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ABSTRACT

Rapid industrialization and changes in life style cause a teremendous increase

in energy consumption. Fossil fuels are the most common energy source in the

world. Increasing of fuel consumption cuased more pollutant formation and

resources depletion. In this project flameless combustion has been investigated as a

reliable solution to this problem. Many studies has been carried out on different

setup of flameless burners. In this thesis a new setup has been studied that is

tangential fuel-oxidizer arrangement of inlets. This study shows that changing in the

arrangement of inlets from co-axial to tangential will increase the efficiency of the

lab scale combustor upto 14% and caused reduction of emissions and in particular

NOx formation upto 55%. Also it has been concluded that the maximum temperature

of flameless combustion in this new setting is higher by about 12%. Additionally this

maximum temperature occurs near the wall of the combustor despite of co-axial flow

which its highest temperature occurs at the center line. This phenomena helps

improving of combustion efficiency. Because the most application of this kind of

burners are in the boilers and the pipes which carry water to be heated are installed

near the wall of boilers this issue can be considered as a big advantages of tangential

flow flameless combustion process rather than co-axial one.
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ABSTRAK

Perindustrian yang pesat dan perubahan gaya hidup menyebabkan

peningkatan teremendous dalam penggunaan tenaga. Bahan api fosil adalah sumber

tenaga yang paling biasa di dunia. Meningkatkan penggunaan bahan api cuased lebih

pencemar pembentukan dan sumber mendadak. Dalam projek ini flameless

pembakaran telah disiasat sebagai penyelesaian yang boleh dipercayai untuk masalah

ini. Banyak kajian telah dijalankan ke atas persediaan yang berlainan pembakar

flameless. Dalam tesis ini persediaan baru telah dikaji iaitu tangen susunan bahan

api-pengoksida teluk. Kajian ini menunjukkan bahawa perubahan dalam susunan

teluk dari bersama-paksi untuk tangen akan meningkatkan kecekapan pembakar

skala makmal hamper 14% dan menyebabkan pengurangan pengeluaran dan dalam

pembentukan NOx tertentu hamper 55%. Juga ia telah membuat kesimpulan bahawa

suhu maksimum flameless pembakaran dalam suasana baru ini adalah lebih tinggi

oleh kira-kira 12%. Selain itu suhu maksimum ini berlaku berdekatan dengan

Dinding pembakar walaupun aliran bersama-paksi yang suhu tertinggi berlaku pada

garis tengah. Fenomena ini membantu bertambah baik kecekapan pembakaran. Oleh

kerana aplikasi yang paling seperti ini pembakar berada dalam dandang dan paip

yang membawa air ke dipanaskan dipasang berdekatan dengan Dinding dandang isu

ini boleh dianggap sebagai satu kelebihan besar tangen proses pembakaran aliran

flameless bukannya ko-paksi
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CHAPTER 1

INTRODUCTION

1.1 Background

Combustion, mankind’s oldest technology, still provides more than 95% of

the energy consumed throughout the world [1], and despite the continuous search for

alternative energy sources, there is little doubt that combustion will remain important

for many years to come. While early combustion research was focused on efficiency

of combustion processes, today research on pollutant formation in combustion is

becoming increasingly important.

Among fossil fuels, natural gas is the cleanest. Natural gas is primarily

composed of methane with very low or no nitrogen or sulphur content. During

combustion very small amounts of sulphur dioxide and nitrogen oxides and virtually

no ash or particulate matter are released. Coal and oil, on the other hand, have much

higher nitrogen and sulphur contents and a higher carbon ratio than natural gas. By

combustion of natural gas less carbon dioxide will be produced per energy unit burnt

compared to coal and oil.

Natural gas is considered as a clean fuel compared to the other fossil fuels,

but formation of unwanted pollutants, such as nitrogen oxides, are still taking place

while burning this fuel. Research in the field of natural gas combustion to increase

combustion efficiency and abate formation of pollutants emitted to the atmosphere

are therefore still of importance.
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Emissions reduction and efficiency improvement have been long-standing

goals for combustion system designers. In the combustion of conventional fuels,

emissions of CO2, unburned hydrocarbons (UHC), CO, CO2, soot particulates, NOx

and SOx have been of particular concern due to their detrimental impact on health

and the environment. Greenhouse gases such as CO2, H2O, CH4, N2O and chloro-

flouro carbons have been found to be the major contributors to the global warming

problem, and there is an unmistakable consensus that there is an urgent need to

curtail the anthropogenic contribution of these gases [2]. As a result of the Kyoto

Protocol, many countries are considering emissions trading and imposition of taxes

on CO2 generation. Several countries have taken initiatives to improve energy

efficiency and harness pollution-free energy resources and technologies. Renewable

energy resources like wind, hydraulic or solar energy are likely to reduce overall

emissions; however, these cannot entirely meet the growing energy demand.

Biofuels have been proposed as a short term solution to heightening energy

and pollution crisis. Biofuel combustion is considered to reduce CO2 impact on the

environment, since the biomass consumes CO2 in its production cycle before being

used as a fuel. Using CO2 sequestration and storage is another proposed CO2

reduction concept. Integrated gasification combined cycle (IGCC) plants fired with

biomass, are one example of reduced CO2 emissions and clean combustion

technology that employs gasification of biomass to produce syngas and its

subsequent combustion. CO2 separation can be achieved through installation of

additional equipment, as in open or semiclosed combined cycle gas turbine (CCGT)

plants, or chemically reformed gas turbine (CRGT) plants, where fuel is treated with

steam to increase its hydrogen content and its subsequent oxy-fuel combustion [3].

Thermo-chemical reforming (TCR) may also be employed by mixing fuel with

steam and insufficient oxygen, resulting in partial oxidation or mixing with

recirculated exhaust gases (containing steam from combustion products). The

benefits of this include reduction in combustion irreversibility and recovery of

exhaust heat [3]. Other concepts for CO2 reduction include partial oxidation cycles

and burning carbon-free fuels.
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NOx (NO and N2O) is another major pollutant from high temperature

combustion systems, known for its deleterious effects. It forms acid rain and

contributes to global warming (through production of ground level ozone) [2]. The

formation of ground-level ozone due to NOx is also known to aggravate respiratory

problems [2]. Low NOx systems and ultra-low NOx systems have been proposed

with emissions below 10 ppm, and several NOx reduction strategies have been

employed. Wünning and Wünning [4] have discussed reduction of NOx through

several techniques. Thermal NOx can be reduced through flame cooling techniques,

including injection of NH3 or H2O (wet NOx control) or cooling through exhaust

gas recirculation (EGR) or cooling rods in burners (dry NOx control) [4].

Multistaging and usage of high velocity inlet streams are employed to cool

fresh charge with exhaust products, for dry NOx control Wünning and Wünning [4].

Lean premixed technology [5] uses premixed air and fuel combustion with excess air

for flam e temperature suppression. The technology, however, suffers from problems

of poor combustion stability and flashback [4]. The GE Rich-Quench-Lean

technology [6] uses fuel-rich primary zone combustion, followed by a fuel-lean low

temperature combustion, for thermal NOx reduction [7]. For reduction of fuel-bound

NOx, reburning strategies are used for reduction of NOx to N2.

Oxyfuel combustion is yet another dry NOx reduction technique, and has

been employed in zero emissions semiclosed cycle concepts [3]. However, it suffers

from drawbacks of O2 expense, the need for the system to be air-tight, and that

nitrogen-bound fuels cannot be used (such as natural gas with up to 14% nitrogen)

[4]. Secondary NOx removal strategies include selective catalytic reduction (SCR)

and selective non-catalytic reduction (SCNR). These are particularly useful for

retrofitting older high emissions technologies, but may be expensive [4]. Staged

combustion for NOx reduction may be applied by air or fuel staging (or reburning),

air staging being a more effective approach [8]. Xu et al. [8] also suggested that NOx

formation in fuel-rich or reburning zones is hindered by the absence of O and the

profusion of CHi radicals.
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SCR is a wet NOx removal strategy and involves ammonia injection for

reduction of NOx to N2. The reactions [9] for NOx removal are given below:

3 2 2 24 4 4 6NO NH O N H O    (1.1)

2 3 2 2 22 4 3 6NO NH O N H O    (1.2)

Particulate matter (PM) consist of very small condensed phase particles

including aerosols, dust, etc. dispersed in the atmosphere, and they impact the lungs

(aggravate asthma, bronchial diseases) and the heart [2]. Particulate matter less than

10 microns and fine particles of size less than 2.5 microns are of particular concern

due to the problems associated with decreased visibility [2]. The soot particulates are

typically of the order of 0.5 to 50 nm, and are a result of combustion under local

fuel-rich conditions. These are predominantly composed of carbon in the form of

polyaromatic hydrocarbons (PAH), known to be carcinogenic. Small sized

particulates are easily ingested in the human pulmonary system, and are significant

contributors to bronchial disorders and lung cancer. The traditional approach for

reduction of soot emissions was that of providing adequate time, temperature and

turbulence [7] for combustion. Using hydrogen fuel combustion has been proposed

as one of the means of curtailing soot and UHC emissions.

Carbon monoxide is extremely dangerous when respirated in excessive

quantities, since it binds with hemoglobin and prevents oxygen supply in the blood.

It is known to have detrimental effects on the heart and the nervous system [2]. The

reduction of CO, UHC and soot emissions in combustion systems, is typically

achieved by increasing the residence time inside the combustion chamber, and

avoiding cold-spots through efficient design. The CO, UHC and soot emissions are

typically lower for fuel-lean combustion, for a range of equivalence ratios. The key

problem in optimization of emissions is that, simultaneous reduction of CO, UHC,

soot emissions and NOx, imposes severe constraints on the system variables, and

may be extremely challenging in conventional combustion systems [7].
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However, semiclosed cycles can achieve substantially lower carbon (CO2,

CO, UHC and soot emissions) as well as NOx emissions, and are a key motivation

behind this work.

1.2 Motivation

Flameless combustion is a recent technology developed for control of

nitrogen oxides in the field of combustion engineering. Various names and acronyms

have been used to describe this  technology including Fuel/Oxidant Direct Injection

(FODI) [10], flameless oxidation-FLOX [4], MILD or diluted combustion [11] and

High Temperature Air Combustion (HiTAC) [12]. The nitrogen oxides, or NOx, of

interest in this subject include NO and NO2. N2O is placed in the category of a

Greenhouse Gas and isn’t usually categorized as NOx.  Flameless combustion

provides lower NOx emissions based on in-furnace control of the mixing and

reaction mechanisms rather than post treatment methods such as Selective Catalytic

Reduction (SCR) [13] or Selective Non-Catalytic Reduction (SNCR) [14] in

combustion facilities. Side benefits of flameless combustion include lower peak gas

temperatures, uniform heat transfer to furnace loads and compatibility with energy

saving strategies such as air preheat and oxy-fuel combustion.

Combustion-generated NOx is formed by three mechanisms [15]: thermal-

NOx, prompt-NOx, and fuel-NOx. Thermal-NOx, normally produced from the

reaction of oxygen and nitrogen in the combustion air, is considered the dominant

mechanism and is closely related to the reaction temperature in the combustion

environment.  Methods to reduce thermal-NOx formation include lowering the peak

combustion temperature, shortening the residence time of combustion air within the

high peak temperature region, and lowering the concentration of nitrogen in the

combustion air.  With flameless combustion, the reaction product gases are mixed

with the fuel and oxidant reactants producing a very diffuse reaction zone – the

combustion products (e.g. CO2, H2O, CO) are entrained into the reactant feed

streams before the main combustion reaction occurs.
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The diluted reactants cause a small amount of heat release (small temperature

variance) and relatively slow combustion reaction (fast energy diffusion).

Accordingly, there is a relatively low and uniform gas temperature profile in the

furnace environment with a significant reduction in thermal-NOx production.

The High Speed Reacting Flow Lab (HiREF) of UTM initially developed an

ultra-low NOx burner (non-premixed, natural gas-fired, multiple-jet burner, see

Figure 1.1), by adopting the flameless combustion technology.  This burner was

further studied and improved by some of students.  A key configuration of the

geometry of the this burner, called the ‘Strong-Jet/Weak-Jet’ (SJ/WJ) configuration,

was also studied to understand fundamental characteristics of flameless combustion

in the burner [16].  The burner system includes a fuel inlet and four oxidant feed

streams.  The inlets have a similar diameter leading to a higher momentum (the

Strong Jet) for the oxidant feed and a lower momentum (the Weak Jet) for the fuel

feed.  The jet feed streams are separated by a specified distance and angle as shown

in Figure 1.2.

Several subjects such as the aerodynamic interaction [16], chemical kinetics

and reduction of reaction mechanisms for flameless combustion [17], and

Computational Fluid Dynamics (CFD) simulation of the flameless combustion in the

furnace [18] were previously studied.  Although these previous work made

significant contributions in many respects, they have several limitations.  This study

Figure 0.Figure 1.1 The installed flameless combustion system in The High Speed Reacting Flow

Lab (HiREF)
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was, therefore, motivated to improve previous studies and to understand the

flameless combustion in the context of different configuration.

1.3 Research Objectives

The objectives of this present study consist of three parts: (a) a development

of 3-D physical model for an isothermal, tangential system, (b) a simplification of a

detailed chemical reaction mechanism for flameless combustion, and (c) Reynolds-

Averaged Navier-Stokes (RANS) simulation of the turbulent, flameless combustion

combined with the simplified chemical kinetics in the furnace.

A 3-D integral model [19] was previously developed to predict the co-axial

system behavior and showed good agreement with experimental data.  But, besides

some advantages such as uniformity, the co-axial model has a number of limitations:

as one of the major disadvantages of that, it can be said that in this model fuel and

oxidizer do not mix as well as tangential one. Although in tangential model lowering

the peak combustion temperature cannot be achieved as co-axial one, shortening the

residence time of combustion air within the high peak temperature region can be

produced well, so it can be predicted that, as the main goal, lower NOx emissions

will be produced in this model. Hence, a 3-D physical model of tangential flow was

developed in the present work to overcome the limitations. In addition, important

design/operation factors were identified from the 3-D physical model.

The chemical reaction kinetics of flameless combustion is considered to be

different from that of typical conventional combustion because of distinct

differences in the reaction rates. Accordingly the current reduced chemical kinetic

models or those based on few reaction steps, while useful in CFD simulation, have

limitations for flameless combustion because they are normally suitable only for

typical, conventional combustion systems.  Gokulakrishnan [20] attempted to reduce

a detailed chemical reaction mechanism for flameless combustion by using Principal

Component Analysis (PCA) and sensitivity analysis, but the resulting reduced

mechanism contains too many species and reactions to be used in CFD simulation.
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In this study a significant simplification of a detailed chemical reaction mechanism

was made for flameless combustion.

For simplicity many researchers have conducted CFD simulation of flameless

combustion with a fast-chemistry assumption [21-24] and global multi-step reaction

mechanisms [4, 22-27]. However, some researchers have considered the effects of

the detailed chemical kinetics on flameless combustion through the flamelet model

[28-31], the Eddy Dissipation Concept (EDC) [30] and the Conditional Moment

Closure (CMC) method [32].  In this work, steady-state simulation of the turbulent

flameless combustion in the furnace was conducted using the Finite Rate, Eddy

Dissipation and Eddy Dissipation Concept methods to examine the effects of

detailed chemical kinetics and comparing them with non-premixed method.

In this project, the flameless combustion system includes furnace and

refractory, burner and control system has been modelled. Also, installation of the

system is one of the objectives of this project. At the end the system was run in

conventional and flameless combustion mode and the performance of this system

evaluated in fuel consumption and NOx formation aspects.

The objectives of this research are:

1. To Simulate the Flameless Combustion Process Using FLUENT

Software

2. To Investigate the Aerodynamic and Pollutant Formation in the

Flameless Combustor

3. To study and compare the combustion efficiency, pollutant emissions

generation (in terms of CO and NOx) of tangential Fuel-Oxidizer injection, with

respect to co-axial flow

4. To investigate the performance (emissions, combustion efficiency and

stability) of different solving methods of CFD (e.g., Finite Rate, Eddy Dissipation

and Eddy Dissipation Concept), and present a comparison with Non-Premixed

solution method.
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