
i 

 

 

 

STRUCTURAL DESIGN IMPROVEMENT 

OF UNMANNED AERIAL VEHICLE WING 

 

 

 

 

 

GUNASEGARAN A/L KANESAN 

 

 

 

 

 

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Master of Engineering (Mechanical) 

 

 

 

 

Faculty of Mechanical Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

FEBRUARY 2014 

 

 

 

 

 



iii 

 

 

 

 

 

 

 

 

Specially dedicated to  

 

 

 

My beloved family 

 

 

 

My supportive friends… 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

 

 

 

 

ACKNOWLEDGEMENTS 

 

 

 

 

Though only my name appears on the cover of this thesis, a great many people 

have contributed to its production. I owe my gratitude to all those people who have 

made this thesis possible and because of whom my graduate experience has been one 

that I will cherish forever. My deepest gratitude is to my advisors, Assoc. Prof. 

Ainullotfi Abdul Latif and Assoc. Prof. Ir. Dr. Shuhaimi Mansor for their guidance 

and support throughout my studies. They have given me the freedom to explore on 

my own and support when my steps faltered. Their insightful comments and 

constructive criticisms at different stages of my research were thought-provoking and 

they helped me focus on my ideas.  

 

I would like express my gratitude to Unmanned System Technology (UST) for 

providing me with necessary information and technical details to complete this 

research. Besides that, they also have provided me all the required elements to 

conduct the experiment. The engineers, especially Mr. Muhammad Riza Abd Rahman 

and Mr. Mohd Izhar Harun have been a huge help throughout this research.   

 

Many friends have helped me throughout my study years. Their support and 

care helped me overcome setbacks and stay focused on my graduate study. I greatly 

value their friendship and I deeply appreciate their belief in me. I am also indebted to 

the fellow researchers from aeronautical laboratory and automotive laboratory with 

whom I have interacted during the course of my graduate studies. Furthermore, I 

would like thank technicians from aeronautical laboratory for providing me with help 

whenever necessary.  

 

Most importantly, none of this would have been possible without the love and 

patience of my family. My family, to whom this thesis is dedicated to, has been a 

constant source of love, encouragement, concern, support and strength all these years. 

I would like to express my heart-felt gratitude to my family.  

 



v 

 

 

 

 

 

ABSTRACT 

 

 

 

 

Almost all engineering systems experience strength versus weight conflict of 

some description. In the case of airplane wing, there are two primary requirements 

which must be considered during the structural design process: high strength and 

stiffness, and lower weight. Due to the restricted nature of technology in this field, 

very few design guidelines are available for design improvement of an airplane wing 

structure to increase its strength-to-weight ratio. The objective of this thesis is to 

provide guidelines for the improvement of the structural design of a composite 

unmanned aerial vehicle (UAV) wing with respect to weight, strength and bending 

stiffness, with Aludra MK-01 as a case study. The finite element method was used for 

the numerical analysis on the structure. Popular commercial finite element software, 

ABAQUS CAE, was used to model the wing structure. A detailed modelling 

technique for composite structure and the attachment between structures was 

presented in this thesis. The wing finite element model was validated using 

experimental results. The design improvement process on the wing structures was 

conducted in several modes. The variables used in the process were spar web length, 

spar shape and spar thicknesses. UAV wing structural weight, bending stiffness and 

failure index were used as the main criteria in the design improvement process. The 

variation of these criteria with changesin selected parameters were then plotted to 

observe the design trends. At the end of the research, the improved web lengths and 

thicknesses were obtained, as also the best combination of shapes for the spars. 

During the design improvement process, the failure index was found to be most 

sensitive towards the changes in the variable parameters compared to structural 

weight and bending stiffness. The design improvement guidelines presented in this 

thesis should facilitate the design and analysis of future UAV composite wing 

structures. 
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ABSTRAK 

 

 

 

 

Hampir semua sistem kejuruteraan menghadapi konflik di antara kekuatan 

dengan berat. Dalam kes sayap kapal terbang, dua keperluan utama yang perlu 

dipertimbangkan semasa proses reka bentuk struktur adalah kekuatan dan kekakuan 

yang tinggi serta berat yang lebih rendah. Oleh kerana teknologi yang terhad dalam 

bidang ini, terdapat sangat sedikit panduan reka bentuk yang boleh diperolehi bagi 

meningkatkan nisbah kekuatan-terhadap-berat struktur. Objektif tesis ini ialah untuk 

menyediakan garis panduan untuk penambahbaikan reka bentuk struktur sayap 

komposit pesawat udara tanpa juruterbang (UAV), berkenaan dengan berat struktur, 

kekuatan dan kekakuan lenturan, menggunakan Aludra MK-01 sebagai kajian kes. 

Kaedah unsur terhingga telah digunakan untuk analisis berangka ke atas struktur. 

Perisian unsur terhingga komersial popular,ABAQUS CAE, digunakan untuk 

memodel struktur sayap. Satu teknik pemodelan terperinci untuk struktur komposit 

dan sambungan di antara struktur telah dibentangkan dalam tesis ini. Model unsur 

terhingga sayap telah disahkan menggunakan keputusan eksperimen. Proses 

penambahbaikan reka bentuk struktur sayap telah dijalankan dalam beberapa mod. 

Pemboleh ubah yang digunakan dalam proses ini adalah panjang web spar, bentuk 

spar dan ketebalan spar. Berat struktur sayap UAV, kekakuan lenturan dan indeks 

kegagalan telah digunakan sebagai kriteria utama dalam proses penambahbaikan reka 

bentuk. Perubahan kriteria tersebut terhadap perubahan parameter pembolehubah 

kemudiannya diplot untuk melihat trend reka bentuk. Di akhir kajian, panjang web 

dan ketebalan spar yang ditambahbaik telah diperolehi, begitu juga gabungan terbaik 

untuk bentuk spar. Semasa proses penambahbaikan, indeks kegagalan didapati paling 

sensitif terhadap perubahan parameter bolehubah berbanding dengan berat struktur 

dan kekakuan lenturan. Garis panduan penambahbaikan reka bentuk yang 

dibentangkan dalam tesis ini diharapkan dapat memudahkan reka bentuk dan analisis 

struktur komposit UAV di masa depan.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 An introduction to UAVs and composite structures 

 

 

Unmanned Aerial Vehicle (UAV) is a pilotless aircraft controlled by a ground 

unit from a control room. The research and development in UAVs started back in 

early years during the First World War, but serious interest in their value as 

operational force multiplier has only awakened in the last quarter of the past century. 

One of main reasons leading towards UAV’s interest is the possibility to utilize 

relatively non-expensive airplanes when the human presence on board is not 

necessary or when the mission involves long operational time and severe risks [1]. 

 

 

 Composite materials are the materials consist of two or more separate phases 

with multidirectional properties. The greatest advantage of composite materials is 

their higher strength and stiffness combined with low weight compared to other 

isotropic or unidirectional materials [2]. The advancement in the structures and 

materials especially the introduction of composite materials used for UAV 

construction are one of the great factor contributing to continuous development of 

UAV industry.  
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1.2 Background of the problem 

 

 

 Almost all engineering systems experience strength versus weight conflict of 

some description. There are two primary functional requirements must be considered 

during the design process of an aircraft wing [3].  The first requirement is high 

strength and stiffness. The lift created by the pressure difference used to carry the 

airplane and it will be acting upon the airplane wing. The lift translates into stresses 

on the wings [3]. The wing must be designed to sustain the stresses created during 

the flight.  

 

 

 The second requirement is the lesser weight for wing structure. The airplane 

with light weight structure creates more room for payload. The cost in terms of fuel 

is reduced since lesser fuel is needed to operate light weight aircraft. The major 

problem in airplane structural design is to strike the balance between these two 

requirements [3]. The designer’s attempt to achieve adequate structural strength and 

minimum material utilization with minimum cost is a major challenge in aircraft 

structural design. 

 

 

In aircraft design, lesser weight comes second to sufficient strength. The 

balancing between the strength and weight of an airplane can be represented by 

strength-to-weight ratio. Higher value for strength-to-weight ratio can be achieved by 

using composite materials. However, the design still needs to be improved in order 

for the strength-to-weight ratio to be optimized.  

 

 

 

 

1.3 Problem statement 

 

 

There is a growing demand for UAVs around the globe [4]. Due to its 

restricted nature of technology, very few design methodology and technological 

details are available [4]. There is a need for a guideline for composite UAV structural 

design and analysis process. Information on the dependency of weight, strength and 
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stiffness with different types of structures and their configuration is required to 

enlighten further and future design processes. 

 

 

In order to obtain the guidelines for design and analysis, a structural model is 

required as the case study. In this study, Aludra MK-01 was used as the case study. 

Aludra MK-01 is an unmanned aerial vehicle fully designed and developed in 

Malaysia. It was developed by Unmanned Systems Technology (UST) Sdn. Bhd. It is 

currently being used by Malaysian Armed Forces in Semporna (Sabah, Malaysia). 

Aludra MK-01 has been in use for reconnaissance purposes along the Malaysia-

Indonesia and Malaysia-Philippines borders.  

 

 

The design process of Aludra MK-01 is iterative. Since its first design and 

development, it had been modified several times to improve its strength-to-weight 

ratio. The wing of the UAV especially, has been consistently modified to achieve the 

improved strength-to-weight ratio. The iterative design process was conducted 

mostly according to the experience of the designers and engineers, but there are no 

definitive design guidelines available for the process.  Developing a design guideline 

which can act as the methodology for this iterative design process of Aludra MK-01 

is essential to improve the work quality in terms of time consumption and to ease the 

future design process.  

 

 

 

Figure 1.1 Aludra MK01 
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1.4 Research objective 

 

 

The objective of the research was to provide guidelines for the improvement 

of the structural design of a composite UAV wing with respect to weight, strength 

and bending stiffness, with Aludra MK-01 as a case study.  

 

 

 

 

1.5 Research scope 

 

 

Several scopes were set in order to achieve the research objective. The scopes 

are: 

i. A study on structural design and configuration of a current UAV was 

conducted and the structure of Aludra MK-01 wing was used as a case 

study for this research.  

ii. A validated finite element structural model of the current UAV wing 

was developed and validated by using experimental results. 

iii. A thorough re-designing process was conducted on the current design 

and the new designs were subjected to finite element analysis. 

iv. The trends and changing patterns of weight, strength and bending 

stiffness with respect to varied spar parameters were obtained and can 

be used for the design improvement of other similar UAV’s. 

 

 

 

 

1.6 Thesis outline 

 

 

The thesis of this research is divided into 6 chapters. Chapter 1 outlines the 

introduction on the research, overview to the research problem, problem statements, 

objective, scopes and outline if the thesis. 

 

 

Chapter 2 discusses the literature review of this research. It starts with the 

compilation on previous researches conducted on wing design and optimization. It 
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was followed by requirements and considerations for UAV structural design. Wing 

optimization methodologies were discussed in the following section. The discussion 

on composite materials and the mechanics of composite material were also added in 

this chapter. In addition to that, the discussion on finite element modelling and 

analysis were given in the following section. 

 

 

 Chapter 3 focuses on a brief explanation of the methodology employed in this 

research. It was further illustrated in a flow chart with short explanations. In Chapter 

4, the work conducted related to this research were presented. It includes the work on 

modelling, experimental work and design improvement process. 

 

 

 Chapter 5 presents the results obtained in this research. The results for 

validation process and design improvement process were presented in this chapter. 

The conclusion and recommendations were presented in Chapter 6. 
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