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ABSTRACT 

Composite materials are widely used in aircraft, automotive, marine and 

railway applications and may be exposed to impact loads, particularly low velocity 

impact. As material properties of composites are sensitive to strain-rate effects, 

conducting finite element analysis (FEA) of the impact simulation by using static 

material properties would not predict their behaviour accurately. Thus, the aim of this 

study is to incorporate strain-rate dependent behaviour influence into anisotropic 

damage model (ADM) and implement it in FEA for impact simulation. The study 

begins with extracting material properties data for ADM from published 

experimental data. The mathematical equation established from the extracted 

material properties were then used to develop the strain-rate dependent ADM and 

coded using ABAQUS/VUSDFLD, commercial finite element software. The 

developed strain-rate dependent (SRD) ADM was validated using published tensile 

test data. Impact simulation was conducted using both the static ADM and strain-rate 

dependent ADM and the results from the simulations were compared with published 

three-point bending impact experimental data at impactor speeds of 2, 3, 4 and 5 m/s 

for both cross-ply and angle-ply laminate orientations. The impact simulation results 

show that the incorporation of strain-rate dependency in ADM improves the 

prediction of three-point bending impact simulation reaction force by reducing the 

mean error from 33% to 14% for cross-ply laminates and from 12% to 10% for 

angle-ply laminates. This strain-rate dependent ADM impact simulation could thus 

be implemented as a design tool for analysing the impact damage resistant of 

laminated composites under low velocity impact. 
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ABSTRAK 

Bahan komposit telah banyak digunakan dalam bidang pesawat terbang, 

automotif, marin dan kereta api dan mungkin terdedah kepada bebanan impak, 

terutamanya impak berhalaju rendah. Disebabkan sifat-sifat bahan komposit yang 

sensitif kepada kesan kadar-terikan, pelaksanaan analisis unsur terhingga (FEA) 

untuk simulasi impak dengan menggunakan sifat-sifat bahan statik tidak dapat 

menjangkakan perlakuannya dengan tepat. Oleh itu, tujuan kajian ini adalah untuk 

menggabungkan pengaruh perlakuan bersandarkan terikan-ricih ke dalam model 

kerosakan anisotropik (ADM) dan melaksanakannya di dalam FEA untuk simulasi 

impak. Kajian dimulakan dengan mendapatkan data sifat-sifat bahan untuk ADM 

daripada data ujikaji yang telah diterbitkan. Persamaan matematik yang dibangunkan 

daripada sifat-sifat bahan yang diperolehi kemudiannya digunakan untuk 

membangunkan ADM bersandarkan kadar-terikan (SRD) dan diaturcarakan 

menggunakan perisian unsur terhingga komersial, ABAQUS/VUSDFLD. ADM 

bersandarkan kadar-terikan yang dibangunkan ditentusahkan menggunakan data 

ujian tegangan yang diterbitkan. Simulasi impak telah dijalankan dengan 

menggunakan kedua-dua ADM statik dan ADM bersandarkan kadar-terikan dan 

keputusannya telah dibandingkan dengan data eksperimen impak lenturan tiga titik 

pada kelajuan penghentak 2, 3, 4 dan 5 m/s untuk lamina berorientasi silang and 

berorientasi sudut. Keputusan simulasi impak yang menggunakan ADM 

bersandarkan kadar-terikan didapati memberikan jangkaan daya tindak balas simulasi 

impak lenturan tiga titik yang lebih baik dengan mengurangkan ralat purata dari 33% 

ke 14% untuk lamina berorientasi silang dan dari 12% ke 10% untuk lamina 

berorientasi sudut. Simulasi impak yang menggunakan ADM bersandarkan kadar-

terikan ini diharap dapat digunakan sebagai alat reka bentuk untuk menganalisis 

ketahanan daripada kerosakan disebabkan impak halaju rendah terhadap komposit 

berlamina.  
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Laminated composites are more becoming the material of choice in advanced 

engineering applications such as aerospace, marine, automotive and railways due to 

its advantages such as high strength to weight ratio, resistance to corrosion and low 

coefficient of thermal expansion when compared to conventional materials, e.g. 

aluminium, alloys and steel. 

The use of laminated composites in advanced engineering applications 

exposes them from low velocity to high velocity impact loadings during maintenance 

and operation. Low velocity impact loads induce failure and damage within the 

lamina and inter-laminar layer (Broutman and Rotem, 1975). Within the lamina layer 

impact induces matrix cracks and fibre breakage. In addition, at interlaminar layer 

impact load induces delamination mode of failure or barely visible impact damage 

(BVID) due to laminated composites’ low interlaminar shear strength (ISS). Miller et 

al. (1994) reported that 60% of all damage observed on civil aircrafts is delamination 

failure caused by impact load. BVID may appear to be undamaged on laminated 

composite surface during visual inspection; however internal delamination could 

become an invisible threat since it reduces stiffness and strength of laminated 

composite structures. 
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In the last few decades, finite element analysis (FEA) has become an 

important tool in assisting the design of laminated composites under low velocity 

impact loads. However, the analysis of low velocity impact load using static material 

properties (low strain-rate behaviour) of laminated composites was reported to 

predict impact force 30-40% lower than actual (Okoli and Abdul-Latif, 2002). The 

underestimate of impact force can be associated with the lack of strain rate-

dependant behaviour in laminated composite damage model used. A study by Abrate 

(1994) indicated that laminated composite structures under low velocity impact of up 

to 10 ms-1 produce strain-rates as high as 103 s-1 at the point of impact and 101 s-1

elsewhere in the structure. For glass fibre laminated composites, Okoli (1996) 

reported from the experiments done to relate material properties to strain-rate and 

concluded that the tensile stiffness and strength increases linearly with log of strain-

rate by 1.82% and 9.3% respectively for up to 101 s-1 strain-rate. The increase in 

stiffness and strength of laminated composite is influenced by viscoelastic effect 

(increase in matrix yield) and matrix non-linear plasticity (Okoli, 1996). Thus, the 

influence of strain rate-dependant behaviour on simulation of laminated composites 

under low velocity impact must not be neglected if reliable modeling approaches are 

to be used. 

1.2 Problem Statement 

Since laminated composites are very vulnerable to impact loads due to its 

weak interlaminar shear strength, accurate predictive methods are essential in the 

design of composite structures. The finite element analysis has become a useful tool 

in the design of laminated composite structures to achieve the required specifications 

for advanced engineering purposes. However, most finite element analysis for impact 

simulation lacks the capability to simulate the strain-rate-dependent behaviour of 

composites. Inclusion of strain-rate-dependent behaviour in finite element models 

allows better prediction of the impact event and response, enabling optimised design 

of composite structures with thinner laminates to save weight and reduce production 

costs. 
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1.3 Objective  

The objectives of this study are:  

1. To extend an existing anisotropic damage model (ADM) formulation by 

including strain-rate dependent behaviour for impact simulation.  

2. To validate the extended ADM with published experimental data, and to 

demonstrate the new subroutine capabilities by comparing the results of its 

simulation of actual impact events with that of the existing ADM.  

1.4 Scope of Work 

The scope of this study cover the following:  

1. Linear regression method was used to establish mathematical formulation 

from published experimental data. 

2. Shell element with anisotropic damage model (ADM) and cohesive element 

with cohesive zone model (CZM) were selected to model the laminated 

composite. Both elements use bi-linear curve law. 

3. The developed strain-rate dependent ADM (SRD ADM) was limited for 

strain-rate at range between 10-3 s-1 to 105 s-1. 

4. Only tensile test data at strain-rate between 10-3 s-1 to 105 s-1 was used to 

validate the developed SRD ADM.  

5. Impact simulations were run for impactor speed at range between 2 to 5 ms-1. 

1.5 Thesis Outline 

This thesis consists of 6 chapters. In Chapter 1, the background and the 

necessity of the research are brought out.  The issue of laminated composite 

reliability being faced in the advance engineering applications and the related need 
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for a key of solution are elaborated. The objectives, scope and problem statement of 

this research are presented.  

In Chapter 2, reviews are presented on the laminated composites, failure in 

laminated composites, low velocity impact failure in laminated composites, effect of 

strain-rate to laminated composites material properties, finite element analysis of

laminated composites, modeling failure and damage at lamina layer and inter-laminar 

layer.

In Chapter 3, the research methodology is presented. The details of the FEA 

model and anisotropic damage model (ADM) used in the study are described.   

In Chapter 4, the subroutine of strain-rate dependent ADM is presented. The 

flowchart, mathematical formulation and validation are described. The details on the 

finite element analysis (FEA) impact simulation models used in the study such as 

geometry, material properties, boundary conditions and loadings are described. 

In Chapter 5, the influence of strain-rate dependent ADM to impact 

simulation is examined.  The damage at the lamina layer and the inter-laminar layer 

is investigated.  

In Chapter 6, conclusions of the research are presented with summary on 

major findings in the study. Future works for refining the research are recommended.  
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