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ABSTRACT 

Laminar convective flow in a channel with extended surfaces mounted at the 

bottom wall is investigated by using two methods. First, by the usual double-

population SRT lattice Boltzmann method (LBM) and second by a hybrid scheme in 

which the flow is solved by single population LBM and the thermal field by the 

finite-difference (FD) technique with considering an appropriate coupling among 

them. Here, the iterative method has been chosen in order to solve the discretized 

energy equation with finite-difference. The transient Reynolds number for the 

condition of this study was determined to be 600 and all simulations were conducted 

in the laminar range of Reynolds numbers. It is shown that for CFD problems in 

which the steady state solution is desired or for those with time consistency it is 

possible to save computation time of the simulation remarkably by employing the 

aforementioned hybrid scheme. For the case study of this work, the hybrid scheme 

resulted in reduction of 18 percent of total simulation time.  
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ABSTRAK 

Aliran perolakan lamina di dalam saluran dengan permukaan lanjutan di 

dasar saluran dikaji dengan menggunakan dua kaedah. Pertama, dengan kaedah biasa 

iaitu double population SRT melalui kaedah Lattice Boltzmann (LBM) dan yang 

kedua adalah dengan menggunakan kaedah hibrid di mana medan aliran diselesaikan 

dengan menggunakan single-population LBM manakala medan haba diselesaikan 

dengan menggunakan teknik perbezaan terhingga (FD) dengan mempertimbangkan 

gandingan yang sesuai untuk mereka. Di sini, kaedah iteratif telah dipilih untuk 

menyelesaikan persamaan tenaga dengan menggunakan kaedah perbezaan terhingga. 

Nombor Reynolds sementara untuk keadaan kajian ini telah ditentukan pada 600 dan 

semua simulasi telah dijalankan di julat nombor Reynolds yang lamina. Ia 

menunjukkan bahawa untuk masalah CFD yang memerlukan penyelesaian keadaan 

tenang atau bagi mereka dengan memerlukan konsistensi masa, ia menunjukan 

penjimatkan masa pengiraan simulasi yang banyak dengan menggunakan skim hibrid 

tersebut. Bagi kajian kes ini, skim hibrid menghasilkan pengurangan 18 peratus 

daripada jumlah masa simulasi. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Conventional sources of energy have been depleting at an alarming rate, 

which makes future sustainable development of energy use very difficult. This 

concern led to a recent expansion of efforts to produce efficient heat transfer 

equipment and generated increasing needs for understanding of fluid flow. Thus, heat 

transfer enhancement technology plays an important role and it has been widely 

applied to many applications. Suitable heat transfer augmentation techniques can 

result in considerable technical advantages and savings of costs. Channels with 

extended surfaces, because of their effectiveness in heat transfer are suitable 

candidates for engineering applications [1-3]. 

Figure 1.1 shows a rectangular channel with extended surfaces (ES). The 

ES’s can be applied with different sizes and shapes on the inner surface of the 

channel. The transverse turbulators such as ribs or grooves break the laminar sub-

layer and create local wall turbulence due to flow separation and reattachment 

between successive ribs, which reduce the thermal resistance and significantly 

enhance the heat transfer [3-4].  

Geometrical characteristics such as duct aspect ratio, ES height, ES angle-of-

attack, ES shape, and relative arrangement of the ES’s (in-line, staggered, etc.), play 

significant role in the rate of heat transfer [5]. By use of suitable ES geometry, a 

large amount of heat can be transferred between a wall and a fluid in the channel 

1 
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with less unit size and even with very small temperature difference. During the work, 

using ES’s enhances not only the heat transfer, but also results in considerable 

pressure loss and pumping power as well. 

 

Figure 1.1 Two-dimensional channel with extended surfaces 

Therefore, such channels are of interest for practical problems and here are 

taken as the case study to predict the behavior of the working fluid i.e., air, using 

three different CFD techniques, which are a mix of conventional, and the Lattice-

Boltzmann (LBM) methods in order to determine the least computational time 

consuming one. LBM has been proven as a reliable CFD method but due to certain 

inherent limitations when it comes to simulation of coupled-variables problems e.g. 

fluid flow and temperature field, it has been suggested to employ the hybrid scheme 

of the LBM in which flow is solved by the LBM while the temperature gradient by a 

conventional CFD method e.g., finite-difference, and an appropriate coupling among 

them is implemented. Although this hybrid scheme is widely used but no literature 

address their required computational time compared with that problems that are 

solved by the LBM for the both variables i.e., velocity and temperature fields. 

1.2 Problem statement and scope of the study 

The laminar forced convective flow in a channel with inner extended surfaces 

on the lower wall is studied numerically. The industry requirements and demands for 

higher heat transfer devices have become very important factor in the design of 
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engineering systems. In the field of heat exchanger performance, it is known that 

utilization of ES’s can potentially lead to better heat transfer performance due to 

mixing of the fluid and increasing of heat transfer area [6]. Many investigations have 

been already performed in order to study heat transfer rate/enhancement in such 

geometries but here the focus is on the CFD method by a tradeoff between LBM-

based CFD methods with considering their computational resources to have them 

compared. While researchers use hybrid scheme of the LBM it is of interest to 

compare its computational time compared with that of where both field are solved by 

the LBM say, LBM-LBM. If the computational time of the hybrid scheme i.e., LBM-

FD, is bigger than LBM-LBM, finding a way to decrease the LBM-FD 

computational time is of interest since, by its implication we not only have been 

freed of the LBM limits (for coupled flows) but also have reduced the required 

computational time that makes the proposed method an asset. 

The numerical simulation in this study is performed first by the usual LBM 

for both the velocity and temperature gradients along the channel (LBM-LBM) then 

while LBM is used again to simulate the velocity field, a conventional CFD 

technique i.e., finite difference (FD), is used to solve the unsteady advection-

diffusion equation to obtain the temperature field (LBM-Unsteady-FD) and lastly, 

the flow is solved by the LBM while FD is used to solve the steady advection-

diffusion equation (LBM-Steady-FD) and finally their required computational 

recourses are compared. 

1.3 Application of the study 

Due to limitations on solving fluid related problems analytically and 

importance of having prediction of the fluid’s behavior for any practical use before 

build, computational fluid dynamics (CFD) places at the center of attention. Due to 

the vast usage of CFD in engineering problems, researches in the field have been 

always trying to propose new methods in order to have the simulations in less 

computation time and have a more accurate result. LBM was proposed about twenty 

years ago and due to its calculation that is done locally in the grid, it is a suitable 
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method for parallel computing as it is of second order accuracy. Problems have been 

experienced that when it comes to simulation of coupled problems LBM cannot 

handle the problem for the second variable (dependent variable) i.e., here is 

temperature, because the range of the relaxation time (RT) for the second variable is 

imposed by the condition of the first variable i.e., here is velocity, as result although 

we can define the range of the RT in a way that locates in the valid range for Single 

Relaxation Time Lattice-Boltzmann scheme (SRT-LBM) but, the RT for the second 

variable is out of our control and may become invalid due to the condition of the first 

variable so, it is proposed to use the hybrid scheme of LBM where, the velocity field 

is handled by the usual SRT-LBM and the temperature field by a conventional CFD 

method that here finite-difference is chosen. Hence, by having a technique that 

comprises SRT-LBM and FD, it becomes possible to take advantage of the LBM 

model to handle the velocity the negatives sides of the SRT-LBM are eliminated by 

replacing an FD technique. If we could propose a hybrid scheme that also be capable 

to offers less computation time comparing with that of LBM-LBM, we have taken 

one step further in enhancement of current available CFD techniques that can 

handles the coupled problems more efficiently and requires less computational 

resources. 

1.4 Objectives 

The objectives of this study are as follows: 

1. To obtain 2-D simulation for the channel by D2Q9-SRT-LBM for both 

the velocity field and temperature distribution.  

2. To obtain 2-D simulation for the channel by D2Q9-SRT-LBM for the 

velocity field and finite-difference (FD) for unsteady advection-diffusion 

equation to acquire temperature distribution. 

3. To obtain 2-D simulation for the channel by D2Q9-SRT-LBM for the 

velocity field and FD for steady-state advection-diffusion equation to 

acquire temperature distribution.  
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4. To compare the results and specifically computational time required for 

among the three above-mentioned simulation methods and determine the 

least time consuming one.  

1.5 Thesis outlines 

This thesis is divided into five chapters as follows: 

Chapter 1 presents the problem statement, scope of this study, applications of the 

study and the objectives of the project. 

Chapter 2 contains the literature review that is related to the fluid flow, heat transfer 

problems in rectangular channels and numerical studies with different CFD methods. 

This chapter covers the available literature on hybrid schemes of the Lattice-

Boltzmann method in specific. 

Chapter 3 provides the implementation methodology over each of the simulation 

methods concerns here i.e., 1- LBM-LBM, 2- LBM-unsteady-FD and 3- LBM-

steady-FD. 

Chapter 4 discusses the results obtained from each methods and compare them 

followed by Chapter 5 where the conclusions of this study are made. 
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