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ABSTRACT

Electro-Mechanical Dual Acting Pulley Continuously Variable Transmission

(EMDAP CVT) is a transmission operated by electro-mechanical actuated system. It

has a potential to reduce energy consumption where power is only needed during

changing of CVT ratio and no additional power is needed to maintain the CVT ratio

due to self-lock mechanism design feature of the EMDAP CVT. In this research,

simulation of an EMDAP CVT model was first performed in order to evaluate

controller system performance using MATLAB/Simulink software package. Then,

confirmation of the simulation results is made by experimental data that is being

measured from EMDAP CVT test rig. In order to obtain adequate performance, basic

Proportional Integral Derivative (PID), Proportional Derivative (PD) and

Proportional Derivative with Conditional Integral (PDCI) controller schemes were

proposed to control EMDAP CVT ratio. Relay feedback and Ziegler-Nichols

methods were utilized to tune the PID based controller parameters. From simulation

analysis, the basic PID based controller shows a huge overshoot up to 280% and it

takes very long settling time up to 65 seconds. However, this controller generates

very small steady state error which is around 0.2%. The PD controller shows better

performance where there is no overshoot occurred and faster settling time, i.e. 8

seconds, but steady state error is a bit higher, i.e. 3.2%, than the basic PID based

controller. The best performance is predicted by PDCI controller where it shows

maximum overshoot at 0.2%, 8 seconds in settling time and steady state error at

0.1%. In the experimental work, only PD and PDCI controller schemes are adopted

because of their good control performance in the simulation. It is found that

performance of the PD and PDCI controllers in the experiments are quite close to

those predicted in the simulation. For the PD controller, experimental results show

no overshoot, it takes only 4 seconds in settling time and produces steady state error

of 10%. As for the PDCI controller, it shows 1% in maximum overshoot, 8 seconds

in settling time and steady state error at 1%. This indicates that the PDCI controller is

superior than the PD controller in terms of steady state error and this is confirmed by

simulation and experimental results.
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ABSTRAK

Takal Dwi Tindakan Elektro-Mekanikal Transmisi Sentiasa Berubah

(EMDAP CVT) adalah transmisi yang dikendali oleh sistem penggerak elektro-

mekanikal. Ia mempunyai potensi untuk mengurangkan penggunaan tenaga di mana,

kuasa hanya diperlukan semasa penukaran nisbah CVT dan tiada kuasa tambahan

diperlukan untuk mengekalkan nisbah CVT disebabkan oleh ciri rekabentuk

mekanisma terkunci sendiri bagi EMDAP CVT. Dalam kajian ini, kerja-kerja

simulasi bagi model EMDAP CVT dilakukan terlebih dahulu bagi menilai prestasi

sistem kawalan menggunakan pakej perisian MATLAB/Simulink. Seterusnya,

pengesahan keputusan simulasi dibuat melalui keputusan eksperimen yang diperoleh

daripada pelantar ujian EMDAP CVT. Dalam usaha untuk mendapatkan prestasi

yang mencukupi, skim pengawal asas PID, PD dan PDCI dicadangkan untuk

mengawal nisbah EMDAP CVT. Kaedah relay feedback dan Ziegler-Nichols

digunakan untuk melaras parameter pengawal PID. Daripada analisis simulasi,

pengawal asas PID menunjukkan lajakan besar berlaku sehingga 280% dan ia

mengambil masa pengenapan yang sangat panjang sehingga 65 saat. Bagaimanapun,

pengawal jenis ini hanya menjana ralat keadaan mantap yang sangat kecil iaitu 0.2%.

Pengawal PD pula menunjukkan prestasi yang lebih baik dengan tiada lajakan

terhasil dan masa pengenapan yang lebih cepat iaitu 8 saat, namun, ralat keadaan

mantap adalah sedikit besar iaitu 3.2% daripada pengawal asas PID. Prestasi terbaik

diramal oleh pengawal PDCI di mana ia menunjukkan lajakan maksimum pada

0.2%, 8 saat masa pengenapan dan ralat keadaan mantap pada 0.1%. Di dalam kerja-

kerja eksperimen, hanya skim pengawalan PD dan PDCI yang digunapakai kerana ia

memberikan prestasi kawalan yang baik di dalam simulasi. Didapati bahawa prestasi

pengawal PD dan PDCI di dalam eksperimen hampir menyamai apa yang diramal di

dalam simulasi.  Bagi pengawal PD, keputusan eksperimen menunjukkan tiada

lajakan berlaku, ia hanya mengambil 4 saat masa pengenapan dan menghasilkan ralat

keadaan mantap sebanyak 10%. Bagi pengawal PDCI, keputusan eksperimen

menunjukkan 1% dalam lajakan maksimum, 8 saat masa pemendapan dan ralat

keadaan mantap pada 0.1%. Ini menunjukkan bahawa pengawal PDCI adalah lebih

baik daripada pengawal PD berdasarkan ralat keadaan mantap dan ini disahkan oleh

keputusan simulasi dan eksperimen.
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CHAPTER 1

INTRODUCTION

1.1. Introduction

In automotive industry, green technology has been widely developed for

saving fuel consumption and minimizing gas emission to reduce environment

pollution. One of them is development in automotive transmission. There are various

technologies in automotive transmission, such as; manual transmission, semi

automatic transmission, automatic transmission and continuous variable transmission

(CVT). Among the automotive transmission types, CVT has a great advantage in

saving fuel consumption because its wide variable ratio coverage characteristic can

maintain the engine speed independently under various load condition. Maintaining

engine speed means maintaining engine power. Thus, it minimizes the fuel

consumption (Wang and Chu, 2009).

Common CVT which widely used in the market is electro-hydraulically

actuated type. It needs continuous power to supply force to maintain the desired ratio

and preventing gross belt slip. Thus, it can reduce CVT efficiency (Akerhurst et al.,

1999). An alternative solution to enable economic fuel consumption is to use electro-

mechanical CVT type with single acting pulley system because it only operates

during changing the transmission ratio (van de Meerakker et al., 2004). The single

acting pulley mechanism used in this system causes misalignment of metal belt.  This

belt misalignment may reduce the belt life. Another solution is to use Electro-

Mechanical Dual Acting Pulley (EMDAP) CVT designed by Drivetrain Research

Group of Universiti Teknologi of Malaysia, (DRG UTM). EMDAP CVT utilizes two
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DC motors as actuator, power screw mechanism and two moveable sheaves in both

primary and secondary pulley (Supriyo, 2011). Two moveable sheaves move

identically to keep the belt align in the center, thus, eliminate belt misalignment.

Also, this system only operates during the changing of ratio transmission, thus, save

fuel consumption. By controlling two DC motors precisely and accurately, desired

CVT ratio can be achieved accordingly

In order to create high efficiency of CVT for automotive application, a

precise and accurate control method is also important. A common Proportional,

Integral and Derivative (PID) control method has been widely used in industry

because of its precision, accuracy, simplicity and robustness (Shen, 2002). PID based

parameters can be set independently and its scheme can be arranged according to the

need. Thus, parameters of P, I and D are tuned and combined to obtain the optimal

performance.

1.2. Problem Statement

The latest research of Electro-Mechanical Dual Acting Pulley CVT was

developed by Supriyo (2011). Two DC motors as actuators for primary and

secondary pulley have been utilized. Both DC motors are controlled using various

control methods, such as Proportional and Derivative (PD), Proportional Derivative

with Conditional Integral (PDCI), and Fuzzy-PID which are implemented on PC

utilized by MATLAB/SIMULINK software and data acquisition system card to

control EMDAP CVT ratio.

As a continuation of EMDAP CVT development, standalone controller

device, such as microcontroller, is needed in order to implement EMDAP CVT ratio

control in the car. In a car, there may be hundreds of microcontrollers inside it. For

example: one to monitor and control automatic fuel injection, one to monitor ABS

break system, one to monitor and control cabin temperature and so on. For these

intelligent automatic control applications, it is very inefficient to PC due to its big
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size and high cost. Therefore, a microcontroller is very important for many automatic

control applications. In this research, a microcontroller is proposed as a standalone

controller device. By using a microcontroller, EMDAP CVT ratio control can be

implemented and integrated in the car.

1.3. Objectives

The main objective of this research is to design and develop a microcontroller

based EMDAP CVT ratio controller as standalone controller device. The specific

objectives are stated as follows:

i. To design simulation model of EMDAP CVT ratio control using PID

based control method for obtaining PID based combination and

parameters tuning based on relay feedback and Ziegler-Nichols methods.

ii. To design electronic hardware for EMDAP CVT experiment rig to test

the effectiveness of EMDAP CVT ratio control.

1.4. Research Scope

The scopes of the research are stated as follows:

i. Simulation of EMDAP CVT is build based on mathematical models of

mechanical system, brushless DC motor and PID.

ii. Simulation is carried out using MATLAB/SIMULINK software.

iii. Experimental work is carried out using existing EMDAP CVT test rig,

developed by DRG UTM, as shown in Figure 1.1.

iv. Experimental work is carried out without applying external load on

output shaft.

v. Microcontroller module used in this research is Aimagin Rapid STM32

board, which can be operated standalone or online with PC using

MATLAB/SIMULINK software.
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vi. Characteristic of EMDAP CVT ratio control simulation result is

adopted as reference for conducting experimental work, especially on

PID based control performance.

Figure 1.1 EMDAP CVT Test Rig

(Supriyo, 2011)

vii. For the purpose of testing, various EMDAP CVT ratio inputs are set

from under drive to over drive in the range of 3.0-2.5; 2.5-2.0; 2.0-1.5;

1.5-1.0; 1.0-0.8 and also from overdrive to under drive in the range of

0.8-1.0; 1.0-1.5; 1.5-2.0; 2.0-2.5; 2.5-3.0.

1.5. Research Methodology

This research covers simulation and experimental works of EMDAP CVT

ratio control. The simulation consists of EMDAP CVT modeling, obtaining

appropriate PID based control scheme and its parameters tuning. While the

experimental work deals with microcontroller programming, sensor calibration,

setting and running the test rig and data recording. Flow chart of research

methodology is shown in Figure 1.2.
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Research methodology is described as follows:

i. Literature reviews consist of metal pushing V belt, basic principle of

CVT, basic principle of EMDAP CVT, PID based control method, relay

feedback method, DC motor, gear reducer and power screw mechanism.

Figure 1.2 Flow Chart of Research Methodology

ii. EMDAP CVT modeling is designed for the purpose of simulation. This

model consists of DC motor, gear reducer and power screw mechanism

based on basic equations of DC motor, gear reducer and power screw

mechanism. For modeling DC motor, basic equations of dc motor

equivalent circuit and parameters stated on datasheet are used. Its

torque-speed performance is validated with torque speed curve stated

on datasheet. Gear reducer acts as speed reducer and torque multiplier.

It is modeled as a gain block. For modeling power screw mechanism,
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basic equations of power screw are used. It acts as a converter of

rotational movement into linear movement.

iii. PID based controller model is designed based on PID based controller

equations. For PID based parameter tuning, Ziegler Nichols and relay

feedback methods are used. Parallel PID based controller scheme is

designed in order to independently modify PID based parameter tuning.

iv. To perform CVT ratio controller simulation, both EMDAP CVT and

PID based controller models are combined resulting closed loop

system. This closed loop system is simulated using MATLAB and

SIMULINK software. The performances of the CVT ratio control

system are recorded and analyzed. Modification of PID based controller

is carried out to obtain the best result.

v. Once the best simulation result has been obtained, a PID based control

algorithm and its parameter values are adopted as pattern reference for

programming microcontroller.

vi. Electronic hardware consists of potentiometer as position sensor, rotary

encoder as speed sensor, brushless DC motor and its speed driver as

actuator and Aimagin Rapid STM32 microcontroller module as

controller device.

vii. The existing EMDAP CVT test rig enables to vary the CVT ratio from

0.6 up to 3.0. It consists of mechanical and electrical parts. The

mechanical parts consist of electric motor which is used to drive the

primary pulley shaft, gear reducer which has ratio 30:1, pinion gear

which has 14 gear teeth, helical gear which has 60 gear teeth, power

screw which has rotation to linear converter ratio 2 mm/rotation and

axial range 0 up to 10 mm, dual moveable pulleys on every shaft and a

metal pushing V belt. Once all the components are assembled,

calibration of power screw movement, related to speed and position

sensors values reading, is carried out in order to achieve accurate

parameter values.

viii. The experiment work is carried out using existing EMDAP CVT test

rig, EMDAP CVT ratio controller system based on microcontroller,

sensors and signal conditioners. Just for monitoring and recording data,
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the system have to be set in online mode, thus, PC utilized by

MATLAB and SIMULINK software is used during the experiment.

i. Various step inputs are applied to test the EMDAP CVT ratio changing

of six steps ratio, namely: 3.0 to 2.5, 2.5 to 2.0, 2.0 to 1.5, 1.5 to 1.0, 1.0

to 0.8 and 0.8 to 0.6.

x. Experimental results, in term of settling time, error steady state and

maximum overshoot, are recorded, analyzed and discussed.

1.6. Research Contribution

The main research contribution is to bring an implementation opportunity of

EMDAP CVT ratio control in the car. Whereas regarding EMDAP CVT simulation,

it enables to tune PID based control scheme to obtain a good EMDAP CVT ratio

control performance before implementing on EMDAP CVT test rig. So,

experimental work can be carried out safely.

1.7. Organization of Thesis

This thesis consists of 6 chapters. In chapter 1, the background, problem

statement, research objectives, research scope, methodology and research

contribution are outlined.  Chapter 2 describes literature reviews. Previews works of

controlling CVT ratio, latest work of EMDAP CVT ratio, basic principle of EMDAP

CVT, PID based control method, including relay feedback and Ziegler-Nichols

formula, and Aimagin Rapid STM32 microcontroller module are outlined.

Chapter 3 presents simulation of EMDAP CVT ratio control. Building

EMDAP CVT model is started with creating brushless DC motor model, then,

simulating brushless DC motor torque and speed performance compared to brushless

DC motor datasheet. Next step is to build mechanical model of EMDAP CVT, which
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consists of power screw, pinion gear, helical gear and gear reducer. While PID based

control model is build based on its equation, then, it is combined with EMDAP CVT

mechanical model to perform EMDAP CVT ratio control simulation.

Chapter 4 describes hardware and software of experimental works. It consists

of EMDAP CVT test rig set up, pulley linear movement calibration and setting up

parameters of microcontroller module using MATLAB/SIMULINK software

integrated with a PC.

In chapter 5, PID based control algorithm is implemented on experimental

works of EMDAP CVT ratio control. The real responses of the system are analyzed.

Chapter 6 presents conclusion of the works and recommendation for future research.
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