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ABSTRAK 

 

 

 

 

 Simulasi berangka bagi suatu model berulang daripada sel logam dibangunkan 

untuk siasatan asas kelakuan anjal bagi struktur sfera berongga. Morfologi sintaksis 

dan separa untule konfigurasi struktur sfera berongga ditetapkan menggunakan syarat-

syarat sempadan yang sesuai dengan unit sel dan kekisi seluruh sfera berongga. 

Berdasarkan cadangam rajah modulus young relatif melawan ketumpatan relatif, 

tingkah laku struktur sfera berongga dengan mana-mana saiz dan bentuk dapat 

diterangkan tanpa mengambil kira sifat-sifat elastik. 
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ABSTRACT 

 

 

 

 

The numerical simulation of a repetitive model of a cellular metal is developed 

for fundamental investigation of elastic behaviour of hollow sphere structures. 

Syntactic and partial morphologies of simple cubic configurations of hollow sphere 

structures are prescribed under boundary conditions corresponded to unit cell and 

whole hollow sphere lattice. Based on the proposed plotted diagram consists of relative 

Young’s modulus versus relative density it is possible to explain behaviour of hollow 

sphere structure with any size and shape disregarded to its basic elastic properties. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 General Overview and Background 

 

 

Hollow spheres structures (HSS) are used widely in many different 

applications e.g. lightweight composite material, sound and thermal insulation walls, 

gas and chemical storage container, encapsulation, fiber optic sensors, and laser-fusion 

(Scheffler, Colombo 2005). 

 

They are employed regularly by nature for establishing load bearing and weight 

optimized structures. For example natural materials such as wood, cork, bones, and 

honeycombs perform their practical task as well as functional demands. The 

exceptional properties of biological materials has simulated the development of 

artificial cellular materials for technical applications. 

 

Today many parts of technology use foams made of polymeric material 

particularly. Other typical application areas are the fields of heat and sound absorption. 

Hollow sphere structure are separate from traditional dense metals by the combination 

of specific mechanical and physical properties. 

 

Cellular metals present a large number of important properties. Multifunctional 

requirements, high stiffness, very low specific weight, high gas permeability and high 



2 
 

 

thermal conductivity are advantages of these material. Different arrangements and 

forms of cell structures compose a wide range of cellular materials (Öchsner, Augustin 

2009). Figure 1.1 shows an example of metallic hollow spheres structure with partial 

configuration. 

 

 

Figure 1.1 Aluminum profile filled with hollow sphere structures particles 

(Fraunhofer IFAM 2014) 

 

These characteristics can create highly integrated applications. First high 

porosity of the HSS gives it capability to compress at high strains. In the stress strain  

diagram  of  a HSS, a stress region exists which  indicate the ability  of the  structure  

to  absorb energy at a low  stress level and high  strains.  

 

This property provides the application of HSS in energy absorbing structures, 

e.g. crash components in the automotive industry. Damping of mechanical and 

acoustical oscillations is another clear aspect of cellular structures. This property 

recommends the application in elements where high accelerations exist because of 

their low density. The small amount of accelerated bulk can damp oscillations and 

reduce energy consumption.  

 

It has been exposed that there is a significant potential of hollow sphere 

composite structures in machine tools. Moreover, cellular metals perform as sound 

suppressors and acoustic insulators. A low thermal conductivity is shown by cellular 

metals in comparison to their metallic base materials. Adhesively bonded metallic 
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hollow sphere structure shows very low thermal conductivities because of the 

insulating effect of the adhesive matrix between the metallic shells of the spheres. 

Particularly, metallic hollow sphere structures can be used as thermal insulators. 

Figure 1.2 shows two different types of hollow spheres structure the left one is sintered 

metallic hollow sphere and the right one is syntactic configuration of metallic hollow 

sphere structure.  

 

 

(a) 

 

(b) 

Figure 1.2 a) Open-cell M− Pore® aluminum foam b) Cross section of metallic 

hollow sphere structures (The University of Newcastle, Australia 2014) 

 

 

 

 

1.2 Problem Statement 

 

 

The mechanical properties of hollow spheres structures are depended on many 

factors such as morphology, configuration and basic material. The complexity of 

stochastic structure and too many involved variables prevent to investigate 

characteristics of this types of materials by ordinary approaches. Study of porous 

material should be simplified by considering and focusing on mechanical properties of 

their unit cells. The effects of the morphology, topology, joining technology and 

material composition on their mechanical properties could be numerically investigated 

(Öchsner, Augustin 2009). 
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The shape and size of hollows inside a structure determine the mechanical 

properties of it porous structure. In order to investigate the mechanical properties, the 

finite element method is applied. This survey addresses the simplified approach for 

evaluating the elastic properties of hollow sphere structures.  

 

 

 

 

1.3 Objectives 

 

 

The objectives of this study are to determine the Young’s modulus of hollow 

sphere structures and its corresponding unit cell for different morphologies and 

dimensions. The effect of different joining techniques on the Young’s modulus of unit 

cell and hollow spheres structure could be also investigated. In addition the influence 

of various types of material for joint and sphere on the macroscopic Young’s modulus 

could be explored. 

 

 

 

 

1.4 Scope of Study 

 

 

The study is conducted through: 

1. The literature review about history, background and related research for hollow 

spheres structures.  

2. The generation of suitable finite element model for simulation general types of 

hollow sphere structures and their corresponding unit cells. 

3. Simulation in computer aided engineering software (finite element analysis 

software) to evaluate macroscopic Young’s modulus of hollow sphere structure 

and its corresponding unit cell. The simulation should cover two different 

morphology (syntactic and partial) of one configuration (primitive cubic) for 
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two different types of joining spheres (identical material for joint and sphere 

and different materials for joint and sphere)  

4. Evaluation of elastic properties like Young’s modules. 

5. Documentation. 

 

 

 

 

1.5 Significance of Study 

 

 

The study introduces the finite element analysis method for demonstration the 

difference of relative Young’s modulus for various types of unit cells by changing their 

geometrical shapes and sizes. Then it compares the results with relative Young’s 

modulus of the whole hollow sphere material. In other worlds, the research focused on 

the difference between relative Young’s modulus of whole hollow spheres structure 

and its corresponding unit cell for different configuration, joining techniques and 

materials. In addition the research is conducted to find a general description model for 

predicting relative Young’s modulus of every types of hollow sphere structures 

disregarded to its basic material. 
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