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ABSTRACT 

 

 

 

 

The computational wear simulation has been widely used to predict wear 

generated on hip and knee implant but studies related to wear analysis of the ankle 

are limited. The purpose of this study is to develop finite element analysis on total 

ankle replacement (TAR) wear prediction. Three-dimensional (3D) models of a right 

ankle TAR have been created to represent Bologna-Oxford (BOX) TAR model. The 

model consist of three components; tibial, bearing and talar representing their 

physiological functions. The joint reaction force profile at ankle joint has applied 25 

discrete instants during stance phase of a gait cycle. It is to determine the distribution 

of contact stress on meniscal bearing surfaces contact with talar component. The 

sliding distance was obtained from predominate motions of plantar/dorsi flexion. 

Parametric studies to reduce wear have been conducted to optimize the design of 

polyethylene joint. The parameters involved are the thickness of the meniscal 

bearing, the radius of curvature between talar and bearing component, the width and 

length of meniscal bearing. The value of linear wear depth is 0.01614 mm per 

million cycles which is in agreement with other studies (0.0081 – 0.0339 mm per 

million cycles). The relative difference is 9%. The value of volumetric wear after 

five million cycles is 30.5 mm3 which is in agreement with other studies (16 – 66 

mm3). The relative difference is 12%. The best dimension to use for the thickness, 

radius of curvature, width and length of meniscal bearing are 6 mm, 30 mm, 30 mm 

and 22 mm, respectively.  
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ABSTRACT 

 

 

 

 

Simulasi pengiraan haus telah digunakan secara meluas untuk meramalkan 

haus yang dijana pada implan pinggul dan lutut tetapi kajian yang dilaporkan 

berkaitan dengan analisis haus di buku lali adalah sangat terhad. Tujuan kajian ini 

adalah membangunkan analisis unsur terhingga untuk meramalkan haus pada 

penggantian buku lali (TAR). Model tiga dimensi (3D) buku lali kanan TAR telah 

dibangunkan menggunakan penggantian buku lali jenis Bologna-Oxford (BOX). 

Model ini terdiri daripada tiga komponen; tibial, bearing dan talar yang mewakili 

fungsi fisiologi masing-masing. Beban yang digunakan pada buku lali adalah 

berdasarkan profil daya yang bertindak pada buku lali iaitu sebanyak 25 peringkat 

berasingan bagi melengkapkan fasa pendirian kitaran gaya berjalan. Ini adalah bagi 

menentukan taburan tekanan sentuhan pada permukan meniscal bearing yang 

bersentuh dengan komponen talar. Jarak gelungsur telah diperolehi daripada 

pergerakan yang paling dominan iaitu plantar/dorsi flexion. Kajian parametrik 

dijalankan untuk mengoptimumkan rekabentuk polyethylene di bahagian sendi  

terutamanya untuk mengurangkan haus. Parameter yang terlibat ialah ketebalan 

meniscal bearing, jejari kelengkungan antara komponen talar dan bearing, lebar dan 

panjang meniscal bearing. Nilai kedalaman haus linear adalah 0.01614 mm bagi 

setiap satu juta kitaran yang mana ianya berada dalam julat persetujuan dengan 

kajian-kajian lain (0.0081 – 0.0339 mm bagi setiap satu juta kitaran) dengan 

perbezaan relatif sebanyak 9%. Nilai isipadu kehausan selepas lima juta kitaran 

adalah 30.5 mm3 yang mana ianya berada dalam julat persetujuan dengan kajian-

kajian lain (16 – 66 mm3) dengan perbezaan relatif sebanyak 12%. Dimensi terbaik 

ketebalan, jejari kelengkungan, lebar dan panjang meniscal bearing adalah masing-

masing sebanyak 6 mm, 30 mm, 30 mm dan 22 mm. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.0  Introduction 

 

 

Total ankle replacement (TAR) is an artificial joint that has developed 

significantly to replace the arthritic ankle joint. The arthritic or damaged joint 

surfaces have removed and replaced with the artificial joint to restore ankle mobility 

and stability while performing daily activities. Besides that, there is a therapy 

resistant for ankle pain without remove and replaced joint surfaces known as ankle 

fusion, also known as arthrodesis. However, the disadvantages of ankle arthrodesis 

have led to the development of numerous ankle prostheses. The development of total 

ankle replacement (TAR) has lagged behind than the total hip replacement (THR) 

and total knee replacement (TKR). However, clinically has shown that the ankle 

replacement designs are still not fully satisfactory.   
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1.1 Problem Statement 

 

 

Arthritis is the main issues that bring an ankle joint to have an operative 

(arthrodesis or ankle replacement) or non-operative management (analgesics and 

anti-inflammatory medication, activities modification, physiotherapy, orthotics 

(bracing) and intra-articular injections) [1,2]. In the ankle joint, primary osteoarthritis 

is less frequent but secondary arthritis to trauma occurs is frequent compared with 

the knee and hip joint [1]. The earliest treatment of end-stage arthritis of the ankle 

joint has been used was arthrodesis, known as ankle fusion, that considered as ‘gold 

standard’ treatment for patient suffering from this condition [1,3]. It has becoming 

popular to be used because of the arthroscopically assisted and minimally invasive 

[1,3,4]. Alternative to arthrodesis is ankle replacement which is for selected patients. 

The advantage of ankle replacement using prosthesis is the installation of the 

physiologic motion of ankle activity. This will improvise the gait activities which 

could also reducing limp and protect the other joints [2]. The major complication  

related with failure of  ankle replacement is loosening of the component [2,5,6,7].      

 

 

Aseptic loosening of joint replacement is becoming a crucial factor of total 

ankle replacement (TAR) failures and revision. Even the expanding of the 

development of joint replacement is impressive and shows promising result. The 

main factor that limiting the longevity of total ankle replacement (TAR) is particle 

induced osteolysis (bone resoption). Polyethylene wear particles are generated from 

relative movement between contacting components (soft-on-hard (SoH)). This wear 

particles stimulate an immune response that initiate a cascade of adverse tissue 

responses leading to osteolysis and the subsequent loosening of the implant 

component [8,9]. The loosen ankle replacement will cause a greater impact to the 

patient such as severe pain around the ankle. When this happened, a surgery is 

required in order to revise the ankle [9]. 
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In a few decades, it has shown that there was a big improvement of design for 

the first generation of ankle replacement since 1970s until now. The studies have 

been done to come out with the design of TAR, which imitate the natural anatomy of 

ankle in order to preserve human movements [10]. The mobile ankle-type has 

introduced to perform the physiological ankle mobility. The components of mobile 

ankle consist of a spherical convex tibial component, a talar component with radius 

of curvature in the sagittal plane longer than that of the natural talus, and a 

corresponding meniscal component[11,12,13]. The new generation ankle 

replacement is fully conforming, and completely congruence in designs to provide 

greater stability and resistance to wear. Other advantage of congruent surfaces is the 

load from the body weight acts on the surfaces it is distributes well across the 

surfaces. It is led to decreasing wear due to reduce contact pressure [5]. 

  

 

The investigations of wear mechanism of UHMWPE of ankle joint replacement 

have reported by means of experimental test. The laboratory study has carried out 

using simulators to install originality of realistic loading and kinematics conditions of 

the ankle joint. Preoperative in-vitro wear predictions are useful and requires for 

implant design optimization of total ankle replacement (TAR). However, it is costly 

as well as time consuming. From the best of our knowledge, there is no wear 

prediction on total ankle replacement (TAR) by using finite element analysis. 

Therefore, the main objective was to develop computational wear simulation of the 

total ankle replacement (TAR) for the stance phase of gait cycle. 
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1.2 Objectives 

 

 

The purpose of this research is to develop a computational wear prediction on 

total ankle replacement (TAR). The specific objectives: 

 

i. To develop the total ankle replacements (TAR) wear model. 

ii. To validate the linear and volumetric wear predictions with in vitro studies. 

iii. To analyse the total ankle wear replacement (TAR) wear model with different 

parameters are thickness of meniscal bearing, radius of articular contact, 

width and length of meniscal bearing.   

 

 

 

1.3 Scopes  

 

 

1. The three-dimensional (3D) model of total ankle replacement is constructing to 

represent Bologna-Oxford (BOX).  

2. This study develops the computational work using finite element analysis to 

simulate ankle gait analysis.  This study will limit to only stance phase of ankle 

gait cycle because the swing phase does not give any loads.  

3. The computational simulations will perform to extract data of sliding distance 

and contact pressure, which is this parameter will include in the wear calculation. 

4. Linear wear depths, h and volumetric wear, V of total ankle replacement (TAR) 

are important parameters that will analyse in the wear prediction on total ankle 

replacement (TAR).  

5. The contact geometry of bearing-talar contact will update using adaptive 

remeshing techniques until 5 million cycles with appropriate update intervals.  

6. This research will continue to perform parametric studies of total ankle 

replacement for the design optimization. This parametric studies will covers the 

thickness of the meniscal bearing, the radius of the articular contact between 

talar and bearing component, the width of meniscal bearing and the length of 

meniscal bearing. 
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1.4 Significance of the Study 

 

 

A major reason of total ankle replacement (TAR) failures and revision is 

aseptic loosening. The production of wear debris induces osteolysis that opposes 

response of tissue that led to loosening. This study on wear prediction of total ankle 

replacement (TAR) using finite element analysis method is an alternativeto solve 

ankle replacement complications. Pre-clinical experimental wear testing is very 

effective to evaluate new ankle replacement in the aspect of design and material used. 

However, both cost and time can be one of the constraints factors, particularly in the 

early stage of design or analysis. Therefore, numerical method has been addressed as 

an alternative to predict wear on ankle replacement. 
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