluid velocity decreases for the real part whereas it increases

for the imaginary part. It is further noted that velocity decreases when magnetic parameter

increases for both real and imaginary parts. However, an opposite behavior is observed when

the porosity parameter is increased. Both real and imaginary parts of the velocity are found to

increase with increasing values of the porosity parameter. An interesting result for the velocity

is observed from the comparison of ramped and isothermal temperatures. It is found that fluid

moves slowly in case of ramped wall temperature compared to isothermal case. In limiting

cases, the present solutions are found identical to published results.
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ABSTRAK

Bendalir gred kedua adalah salah satu subkelas bendalir bukan Newtonian yang paling

popular. Disebabkan oleh kepentingannya dalam industri dan kejuruteraan, kebanyakkan penyelidik

lebih tertumpu kepada aliran yang berkaitan dengan bendalir ini. Oleh itu, tujuan utama tesis ini adalah

untuk mendapatkan penyelesaian tepat bagi aliran olakan bebas tak mantap bendalir gred kedua yang

berputar dengan kesan sesuhu dan suhu tanjakan dinding. Secara khususnya, aliran olakan bebas dikaji

dengan kehadiran hidrodinamik magnet dan keliangan. Menggunakan persamaan juzuk, persamaan

menakluk dimodelkan. Beberapa pembolehubah tak bermatra digunakan untuk menulis persamaan ini

ke dalam bentuk tak bermatra. Kaedah penjelmaan Laplace digunakan bagi menyelesaikan persamaan

tersebut beserta syarat awal dan syarat sempadan yang dikenakan. Penyelesaian bagi medan halaju

dan medan suhu diperoleh. Geseran kulit dan nombor Nusselt juga dinilai. Untuk memahami secara

fizikal, keputusan analitik bagi medan halaju dan medan suhu diplot secara grafik bagi parameter aliran

yang terlibat. Oleh kerana halaju adalah fungsi kompleks, maka graf untuk kedua-dua bahagian nyata

dan khayalan ditunjukkan secara berasingan. Kedua-dua kes iaitu sesuhu dan suhu tanjakan dinding

adalah dibincangkan. Dapat diperhatikan bahawa apabila parameter gred kedua meningkat, halaju

menunjukkan tingkah laku yang berayun dimana pada mulanya berkurangan dan kemudian meningkat

untuk kedua-dua bahagian nyata dan khayalan. Bagi nilai parameter putaran yang besar, halaju bendalir

berkurangan untuk bahagian nyata manakala meningkat untuk bahagian khayalan. Selanjutnya, dapat

dilihat bahawa, halaju berkurangan apabila parameter magnet meningkat untuk kedua-dua bahagian

nyata dan khayalan. Namun, tingkah laku yang bertentangan diperhatikan apabila parameter keliangan

bertambah. Kedua-dua bahagian nyata dan khayalan bagi halaju didapati meningkat apabila nilai

parameter keliangan meningkat. Satu keputusan yang menarik bagi halaju dapat dilihat daripada

perbandingan antara suhu tanjakan dan sesuhu. Bendalir didapati bergerak dengan perlahan bagi kes

suhu tanjakan dinding berbanding dengan sesuhu. Dalam kes terhad, penyelesaian yang diperoleh dalam

kajian ini didapati secaman dengan keputusan yang telah diterbitkan.
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CHAPTER 1

INTRODUCTION

This chapter discusses the research background, problem statement, research

objectives, scope of the research, significance of the study, research methodology and

thesis outline.

1.1 Research Background

Generally there are mainly two types of fluids namely Newtonian and non-

Newtonian. Newtonian fluids are obeying Newtons law of viscosity. Their shear stress

at each point is linearly proportional to the strain rate at that point and the constant

of proportionality is known as viscosity. This concept was first introduced by Isaac

Newton. Mathematically the relationship of shear stress to the shear rate in Newtonian

fluid is given by

τyx ∝ du

dy
(1.1)

equivalently

τyx = μ
du

dy
(1.2)

where τyx is shear stress, μ is dynamic viscosity and du/dy is the rate of strain or

velocity gradient. In common terms, this means the fluid continues to flow, regardless

of the forces acting on it. Examples of Newtonian fluids include gases and liquids such
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as water, hydrocarbons, oils and air.

On the otherhand, there are several fluids where shear stress is not proportional

linearly to the velocity gradient are called non-Newtonian fluids. For example ketchup,

custard, toothpaste, starch suspensions, paint, blood, and shampoo. This behavior may

be represented by the power law model as:

τ = k

(
du

dy

)n

;n �= 1, (1.3)

where n is called flow behavior index and k is the flow consistency index. When the

values of n = 1 and k = μ, equation (1.3) reduces to equation (1.2) called Newtons

law of viscosity. Non-Newtonian fluids are usually divided into three main categories

which are differential type, rate type and integral type. Differential and rate type

models are used to describe the response of fluids that have slightly memory such as

dilute polymeric solutions, while the integral models are used to describe materials

such as polymer melts that have considerable memory. One of the most popular

subclass of differential type of fluids is called the second grade fluid also known as a

viscoelastic fluid. This fluid model was first proposed by Coleman and Noll in (1960).

It is found in polymer fluids where these fluids exhibit both the viscous and elastic

characteristics. Viscous materials, like honey, resist shear flow and strain linearly with

time when a stress is applied. Whereas, the elastic materials strain instantaneously

when stretched and quickly return to their original state once the stress is removed.

The study of free convection flow of second grade fluid has been carried out as

an important application in many industries. Free convection or natural convection is

the flow that induced by buoyancy forces which arises from density differences caused

by temperature variations in the fluid. An example is the free convection heat transfer

that occurs from hot components on a hot egg in still air as depicted in Figure 1.1.

In this situation, cool air that makes contact with the hot components experiences an

increase in temperature and therefore reduction in density. Since the warm air is now

lighter than surrounding air, buoyancy forces induce a vertical motion and the hot air

rising from the egg is replaced by the inflow of air at room temperature.
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Figure 1.1: Free Convection Phenomena

In this case of heat transfer process, buoyancy forces are responsible for the

fluid motion and viscous forces oppose the fluid motion. Having such motivation in

mind, several authors have discussed the free convection flow in their research. Some

recent attempts are made by Lahurikar (2010) and Vijayalakshm(2010).

Research works in magnetohydrodynmics (MHD) free convection flows has

been conducted extensively in recent years. The MHD flows is the study of the

interaction of conducting fluids with electro magnetic phenomena. The flow of an

electrically conducting fluid in the presence of a magnetic field is importance in various

areas of technology and engineering such as liquid metals, plasma and salt water or

electrolytes. Several solutions in this case were obtained by many researchers such

as Sajid et al. (2008), Das et al. (2009) and Rajesh (2010) where different boundary

conditions have been considered as well as physical situation on flow formation. The

word MHD is derived from magneto means magneti field, hydro is for liquid and

dynamics is for movement. The concept of MHD was introduced by Hannes Alfven
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for which he received the Nobel prize in physics in 1970.

Further, the effect of magnetic field on flows through a porous medium have

gained the interest of researhers in fluid studies such as Hayat et al. (2008a), Hayat et

al. (2008b), Khan et al. (2010) and Salah et al. (2011). The interest in this field is

due to the wide range of applications either in engineering or in geophysics, such as

the optimization of the solidification process of the metals and metal alloys, the study

of geothermal sources, treatment of nucleur fuel debris, the control of under ground

spreding of chemical wastes and pollutants. By porous medium we mean the materials

containing pores or voids (like a hole) on the skeletal portion of the material is often

called the matrix or frame. The pores are typically filled with a fluid like liquid or gas.

Usually, solid be a skeletal material, but in certain case, foams also can be a structure

to analyse the concept of porous medium. The concept of porous medium is usually to

characterised the permeability and tensile strength of porosity in the skeletal portion.

In addition, the study of the fluid flow in rotating frame has drawn considerable

interest in recent years due to its wide range of applications in designing thermo syphon

tubes, in cooling turbine blades, jet engines, pumps and vacuum cleaners, as well as

geophysical flows. Rotating plate such that both the fluid and the plate rotate in uniform

angular velocity with Coriolis effect is acting on it has investigated by researchers

before this. In physics, the Coriolis effect is a deflection of moving objects in the frame

rotating in the opposite direction. For example, when the frame rotates in clockwise

direction, the moving object will deflect to the left. If the frame rotates in counter-

clockwise, then the deflection of object will move to the right. This effect is very

important for earths rotation causing freely moving objects to veer toward the right in

the Northern Hemisphere and to the left in the Southen Hemisphere. This phenomenon

happened in wind, ocean currents, airplanes and missiles.

Moreover, the analysis of the temperature effect on the plate especially when

the plate rotates is very important in industry activities for producing the product in
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good quality. Example of temperatures are constant temperature, constant heat flux,

Newtonian heating and ramped wall temperature. Ramped wall temperature is one of

the most popular thermal conditions for energy equation to investigate the problems

subject to step change in wall temperature. This problem has been discussed by

Chandran et. al (2005), Seth et al. (2011), Deka (2011) and Samiulhaq et al. (2014).

Based on the above discussion, it is interesting to study the behavior of the fluid

motion influenced by the ramped wall temperature. Therefore, the present study aims

to investigate the unsteady free convection flow of an incompressible second grade

fluid in rotating infinite vertical plate with the effects of constant and ramped wall

temperatures. In addition, the problem of rotating MHD free convection flow of second

grade fluid in a porous medium is also studied.

1.2 Statement of Problem

Previous study shows that the flow of Non-newtonian fluid play an important

role in fluid flow problems compared to the Newtonian fluid. Non-newtonian fluid

such as second grade fluid has attracted many researches to study their fluid behavior

when various embedded fluid flow characteristic parameters are considered. Mostly,

the theoretically study of unsteady free convection flow of second grade fluid have

been conducted in vertical plates. However, only a few researchers considered the

problem of convective flow involve with rotating plate. Even, the expressions of the

exact solutions obtained in the previous study for the problem of the flow in infinite

rotating vertical plates are conducted only in viscous fluid. Therefore, study to explore

the mathematical model for the problem of unsteady free convection flow of a second

grade fluid in a vertical rotating frame is significant. This thesis emphasized on this

matter. The derivation of the mathematical model also included with magnetic field

and porosity effects. The analytical solution involving with constant and ramped

wall temperature are obtained. The influenced of parametric physical conditions that
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affected the fluid flow and heat transfer characteristics are analyze and discussed.

1.3 Objectives of the Study

This research aims to construct a mathematical model by formulating an

appropriate governing equation, to solve the governing equations analytically using

Laplace transform method and to analyze the obtained results for the considered flow

problem. The main objectives of this study are to find exact solutions of the velocity

and temperature profiles for the problems of unsteady free convection flow of second

grade fluid in a rotating infinite vertical plate and rotating MHD second grade fluid

in porous medium. Both problems are solved subjected to constant and ramped wall

temperatures, respectively.

1.4 Scope of the Study

This research focused on two dimensional unsteady free convection flow of

incompressible second grade fluid in rotating frame. Specifically, the infinite vertical

plate with constant temperature and ramped wall temperature are considered. The first

two problems are only focus on the fluid motion induced by the infinite vertical rotating

plate. Whereas, the third and fourth problems are considered the problem of rotating

fluid in the presence of MHD flow in a porous medium. Even, these problems are able

to solve by Fourier transform or other analytical method, but only Laplace transform

method is applied to obtain the exact solutions in this study. MATHCAD software is

used for graphical results.
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1.5 Significance of Study

The results obtained from this research are significant due to some reasons.

This research is enable to enhance the knowledge of the MHD flow and heat transfer

characteristics through a porous medium for rotating second grade fluids in vertical

infinite plate. This research also provided accurate exact solutions for the mathematical

models involving constant temperature and ramped wall temperature. These exact

solutions can be used to check the accuracy of the results obtained through numerical

schemes.

1.6 Research Methodology

This section discussed the present development of research which are including

research design and procedures of the study. This project will undertake the following

research methodology.

1.6.1 Mathematical Analysis

The governing equations are obtained according to the proposed problems those

have been mentioned in objectives of the study by adopting the continuity, momentum

and energy equations. The modified Darcy’s law for electrically conducted second

grade fluids are used in governing equations. The incompressible second grade fluid

in rotating frame has been chosen in solving isothermal and ramped wall temperatures

problems. The partial differential equations governing the flow and the appropriate

initial and boundary conditions are transformed into non-dimensional forms by using

some suitable dimensionless variables. The dimensionless system of equations are

solved analytically by using the Laplace transform method. After that, the inverse
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Laplace transforms are used to obtain the exact solution of the problems.

1.6.2 Numerical Computation

The exact solutions of the problems are analyzed through graphs involving

emerging parameters such as second grade α, rotation ω, magnetic field M , porosity

K, Prandtl number Pr and Grashof number Gr. All graphs are plotted by using

MATHCAD software. Moreover, the graphical results are also used to ensure the

solutions are satisfied with the imposed initial and boundary conditions. The results are

verified by comparing the limiting cases of the present work with the existing solutions

available in the literature especially focus on rotating parameter. Non-rotating fluid can

be obtained as a limiting case from our general solutions when the rotation parameter

approaches zero.

1.7 Thesis Organization

This thesis consists 7 chapters. First, we discuss Chapter 1 that involves

research background, statement of problem, objectives of study, scope of study,

significance of study, research methodology, mathematical analysis and numerical

computation. The details literature review regarding our problems identified in the

objectives of research are discussed in Chapter 2. In Chapter 3, the problem of

unsteady free convection flow of rotating second grade fluid in infinite vertical plate is

presented. The case of isothermal temperature is considered. The governing equations

of the problem are formulated by using body force and stress tensors. Dimensionless

variables are introduced to simply the dimensional governing equations as well as

appropriate initial and boundary conditions. Laplace transform method is used to

obtain the analytical solutions. The velocity and temperature profiles are plotted with
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the effects of embedded flow parameters. Finally, the results of skin friction and

Nusselt number are displayed in tables.

Chapter 4 investigates the effect ramped wall temperature on unsteady free

convection flow of rotating second grade fluid in infinite vertical plate. Expressions

for velocity profiles are obtained by using Laplace transform method and inverse

Laplace transforms. Velocity profiles are plotted to investigate the behavior of the

fluid flow for various emerging parameters. In this case, we have compared the

ramped wall temperature with isothermal temperature. Afterwards, problem in Chapter

5 is extended from problem in Chapter 3. The effect of MHD flows in porous

medium is considered. The modified Darcy’s law for the second grade fluid is also

incorporated. The Laplace transform method is used to obtain the solutions of velocity

and temperature. As in Chapter 3, the velocity profiles are plotted according to

parameters involved in this problem. The values of skin friction and Nusselt number

are discussed in tables. Chapter 6 discussed the problem of Chapter 5 under the

influence of ramped wall temperature. Similar to the previous chapter, the governing

equations are solved and plotted for the emerging flow parameters. The comparison of

isothermal and ramped wall temperature for both real and imaginary parts of velocity

is also shown. Further the variation of skin friction for different parameters in real and

imaginary is also discussed.
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