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ABSTRACT 

 

 

 

 

Sheet metals are widely used as body panels and trims in automotive body structures. 

In the event of a crash, these panels will likely to experience impact loads in the 

range where the strain rate effect is significant. The behaviour of sheet metals differs 

as the strain rate increases. Thus, Abaqus FE software was employed as an aid to 

predict the behaviour of the sheet metals. The Johnson–Cook (JC) model was used in 

the FE simulation. Low carbon steel (SGACD, SPCC and SHS) and high strength 

steel (DP600) were employed to study the effect of loading rate onto sheet metals. 

Metallurgical study was carried out to identify the element composition and 

orientation of the microstructure since the materials had undergone several processes 

during manufacturing. Tension tests were conducted at strain rate 0.001/s to 0.1/s to 

study the stress-strain relation of the material. Parameters of the JC model                    

(A, B, C, m and n) were extracted using results from the tension tests. These 

parameters were incorporated into the JC model and used in FE simulation. FE 

simulation of tension test was performed in order to validate the JC model 

parameters. Experiment and FE simulation of axial compression test on thin-walled 

tube and drop weight impact test on steel plate were conducted. Results from the 

experiment were compared with FE simulation for validation where the large 

deviation of the compressive load-displacement curve occurred in the axial 

compression test. Whereas, in the drop weight impact test, the dynamic acceleration 

and deceleration were accurately predicted by FE model and served to validate the 

model. 
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ABSTRAK 

 

 

 

 

Kepingan besi digunakan secara meluas pada bahagian badan kereta. Ketika 

berlakunya pelanggaran antara badan kereta,  bahagian badan kereta akan menerima 

hentaman beban yang tinggi di mana kesan kadar terikan menjadi ketara. Kelakuan  

pada kepingan besi berubah-ubah apabila kadar terikan meningkat.  Oleh itu,  

perisian simulasi Abaqus FE digunakan sebagai salah satu cara untuk meramal 

keadaan sesebuah kepingan besi itu. Model Johnson–Cook (JC) juga digunakan  di 

dalam simulasi FE tersebut. Dalam projek ini, keluli karbon rendah                                   

(SGACD, SPCC dan SHS) dan keluli kekuatan tinggi (DP600)  digunakan untuk 

mengkaji kesan kadar bebanan ke atas kepingan besi itu.  Kajian metarlugi 

dijalankan untuk mengenalpasti kandungan kimia dan orientasi mikrostruktur besi itu 

memandangkan ia telah menjalani beberapa proses pembuatan di kilang. Kemudian 

ujian tegangan dijalankan pada kadar terikan dari 0.001/s hingga                          

0.1/s untuk mengkaji hubungan antara tegasan dan terikan bahan itu. Parameter  

model JC (A, B, C, m, dan n) juga disari dengan menggunakan keputusan yang 

diperolehi daripada ujian tegangan tadi . Simulasi bagi ujian tegangan dilakukan 

untuk mengesahkan parameters untuk model JC itu. Pada masa yang sama, 

eksperimen pada ujian tekanan pada keluli berongga dan ujian impak pada kepingan 

besi dijalankan.  Keputusan daripada eksperimen tersebut dibandingkan dengan 

simulasi untuk pengesahan dimana ada perbezaan besar di  antara keputusan 

eksperimen dan juga simulasi di  dalam graf beban tekanan kepada perubahan 

panjang. Manakala, untuk keputusan ujian impak pada kepingan besi, pecutan dan 

nyahpecutan dinamik memberikan keputusan yang tepat dan telah mengesahkan 

model tersebut.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Automotive industries have concerns on the reliability of the automobile 

structures in terms of product design, product specification and others. The basic 

safety features installed in the vehicle including energy absorbing structures, air 

bags, seat belts and other devices to improve crashworthiness. One of the major 

aspects that need to be addressed is energy absorbing features of a car structures. 

Energy absorbing features called front and rear longitudinal and fenders are located 

at the front, rear and side of a car’s structure. Since crashworthiness deals with 

impact such as frontal impact and side impact during the crash events, thus the car 

will expose to high strain rate loading [1, 2].  

 

 

During high strain rate loading, the velocity of a car can reach more than    

200 km/h. Impacts at that speed can cause severe injuries, or in a worst case, death. 

Therefore, continuous improvement of these features is highly recommended to 

reduce crash fatalities. Numerous enhancements to car safety have been made which 

focus on the car structure such as reducing the length of the front longitudinal 

structures and utilizing lighter reinforcement structures. Lighter materials can be 
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obtained when sheet metals are used to manufacture car components so that the 

weight of a car is reduced in order to optimize car fuel efficiency without reducing 

the crashworthiness requisition [2].  

 

 

The aim of the research is to examine the behaviour of sheet metal at high 

strain rates. The mechanical behaviour of sheet metal is demonstrated using finite 

element method (FEM). The analyses capitalize on previous researches regarding the 

determination of the parameters for high strain rate material models. Those extracted 

parameters are used in the material models and implemented in the FEM. The current 

study is the continuation of research on the determination of material model 

parameters and the construction of a methodology to predict the behaviour of sheet 

metal at higher loading rates. All the tests including static and dynamic tests are 

performed using low carbon steel sheet materials. 

 

 

This work is a collaboration project between PROTON and UTM in the 

development of Conceptual Optimization Fuel Efficiency Car (COFEC) which is 

supported by Ministry of Science, Technology and Innovation (MOSTI) Malaysia.  
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1.2 Problem Definition 

 

 

Crash is considered a complex problem lure category since it involves 

numerous types of loading such as axial compression, bending torsion and under 

static and dynamic condition.  Deformation of a car structure during a crash event is 

one of the crash failure characteristic. Therefore, it is important to understand the 

deformation behaviour and its mechanism on sheet metals. Sheet metal appears to 

expose different strength at different loading rate. It shows that the strength increases 

as the strain rate increases. However, when the car structure is subjected to high 

loading strain rate during impact, the absorbing structures of a car might be unable to 

withstand the external forces as the car structure incapable to absorb the impact 

energy during crash. Large localized stresses occur at the impact zone of the car 

structures due to the relative motion of its body. Therefore, the inelastic strain from 

localized stresses tends to give rise to large deformation of the structures.  

 

 

Large deformation of the car structures depends on the local strain rate. As 

the localized strain rates become higher, it tends to increase the possibility of failure 

of the car structures. Thus, the use of a material model is recommended to 

demonstrate the deformation of the sheet metal under high loading rate. The 

Johnson-Cook (J-C) model can be used to model the deformation failure of the sheet 

metal. The research is focused on the deformation behaviour of low carbon sheet 

metal under quasi static and impact loading.  

 

 

 The research is intended to fill in the gap of the previous studies that is to 

develop a structured procedure to predict the behaviour of the sheet metals. The 

structured procedures include the selection of the type of the sheet metals, 

metallurgical study and tests on sheet metals. Then the results of the model will be 

validate with FE simulation and experimental data.  
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1.3 Objectives 

 

 

The objectives of the project are: 

 

1. To evaluate Johnson-Cook constitutive model for the behaviour of sheet metals at 

various strain rates. 

2. To examine the Johnson-Cook model using FE simulation of sheet metal structures 

in the application of:  

i. Axial compression on thin-walled tube 

ii. Drop weight impact on sheet plate 

 

 

 

 

1.4 Scope of Study 

 

 

The scope of the study comprises: 

 

1. Johnson-Cook unified constitutive model evaluated for steel sheets. 

2. Research materials consist of low carbon steel and dual phase steel sheet specimen. 

3. Series of tension tests conducted of extracting Johnson-Cook parameter extraction. 

4. Abaqus FE software is employed for the simulation 

5. Selected sample applications consist of axial compression test of thin-walled tube 

and drop weight impact test on clamped steel plate. 
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1.5 Significance of the Finding 

 

 

This study addresses the method to predict the behaviour of sheet metal when 

it is subjected to impact loading.  J-C material model comprises important aspects 

including strain hardening, strain rate sensitivity and temperature sensitivity that will 

be explained in Chapter 2. Strain hardening, strain rate sensitivity and temperature 

sensitivity acknowledge the capability of J-C model parameters to predict sheet 

metals behaviour. The J-C model is expected to provide better prediction as it 

represents the methodology for prediction sheet metals behaviour.   

 

  

 In this research, sheet metals with thickness 7 mm and 12 mm have been 

used. Sheet metal is an excellent components used in the automotive industries since 

it have high absorption of energy and can improve the safety features of a car. The 

types of sheet metals used are low carbon steel and high strength steel. In the 

selection of sheet metals, the optimum hardness value is required to obtain adequate 

results. A high range of strain rate is required so that the sheet metal behaviour can 

be compared and verified by using J-C model as a means to predict the behavior in 

the FE simulation.  
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