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ABSTRACT

Indium gallium phosphide (InGaP) nanowires were grown on gallium 

arsenide (GaAs) substrate by using metal-organic chemical vapour deposition 

(MOCVD) via vapour-liquid-solid (VLS) technique. The grown InGaP wires were 

characterized by using scanning electron microscopy (SEM), field emission scanning 

electron microscopy (FE-SEM), transmission electron microscopy (TEM) and energy 

dispersive X-ray spectroscopy (EDX). The results showed that the growth of the 

InGaP wires depend strongly on the growth temperatures and substrate orientations. 

At low temperature of 380°C, wires grown on GaAs substrates were almost cylinder

like, while with increasing temperatures ranging from 410-500°C, the reverse- 

tapering phenomenon occurred producing microphone-like InGaP nanowires. With 

increasing temperature from 380-500°C, Au alloy-seed particle or the head part of 

the InGaP nanowires were also observed to be thicker in diameter (85-452 nm) than 

the body part (49.2-224.3 nm), which had been proven by the chemical compositions 

percentage in EDX analysis. Wires grown on GaAs (100) substrate were less than 

number of wires on GaAs (111) B substrate although wires on both substrates are 

basically grown on random directions. Twin boundaries crystal defects have been 

detected on some of the InGaP nanowires structures from TEM analysis. Such 

defects are not good and should be avoided to prevent further problem when being 

incorporated into potential devices. The crystal structure for all samples of InGaP 

wires is zinc blende (ZB), the lattice spacing (d) of InGaP wires is 3.342A, and the 

lattice parameter (a) is 5.788A.
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ABSTRAK

Wayar nano indium galium fosfida (InGaP) telah ditumbuhkan di atas 

substrat galium arsenida (GaAs) dengan menggunakan pemendapan wap kimia 

logam organik (MOCVD), melalui teknik wap-cecair-pepejal (VLS). Semua wayar 

nano InGaP yang tumbuh telah dikaji menggunakan mikroskop imbasan elektron 

(SEM), mikroskop elektron pengimbas pancaran medan (FE-SEM), mikroskop 

transmisi elektron (TEM) dan spektroskopi sebaran tenaga sinar-X (EDX). 

Keputusan menunjukkan bahawa pertumbuhan wayar InGaP adalah sangat 

bergantung kepada suhu pertumbuhan dan orientasi substrat. Pada suhu yang rendah 

iaitu 380°C, wayar yang tumbuh di atas substrat GaAs adalah hampir menyerupai 

silinder, tetapi dengan kenaikan suhu dengan julat 410-500°C, fenomena ‘tirus- 

terbalik’ berlaku dalam menghasilkan wayar nano InGaP yang menyerupai mikrofon. 

Dengan kenaikan suhu dari 410-500°C juga, artikel benih-aloi emas di bahagian 

kepala wayar InGaP dapat dilihat lebih tebal diameternya (85-452 nm) berbanding 

bahagian badan wayar tersebut (49.2-224.3 nm), di mana hasil ini dapat ditunjukkan 

melalui keputusan peratusan komposisi kimia oleh analisis EDX. Bilangan wayar 

nano yang tumbuh di atas substrat GaAs (100) adalah kurang berbanding bilangan 

wayar nano di atas substrat GaAs (111) B, walaupun wayar di atas kedua-dua 

substrat tumbuh pada arah yang rawak dan tidak tersusun. Kecacatan kristal 

sempadan berkembar pada struktur wayar InGaP dapat dilihat daripada analisis 

TEM. Kecacatan seperti ini adalah tidak baik dan perlu dielakkan bagi membendung 

masalah yang berkemungkinan muncul apabila wayar nano tersebut digunakan bagi 

membina alat yang berpotensi. Struktur kristal bagi semua sampel wayar InGaP 

adalah zink blend (ZB), jarak kekisi (d) bagi wayar InGaP tersebut ialah 3.342A, 

manakala parameter kekisi (a) pula ialah 5.788A.
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CHAPTER I

INTRODUCTION

1.1 Background of Research

Every materials around us has substructure with quantum-scale size, which is 

basically range from 0.1-100 nm. Nanotechnology is closely related to the science of 

understanding, controlling and enabling the optimum growth of these quantum-scale 

structures in terms of length, time and efficiency with as little risk as possible (Bauer 

et. al., 2006; Ramesh, 2009). The main focus of nanotechnology is basically to save 

up on materials while building molecules from many assembled atoms and for it to 

serve its own specific function, to ensure continuous capabilities and development in 

efficient wafer-scale electronic devices (Chuang et. al., 2005; Bauer et. al., 2006; 

Ramesh, 2009; Volz, 2009). An isolated quantum-structure has different but as 

important as the properties in its bulk structure (Chuang et. al., 2005; Roduner, 2005; 

Dick, 2008; Ramesh, 2009; Volz, 2009). Because of this size reduction from bulk to
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a single quantum-structure, not only the properties are changed, but it also affects the 

behaviour of the structure and its usage in future electronic devices.

In this size reduction of structure to quantum-scale, it basically cause from 

two important effects, which is from surface effect and quantization effect. Surfaces 

and interfaces in solid state behave differently from other bulk materials, so surface 

effect is closely related to surface-to-volume ratio of a structure (Sharma et. al., 

2003; Ponomareva et. al., 2007; Dick 2008; Volz, 2009). In bulk structure or 

structure bigger than 100nm, since the surface-to-volume ratio is too small, it can 

easily be neglected since it did not affecting the structure properties. However, in 

quantum structure, the surfaces give significant effect due to higher surface-to- 

volume ratio compared to the bulk structure, which somehow causing the change in 

its properties because of the strain energy in the structure. Quantization effect happen 

when the diameter of quantum structure is smaller than exciton Bohr diameter and 

Fermi length. So when the dimension of the structure is small enough (quantum- 

scale), the electrons will be confined by the limitation of that structure, which 

resulting in energy quantization inside that confining dimension (Das, 1998; Zanolli 

et. al., 2007; Dick, 2008; Volz, 2009; Yi, 2012).

The quantum structure can be divided into four groups, two-dimensional (2D) 

structure: nanofilms and superlattices (stacks of nanofilms), one-dimensional (1D) 

structure: quantum wires, zero-dimensional object (0D): quantum particles or 

quantum dots, and carbon nanotubes: graphene sheets rolled into cylinder shape 

(Volz, 2009). In the recent years, both semiconductor and metal quantum structures 

have been investigated progressively for the sake of nanotechnology development. 

However, while there are still limited progresses when it comes to metal quantum 

structures applications, many accomplishments from nanotechnology were more 

focused on the applications of semiconductor quantum structures into electronic and
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optoelectronic devices. Semiconductors are very suitable to be used in these devices, 

especially because their conductivity can be modified easily just by altering the use 

of its electric field (Dick, 2008).

Nanowires or quantum wires (QWRs) is one the quantum materials branch in 

quantum structure to build semiconductor. With its one-dimensional (1D) properties, 

nanowire or quantum wire (QWR) has been garnering a lot of attentions since it has 

been introduced by Wagner et. al. (1964) in the hope of that only a single quantum 

structure can be accessed easily by using external microscopic systems instead using 

bulk structures (Chuang et. al., 2005). Quantum wires have also been widely studied 

because of its size reduction effect phenomena and also because of its promising 

potential to be used in variations of device applications (Novak et. al., 2000; Lu et. 

al., 2006; Dowdy et. al., 2013). In addition, these semiconductor nanowires or 

quantum wires (QWRs) also have the ability to interconnect functional quantum- 

scale components together, with the same wires can actually be used to fabricate 

those components sequentially. So, in a way, their potential usage in future devices 

are increase with this ability to incorporate the components that is otherwise too 

difficult or impossible altogether to realize in two-dimensional (2D) system (Dick, 

2008).

Because of these various abilities that has been showed by semiconductor 

quantum wires structures of their usage, especially in high-efficiency electronics and 

optical applications (Bauer et. al., 2007; Fakhr et. al., 2010), many studies were 

started by using elemental and binary compounds materials of semiconductors 

quantum wires. All these studies of semiconductors are various, which are ranged 

from silicon (Si), group IV material such as Ge, II-V binary metal oxide compounds 

like ZnO and binary III-V alloy such as GaAs and InP (Woods et. al., 1994; Chuang 

et. al., 2005; Dick, 2008; Jabeen et. al., 2008; Fakhr et. al., 2010, Yi, 2012).
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However, researchers nowadays are more focusing on overall development of 

synthesizing and investigating ternary and quarternary III-V compound 

semiconductor. This is because most of these type semiconductor materials typically 

exhibit cubic zinc-blende (ZB) structure in their bulk, which are advantages 

especially in terms of their interesting physical characteristics, mechanical and 

electronic properties. Thus, these advantages are the basic reason there are many 

researches done to synthesize good semiconductor quantum wires while maximizing 

those characteristics and properties for future desired applications (Wang et. al., 

2002; Dick, 2008; Chuang et. al., 2005).

Following the prior motivations, many researches have been more focused on 

phosphorus-based III-V compound semiconductors quantum wires, where from it 

usage are expanded and varied for many device applications (Ozasa et. al., 1990). 

Some of these devices which containing phosphorus-based III-V semiconductors 

quantum wires are like GaAsP for lasers (Ozasa et. al., 1990; Hua et. al., 2009), 

InAsP for photodetectors (Pettersson et. al., 2006) and InGaP for single-electron 

transistors (SETs) and single-hole transistors (SHTs) which also suitable for light 

emitting diodes (LEDs) (Ozasa et. al., 1990; Matsuzaki et. al., 1999; Chuang et. al., 

2005; Svensson et. al., 2008; Fakhr et. al, 2010).

Among all these phosphorus-based III-V semiconductors, the most appealing 

phosphorus-based ternary alloy is Indium Gallium Phosphide (InGaP), which has 

two end binaries, InP alloy and GaP alloy, because of its possibility on accessing 

wide range of wavelength which ranging from visible wavelength to 925nm at room 

temperature (Chuang et. al., 2005). According to Dick (2008), GaP is not reactive 

and the most stable alloy, thus, makes it the easiest to work with. While InP which 

have properties in between, makes it the most suitable alloy to be used and adapted 

into many device applications. And recently, due to the photovoltaic capabilities of
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III-V semiconductor, InGaP quantum wires also showed that it can be used in a 

multi-junction design to the improve energy conversion efficiency (Czaban et. al., 

2009; Fakhr et. al., 2010). The increase of interests on potentially incorporating 

InGaP compounds into electronic and optoelectronic device applications also mainly 

because of two reasons, it has higher chemical stability and also has lower surface 

recombination (Guimaraes et. al., 1992; de Castro et. al., 1999; Novak et. al., 2000; 

Kicin et. al., 2001; Kicin et. al., 2004).

In building structures with at least one dimension is less than 100nm, 

nanofabrication, or ways to fabricate the quantum structure are needed. And 

generally, there are two basic approaches in fabricating quantum structures, or in 

specific, bulk semiconductor quantum wires. The two approaches are commonly 

called as top-down approach, where quantum wire structures are patterned and 

produced from a bulk structure, and bottom-up approach where the quantum wire is 

built up one atom or one molecule or one particle at a time (Samuelson, 2003; 

Cavallini et. al., 2004; Wong et. al., 2005; Dick, 2008; Ramesh, 2009, Luttge, 2011; 

Qin et. al., 2012). In the top-down approach, a layer of bulk materials semiconductor 

from the desired composition are added over substrates, and then quantum-scale 

structures will be patterned out from that material layer by lithography process. 

However, like what had been reported by Harriott (2001), after some time, 

lithography process itself will have its own physical limits and when there are needs 

for this process to continuously developing, the cost of everything also will increase 

in finding newer technologies that can comply with this demand. In addition, because 

of the quantum-scale length, the bulk structure is low in uniformity and quality of the 

structure also will somehow become too difficult to control (Dick, 2008). While for 

the bottom-up approach, the nanostructure is using self-assembly process to build up 

itself from finer scales, one atom at a time to form much larger structures. This 

approach basically requires more control on the materials crystallization aspect, 

where quantum-scale structures will be produce from chemical reactions of vapour or
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liquid sources (Dick, 2008; Ramesh, 2009). Bottom-up approach allows the 

production of smaller structures than the products of lithography process by top- 

down approach, so basically most semiconductor quantum wires can be grown 

through this process.

In past researches, there are five types of method growths that have been 

successfully used for semiconductor quantum wires. First is the catalyst-assisted 

vapour-liquid-solid (VLS) method (Wagner et. al., 1964; Givargizov, 1975; Weyher, 

1977; Nguyen et. al., 2005; Kim et. al., 2006; Lu et. al., 2006; Chen et. al., 2007; 

Jung et. al., 2007; Dick, 2008; Jabeen et. al., 2009; Hocevar et. al., 2012; Yi, 2012; 

Vu et. al., 2013), second is catalyst-free vapour-solid-solid (VSS) method (Umar et. 

al., 2005; Wang et. al., 2008; Mousavi et. al., 2011, Sotillo et. al., 2013), third is 

solution-based method (Wong et. al., 2005; Lee et. al., 2010; Qi et. al., 2011), fourth 

is template-induced method (Hoogenboom et. al., 2004; Urbanus et. al., 2007) and 

fifth is lithography-based method (Glangchai et. al., 2007; Liu et. al., 2011). 

According to Wagner et. al. (1964), most of semiconductor quantum wires are grown 

using vapour-liquid-solid (VLS) method and the VLS growth process can be briefly 

described as when the semiconductor material start to solidify because of the 

precipitation effect after super-saturation of the eutectic is attained. Semiconductor 

quantum wires are basically formed between metal catalyst and reactant gases that 

impinge on the substrate. Many researches has showed that metal catalyst such as 

gold (Au) particle can be used as seed to the growth substrate in producing good 

semiconductor quantum wires (Wagner et. al., 1964; Weyher, 1977; Nguyen et. al., 

2005; Lu et. al., 2006; Chen et. al., 2007; Jabeen et. al., 2008; Lee et. al., 2010; 

Hocevar et. al., 2012; Vu et. al., 2013).
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1.2 Statement of Problems

Indium Gallium Phosphide nanowires, or also known as InGaP quantum 

wires (InGaP QWRs) have got so many interests because of its wide-access spectrum 

range, which is from visible wavelength to 925nm (Chuang et. al., 2005). It has been 

proposed to have the best potential in substituting AlGaAs quantum wires, which 

currently had been used widely in many electronic and optoelectronic devices 

(Castro et. al., 1999; Novak et. al., 2000) which are like lasers, light emitting diodes 

(LEDs) and transistors (Ozasa et. al., 1990, Matsuzaki et. al., 1999; Chuang et. al., 

2005; Svensson et. al., 2008; Fakhr et. al., 2010).

In producing good InGaP QWRs that can be adapted suitably in future 

potential electronic and optoelectronic devices; like in light emitting diodes (LEDs), 

laser diodes (LDs), transistors, sensors or photo-detectors, optimum growth 

conditions should be controlled and be applied in growing such quantum structures, 

so that these products are homogenous in terms of its size, morphology, crystal 

structure and chemical compositions. The reason for this study to be conducted is to 

investigate effects of growth temperature and substrate orientation variations towards 

the morphology, crystal structure and chemical compositions distributions of InGaP 

QWRs by using metal-organic chemical vapour deposition (MOCVD), which finally 

will lead to finding the effect of growth temperatures and substrate orientations in 

producing good InGaP QWRs.
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1.3 Objectives of Research

i. To prepare Indium Gallium Phosphide quantum wires (InGaP QWRs) on 

GaAs substrates by using Metal-Organic Chemical Vapour Deposition 

(MOCVD).

ii. To determine growth temperature on the growth of InGaP quantum wires.

iii. To determine effect of substrate orientations on the growth of InGaP 

quantum wires.

1.4 Significant of Research

The purpose of this study is to investigate further on the effect of growth 

temperature and substrate orientation variations towards InGaP QWRs in terms of its 

morphology, crystal structure and distributions of chemical compositions by using 

MOCVD. Suitable growth temperature that been obtained then can be applied to 

produce good InGaP QWRs to be grown on a suitable substrate orientation.
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1.5 Scope of Research

The whole research is basically focused on the growth of Indium Gallium 

Phosphide quantum wires (InGaP QWRs) by using metal-organic chemical vapour 

deposition (MOCVD). MOCVD is used because of its flexible and versatile 

application to produce mass-scale and wide-range of semiconductor structures. The 

studies that are conducted were to investigate the effect of growth temperatures and 

substrate orientations to the morphology, crystalline structure and chemical 

composition of InGaP QWRs. The growth temperatures that were used are 380°C, 

410°C, 440°C, 470°C and 500°C and all of the samples are grown on two different 

substrate orientations which are on GaAs (100) and GaAs (111) B. The growth 

parameters are varied and investigated to found the suitable growth mechanism in 

producing InGaP QWRs. All the growth samples were analyzed using Scanning 

Electron Microscopy (SEM), Field Emission Scanning Electron Microscopy (FE- 

SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray 

Spectroscopy (EDX) to investigate its morphology, crystalline structure and 

chemical composition.
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1.6 Thesis Outline

Synthesize and structural characterization of Indium Gallium Phosphide 

(InGaP) quantum wires is reported in this thesis which is discussed in five chapters. 

In chapter 1, a brief introduction about research study including background of 

research, statement of problems, objectives of research, significant of research and 

scope of research are presented. In chapter 2, theoretical backgrounds and 

information about quantum structure, nucleation, quantum wire, fabrication of 

quantum structures in terms of bottom-up and top-down approaches, growth method 

of quantum wires with focus on vapour-liquid-solid (VLS) and characterization 

techniques are explained. In chapter 3, details on research methodology are 

presented. In chapter 4, results of the research are discussed in depth. And lastly, 

conclusions about the research and recommendations are given on chapter 5.
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