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ABSTRACT 

 

 

 

 

Composite structures present high strength, low weight and design flexibility 

in terms of fiber orientation and number of plies and used vastly in advanced and 

modern applications. Among them, carbon fiber-reinforced polymer composites 

(CFRP) are used widely in aeronautic and automotive industries in which 

components are subjected to different loading types and this will necessity of 

investigation on fracture analysis using damage mechanics concepts. The reliability 

of structures made of composites, depends on continual process of damage initiation 

and propagation. In the current research, a specific CFRP composite is being tested 

and finite element simulated under monotonic loading which creates Mode I, Mode 

II and Mixed Mode (I&II) of fracture. The specimen is designed and fabricated by 

Institute of Automotive and Transport Engineering (ISAT) and the damage 

development can be tracked easily on the localized interface. The Double Cantilever 

Beam (DCB), End Notched Flexure (ENF) and Mixed Mode Flexure (MMF) 

experiments and FE simulation have been used simultaneously to investigate the 

damage under Mode I, Mode II and Mixed Mode (I &II) of fracture loading 

condition. Although, Damage model used is cohesive zone model (CZM) which is 

developed and validated before. Results showed that the CZM-based FE model is 

correlated well with experimental results and based on the experimental-

computational approach, CZM parameters can be obtained and damage model will 

be characterized so that finite element method can be validated and stress and 

deformation analyses using FE results are feasible.  
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ABSTRAK 

 

 

 

 

Bahan struktur bahan rencam mempunyai sifat kekuatan yang tinggi, ringan 

dan fleksibel dalam rekabentuk terutamannyaa pada orientasi gentian dan jumlah 

lapisan  dan ianya banyak digunakan dalam aplikasi moden. Diantara jenis bahan 

rencam, polimer bertetulangkan gentian karbon banyak digunakan secara meluas 

terutama dalam industri penerbangan dan automotif di mana komponen tersebut 

dikenakan beban tekanan yang berbeza dan keperluan untuk menganalisis keretakan 

dengan menggunakan konsep Damage Mechanics. Kebolehpercayaan sesuatu 

struktur yang diperbuat daripada bahan rencam bergantung kepada proses yang 

berterusan terutamanya di permulaan kerosakan dan perebakannya. Dalam kajian ini, 

spesifik bahan rencam polimer bertetulangkan gentian karbon (CFRP) telah diuji dan 

kaedah simulasi kaedah unsur terhingga yang dikenakan beban tanjakan pada 

keadaan Mod I, Mod II dan Mod Campuran (I&II). Spesimen direka dan dibuat di 

Institut Kejuruteraan Automatif dan Pengangkutan, justeru perkembangan tahap 

kerosakan dapat dikesan dengan mudah pada antarafasa setempat.Eksperimen dan 

simulasi kaedah unsur terhingga pada Rasuk Berganda Julur (DCB), Lenturan Takuk 

Akhir (ENF) dan  Lenturan Campuran Mod (MMF) telah digunakan pada masa yang 

sama untuk mengkaji kerosakan dalam Mod I, Mod II dan Mod Campuran (I dan II) 

pada keadaan beban patah. Model kerosakan yang digunakan adalah cohesive zone 

model (CZM) yang mana telah dibangunkan dan disahkan sebelum ini.Keputusan 

daripada simulasi model CZM-FE adalah berkait rapat dengan keputusan eksperimen 

dengan menggunakan kaedah eksperimen-perkomputeraan. Parameter CZM juga 

boleh diperolehi daripada Damage Model supaya kaedah unsur terhingga dapat 

disahkan. Keputusan analisis tegasan dan perubahan bentuk  berdasarkan keputusan 

daripada kaedah unsur terhingga adalah boleh diguna pakai. 
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CHAPTER 1.0 

 

 

 

 

INTRUDUCTION 

 

 

 

 

1.1 Introduction 

 

 

In this chapter, the background of the study and some discussions on key 

issues relating to damage mechanics of advanced composite structures, under Mixed-

mode bending loading condition will be presented and briefly described. Moreover, 

the finite element method as a key numerical procedure to study the behavior of 

material during evolution of damage under tension and shear stress will be shortly 

discussed. Subsequently, the objectives of the study will be either presented or 

followed by a discussion on the scope and significance of the study. 

 

 

The current research will focus on modeling and finite element (FE) 

simulation of a specific carbon fiber reinforced polymer (CFRP) with specific 

number of plies and fiber orientation with pre-existing crack and in three point 

flexural Mixed-mode loading condition. The FE simulation should then validated 

with real-world conditions, therefore a systematic experimental procedure will be 
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conducted and the results of both numerical modeling and simulation and also, 

experimental data will be compared with each other to investigate on accuracy and 

reliability of numerical method. 

 

 

 

 

1.2 Background of the Study 

 

 

Carbon-fiber-reinforced polymer, carbon-fiber-reinforced plastic or carbon 

fiber reinforced thermoplastic (CFRP, CRP, CFRTP or often simply carbon fiber, or 

even carbon), is an extremely strong and light fiber-reinforced polymer which 

contains carbon fibers. it has many applications in aerospace and automotive fields, 

such as Formula One racing. The compound is also used in sailboats, rowing shells, 

modern bicycles, and motorcycles because of its high strength-to-weight ratio and 

very good rigidity. Improved manufacturing techniques are reducing the costs and 

time to manufacture, making it increasingly common in small consumer goods as 

well, such as fishing rods, hockey sticks, paintball equipment, archery equipment, 

tent poles, racquet frames, stringed instrument bodies, drum shells, golf clubs, 

helmets used as a paragliding accessory and pool/billiards/snooker cues (Koloor et 

al.). 

 

 

Unlike metals, composite materials are inhomogeneous (on a gross scale) and 

anisotropic. They accumulate damage in a general rather than a localized fashion, 

and failure does not always occur by the propagation of a single macroscopic crack. 

The micro-structural mechanisms of damage accumulation, including fiber breakage 

and matrix cracking, debonding, transverse-ply cracking, and delamination, occur 

sometimes independently and sometimes interactively, and the predominance of one 

or the other may be strongly affected by both materials variables and testing 

conditions. 

http://en.wikipedia.org/wiki/Fiber-reinforced_polymer
http://en.wikipedia.org/wiki/Carbon_%28fiber%29
http://en.wikipedia.org/wiki/Formula_One
http://en.wikipedia.org/wiki/Strength-to-weight_ratio
http://en.wikipedia.org/wiki/Fishing_rod
http://en.wikipedia.org/wiki/Paintball
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1.2.1 Composite Material 

 

 

Composite materials (also called composition materials) are materials made 

from two or more constituent materials with significantly different physical or 

chemical properties, that when combined, produce a material with characteristics 

different from the individual components. Composite materials have advantageous 

over metals such as high strength, light weight, design flexibility, consolidation of 

parts etc. Advanced composite materials are finding increasing application in 

aerospace, automotive, marine and many other industries due to the advantages in 

performance, structural efficiency and cost they provide. Composite structures have 

different classifications, such as Particle-Reinforced, Fiber-Reinforced and Structural 

composites. Form these categories; fiber-reinforced composites have wide range of 

application in modern and advanced structures. Carbon Fiber-Reinforced Polymer 

(CFRP) composites are commonly employed in modern structural application such as 

aircraft wing, rotor blades, and automobile chassis. 

 

 

 

 

1.2.2 Finite Element Method 

 

 

The finite element method (FEM) is a numerical method seeking an 

approximated solution of the distribution of field variables in the problem domain 

that is difficult to obtain analytically. It is done by dividing the problem domain into 

several elements. Known physical laws are then applied to each small element, each 

of which usually has a very simple geometry. A continuous function of an unknown 

field variable is approximated using piecewise linear functions in each sub-domain, 

called an element formed by nodes. The unknowns are then the discrete values of the 

field variable at the nodes. Next, proper principles are followed to establish equations 

for the elements, after which the elements are „tied‟ to one another. This process 

http://en.wikipedia.org/wiki/Material
http://en.wikipedia.org/wiki/Physical_property
http://en.wikipedia.org/wiki/Chemical_property
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leads to a set of linear algebraic simultaneous equations for the entire system that can 

be solved easily to yield the required field variable (Quek and Liu, 2003). 

 

 

 

 

1.2.3 Cohesive Zone Model 

 

 

The cohesive zone model (CZM) is one of the most modern evolutions in the 

area of fracture mechanics in which fracture formation is regarded as a gradual 

phenomenon in which the separation of the surfaces involving in the crack takes 

place across an extended crack tip, or cohesive zone, and is resisted by cohesive 

tractions. This method has several advantages in comparison with the conventional 

methods in fracture mechanics. For illustration, It is able to adequately predict the 

behavior of uncracked structures, including those with blunt notches or Size of non-

linear zone need not be negligible in comparison with other dimensions of the 

cracked geometry in CZM, while in other conventional methods, it is not so, and,  

Even for brittle materials, the presence of an initial crack is needed for LEFM to be 

applicable. 

 

 

The cohesive zone model (CZM) is widely used in modeling fracture and 

other failure phenomena in different types of materials. Applications can be found in 

homogeneous as well as composite materials (Zreid et al., 2013). 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Fracture_mechanics
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1.3 Research Objectives 

 

 

 To develop finite element (FE) model of carbon fiber-reinforced polymer 

(CFRP) composite laminates with initial defect under mixed-mode bending 

(MMB) load. 

 

 

 To validate and examine available damage-based models for the mixed-mode 

bending. 

 

 

 

 

1.4 Problem Statement 

 

 

How an appropriate available damage based can be evaluated to respect the 

initial defect under Mixed-Mode bending for CFRP? 

 

 

1.5 Research Scopes 

 

 

 Review of Finite Element (FE) formation for solid (8-node) element, FE 

modeling of CFRP composite laminates, continuum damage models, cohesive 

behavior of interface. 

 

 

 Review the current status FE simulation of CFRP composite laminates based 

on damage mechanics approach. This work that composite of Mode I and 

Mode II loading case was performed by a doctoral candidate at CSMLab. 
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 Develop FE model of the CFRP composite beam [ ]  with initial interface 

crack for mixed mode bending test setup. Established characteristic load-

deflection curve. 

 

 

 Perform flexural test on the composite beam specimen using mixed-mode 

bending (MMB) test setup in accordance to the test standard. 

 

 

 Validate the FE model with measured load-deflection data. Analysis internal 

states of displacement, strain and stress in the laminates with respect to 

damage initiation, propagation and localized fracture.    

 

 

 

 

1.6 Research Questions 

 

 

  Is it possible to simulate the real Carbon Fiber-Reinforced Polymer (CFRP) 

in virtual space for predicting the behavior of this material under complex 

loading? 

 

 

 How an appropriate available damage based can be evaluated to respect the 

initial defect under Mixed-Mode bending for CFRP? 
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1.7       Structure of Research 

 

 

In chapter 1, the background of the study, statement of the problem, 

objectives, research questions, scope of project, research question and research 

hypothesis are described. 

 

 

In chapter 2, review of the literature related to damage mechanics of 

composite structures and also some review on kind of fracture modes in mechanics, 

especially mixed mode as well as introduction to cohesive zone model will be 

covered with more details.  

 

 

In chapter 3, the evaluation of methodology will present. Moreover, the used 

material, experimental and numerical techniques will be covered. 

In chapter 4, the preliminary results and dissection on the results will be 

discussed.  

 

 

Finally, in chapter 5 conclusion and summary of preliminary results will  be  

presented briefly.  
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