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Abstract 
 

In this paper we use an electronic component to produce light which is applied in testing soft tissue 

penetration. We used bio tissue, a slice of apple, and non-bio tissue, paper. The voltage could be adjusted 
to brighten the light to view the penetration of the subject. The thickness of the tissue was constant and the 

results showed that the current and voltage were significant as the light penetrated the soft tissue.  
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1.0  INTRODUCTION 

 

Optical tomography systems use light sources to complete the 

system and the light source is the main material in the system. 

Normally, systems using this type of source are called non-

invasive systems because they can be applied without cutting the 

structure of the subject. Previous studies have shown that the 

system can be applied to many substances, for example particles 

and liquids. The light can be produced by electricity, for example, 

florescent lights etc. [1]. The light can also be produced by using 

electronic components, for example lasers, light-emitting diode 

(LED), and infrared [2-4]. As we know, light is divided by two 

types. It is invisible and infrared light. Normally the visible and 

infrared light have different wavelength and normally the range of 

wavelength for visible light is around 400 until 760 nm [5-9] and 

for infrared wavelength range around 760 until 3000 nm. In this 

experiment we use 740 nm for visible light and 1000 nm 

wavelength for infrared light source [10-13]. The second 

properties of infrared light, the infrared light can’t be seen by 

naked eyes but it can be seen by using the digital camera. The 

optical tomography system is suitable for use on bio tissue and 

non-bio tissue [9, 14-17]. However, the size of the subject must be 

considered first, as the subject must not be too small or too large. 

Also, we need to consider the light beam or the size of the light 

line. The brightness of the light can be increased or decreased 

depending on the situation or the properties of the phantom to be 

scanned [14, 18, 19]. As we know, the brightness of the light can 

be controlled, using either electricity or electronic components, by 

the voltage and current supply. This is in accordance with Ohm's 

law shown in Equation 1. The electrical and electronic circuits 

must also be suitable for current and voltage supply in order to 

ensure the voltage and the current do not burn the circuit. 

 

 
 

  Based on observation, light can penetrate many types of 

materials and the brightness of the light can be reduced after 

penetrating an object. The value of the light when it passes 

through an object before exposure to the endpoint must also be 

considered [2, 14, 20-23]. If the light value is low, then the light 

cannot pass through the subject and scanning cannot be 

undertaken. Thus, the brightness of the light cannot be measured. 

As mentioned above, the brightness of the light can be controlled 

by adjusting by the current and the voltage. 

 

1.1  Subject Criteria 

 

The experiment covers a slice of green apple which was exposed 

to the light to check the light penetration both with and without a 

lens [9, 23-26]. Based on previous studies, we chose an apple as 

the soft tissue subject as it has low water content in the tissue. In 

(1) 
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addition, an apple with skin normally takes 19 days to be 

destroyed, and one without skin 10 days, due to the chemical 

reaction and changes in the structure of the tissue [27-31]. Based 

on previous studies, comparisons with other fruits and vegetables 

showed that the apple has less water and is more suited to such 

optical testing [32, 33]. As we know that water has a refractive 

index, by reducing the water quantity in the soft tissue, the error 

in the refraction index can be reduced [31, 34-36]. By putting the 

apple sample into the freezer we can extend the chemical reaction 

time. Other than that, it is not so easy to damage the subject tissue 

[24, 27-30]. Based on previous studies, the tissues of fruit are 

destroyed because of the water content inside and normally fruits 

with more water content are easy to damage, for example, 

compared to apples blackcurrants are easily damaged in less than 

a day [32, 36, 37]. In addition, the size of an apple makes it easy 

to cut and apples are more easily acquired in a normal market; 

both factors influencing our choice. 

  The materials of the apple tissue, including water, protein, 

fat, fibre, moisture, lipids and ash, among others, ensure that light 

is blocked when penetrating the tissue [30, 37-40]. Other than 

that, the properties of the materials inside the tissue, such as the 

quantity of acid, alkali, sugar, and others mineral contents, affect 

the refraction index when light penetrates the apple tissue [1, 4, 

41]. The quantity of material and the refractive index cause the 

light penetration to diverge with many angles [1]. In addition, 

humidity is also important to ensure the fruits are in good 

condition [1, 42]. As we know, light also comes from heat and 

heat can make the subject (soft tissue) dry and cause cells to die 

[1, 41]. 

  A second non-soft tissue subject, paper, was also chosen. 

The paper selected was an A4 70 g Indah Kiat (IK) yellow paper 

brand (made in Malaysia) and we choose the normal paper which 

is the white color paper. As we know, paper is produced from 

wood but paper normally only includes deadwood cells and so we 

assume that paper is a non-soft tissue. Before making this 

selection, we had already studied 90 g IK brand yellow paper, 

Double A paper, One paper and IK green paper, among others, 

with regard to the thickness of the paper and the light penetration 

integrity [25, 43]. From both tests, we chose the IK brand yellow 

paper as the subject for this study. The subject is low in thickness 

and more light can penetrate the paper compared to the other 

types. Previous studies have shown that the quality of the paper 

can be detected by using optical coherence tomography [43]. The 

low penetration of light (the high reading on the sensor) indicates 

a better quality paper compared to the others. To increase the 

paper thickness, the paper was stacked one leaf at time up to five 

leaves [9, 25].   

  Based on the subject criteria above, we know that the 

refractive index for paper can be ignored because paper is dry and 

there is less material inside the paper tissue. Based on that, we can 

assume that the value for soft tissue captured by the sensor will be 

less than that of paper. In the subjects selected, we will evaluate 

the refractive index to assess the changes between two types: with 

and without water. 

 

1.2  Refractive Index 

 

As we know, an optical system has optical absorbance, a 

refractive index or index of refraction, a thermo-optic coefficient 

and an index of variation [4]. Their use in immersion lithography 

and wavelength is important. The same applies to water properties  

[24, 37]. Water’s chemical equation without other reagents or as 

solid water is H2O [37]. Normally, the refractive index for this 

type of water is 1.33 and 1 for air [34-36, 44]. The refraction by 

water is shown in Figure 1.1 and the angle of the refraction 

depends on the properties of material. 

 
 

Figure 1.1  Refraction by water 

 

 
1.3  Light Properties 

  

Based on previous studies, every type of light has advantages and 

disadvantages based on their wavelengths and the color of the 

light produced by electric and electronic components [1]. 

Normally, light is either of the infrared or visible light type [4]. 

Based on the properties of the light, light can be used to eliminate 

bacteria, monitor food packing, monitor the quality of food, and 

much more [4, 45]. Based on eyesight, the color of light is not 

affected by penetration regardless of the type of material to which 

it is exposed. On the basis of color and wavelength, we conclude 

that the wavelength does not change after light penetration. 

  Many methods are used in conducting experiments. In 

industry, they use the skin of the fruit as there is no need to 

remove the skin in order to measure the quality of the fruit. 

However, in this experiment, we want to assess the effect of light 

depending on the quantity of minerals inside the tissue of the fruit 

[46]. In addition, light sources also are used in packaging in the 

food industry environment. By using this type of source we can 

maintain the quantity and freshness of the food. Furthermore, the 

light source does not have the reactive power to affect the food. 

  This experiment is based on the light source produced by 

electronic components [4]. The visible light source component 

produces red light and the wavelength range for red light is 700 

nm [4, 24]. The brightness will be controlled by adjusting the 

voltage [2, 3, 8, 24, 47] and the current can be adjusted by using 

an adjustable power supply. The beam of the light will also be 

adjusted by using two types of lens: convex and concave [24]. As 

a reference, the light source without a lens is taken for data 

comparison. Based on the naked eye view, the angle of light will 

be increased but the distance of the light will be decreased. 

 

1.4  Sensor Jig 

 

In this test, sensor jigs are used to position the receiver and 

transmitter. Figure 1.2 shows the sensor jig design. As can be 

seen, they have four holes in which to place the transmitter and 

receiver [2, 21, 47]. For this experiment, we only use two holes as 

we have one pair of components: a transmitter and a receiver. The 

sensor jig's function is to ensure the light (transmitter) is 180° 

direct from the sensor (receiver) [2, 4, 47]. The subjects (the slice 

of green apple and the paper) are put at the centre of the sensor jig 

and the subject will be exposed to the light, as shown in Figure 

1.3. The subject will block the light and the sensor will detect less 

light [21, 47]. Based on previous studies, for the best way to kill 

bacteria or to process packaged food, the light source must be 

closed in order to ensure the food is less exposed to the light and 

to maintain its freshness [1]. 

  Based on previous studies, there are several recommended 

exposure distances for maximum exposition [1].  Accordingly, we 

fixed the average distance of the subject from the light source in 

at 0 to 10 cm as shown in Figure 1.2.  
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Figure 1.2  Sensor jig used in this test 

 

 

2.0  EXPERIMENT SETUP 

 

The experiment was set up by using a light source and a sensor 

applied to a jig to ensure that the light travels in a straight line [2, 

14, 22, 48, 49]. The function of the jig was to fix the sensor and 

the light source in order to make them constant [22, 48, 49]. 

Based on light theory, the brightness of the light will be reduced 

depending on the thickness of the material or subject [16, 22, 48, 

49]. The subject used in this test was a slice of apple and eight 

pieces of paper [16, 17, 45]. The paper and the slice of apple were 

put at the centre of the jig to block the light so as to reduce its 

brightness [17, 22, 45, 48, 49]. The value of the light reduced 

depending on the thickness of the material. From this point, the 

light was blocked and the brightness of light decreased. Figure 1.3 

shows the jig and the experimental setup using both of the 

subjects. The inner diameter of the jig is equivalent to 10 cm and 

the size is equivalent to an industrial pipe [21, 50]. 

  The distance of the sensor and light source were fixed at 10 

cm [21, 50], equivalent to the size of the inner diameter of the jig. 

The 10-cm inner-diameter jig was chosen because the lower 

voltage of 3.1 V is needed in order to make the light source 

component function, from which the sensor will be able to detect 

the low brightness of the light produced from the light source 

component. 

 

 
 

Figure 1.3  Experimental setup 

 

 

  Previous studies have shown that there are many subject 

exposure methods for fruit, both invasive and non-invasive, 

depending on what is to be tested. Normally, non-invasive 

techniques are used in industry because they are easier to 

undertake in the industrial environment as industry needs faster 

processing times [1, 51].  

  The main objective of this experiment is to assess the effect 

of light in penetrating soft tissue. In addition, we want to check 

the effect of light after penetration through a lens onto soft tissue 

[1, 4, 41]. Sensors normally have blank spots or a maximum 

detection angle. As a result, the maximum angle that can be 

detected will be tested by using the sensor jig, as shown in Figure 

1.3, to check the maximum point (angle) that can be detected via 

the sensor. 
 

 

3.0  RESULT 

 

In this section, we report the results of two subjects: a slice of 

apple and white paper. The value captured by the sensor is the 

voltage value straight from the sensor. The distance of the subject 

from the sensor was 50 mm on average as the subject is located at 

the centre of the sensor jig; similarly, the light source is also 

positioned at 50 mm from the subject (shown in Figure 1.3). The 

testing will be covered the reference data and will be conducted 

without any subject block the light. The distance of sensor to the 

light source is 0.2 cm. Base on light theory, the light can’t go 

through if something solid present in front of the sensor or light 

source [2, 3, 8, 47, 52]. The light can go through if the blockers 

have properties can be penetrated by a light, the other factor can 

disturbing the moving the light is the refractive index and it will 

depend on the blockers properties [29, 30, 34, 42, 53-55].  

 

3.1  Experiment Result for LED Light Source 

 

The main objective of the first experiment was to monitor the 

different voltages that will affect the brightness of the light. 

Additionally, the experiment was undertaken to monitor the 

different brightness and to compare the values of the brightness 

with different voltages [2, 3, 8, 47, 52]. Based on Ohm’s law, the 

voltage and current can be adjusted automatically until the law 

stabilises when the resistance is constant [2, 3, 8, 47]. Based on 

the test situation, the brightness will increase when the voltage 

and current increase. The result is as shown in Table 2.1 for LEDs 

used as the electronic light source. The results are without any 

block from the subject; only direct light from the light source to 

the sensor. 

 
Table 2.1  Results of the voltage and brightness tests using LEDs as the 

light source 

 

 Transmitter Receiver 

No Voltage 

(volt) 

Current 

(amp) 

Without 

lens (v) 

Concave 

lens (V) 

Convex lens 

(v) 

1 3.5 0.01 0.2925 0.2529 0.2694 

2 6.0 0.02 0.322 0.2814 0.3109 

3 8.0 0.03 0.338 0.296 0.324 

4 10.3 0.04 0.354 0.2913 0.331 

5 12.3 0.05 0.365 0.3005 0.341 

 

 
Figure 2.1  Voltage vs. brightness for LED light source 
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Table 2.1 and Figure 2.1 highlight that brightness is enhanced 

when the voltage is increased. Table 2.1 also shows that the 

voltage is proportional to the current as per the theory.  

  Based on Figure 2.1, the brightness value will be horizontal 

when the voltage is 12 V and above. From that we can conclude 

that the component is in good condition and will burn when the 

voltage increases. The data derived from using the lens are low 

compared to those without the lens. Based on the naked eye, the 

light is not 100% in focus when it is applied with the lens. The 

light cannot be focused because the jig does not block 100% of 

the unused light [18, 25]. The jig will require a chamber to block 

the unused light [18, 25]. The size of the lens also focuses the 

light more and can be used for penetration [18, 25, 33]. When we 

compare the concave and convex lenses, the convex lens performs 

better. The properties of the lens tend more towards a straight line 

  This experiment, by using a slice of apple and paper, only 

showed that the voltage and the brightness of the light are related 

to each other [16, 17], and that light penetrates into a material 

using biological and non-biological tissues [4].  

 

3.1.1  Experiment Result for Biological Tissue and Non-

biological Tissue 
 

The previous paragraph showed that light penetrates both 

biological and non-biological tissues and the result can be seen in 

the graph below [25]. To focus the light beam a lens is applied to 

it. The result of this experiment can be seen in Figures 2.2 to 2.4 

showing the value of brightness versus the thickness. As the 

graphs show, the light penetration is high when the tissue or the 

paper (subject) is thin. The graph patterns also show the same 

result indicating that when the thickness of the subject is high then 

the light penetration is low [9, 26, 33] . 

  For the first LED test in this experiment, we want to check 

the light direct from the light source component. The aim is to 

ensure that the data error is low and for this test to serve as a 

reference for the next experiment with the LED light source 

(applied with a lens). The results are shown in Figure 2.2. 

 

 
 

Figure 2.2  Thickness vs. brightness without lens 

 

 

  The experiment without a lens was undertaken to ensure that 

the properties of the light do not change and for it to be the 

reference for other experiments. The next experiment used 

changes in the light beam when a lens is applied in front of the 

light source. With regard to Figure 2.2, the trend of the graph has 

dropped slightly and this again depends on the thickness of the 

subject [24, 33]. The entire graph decreases slightly as the 

thickness increases. Based on the graph in Figure 2.2, the light 

detected by a sensor is proportional to the thickness of the subject 

[9, 25, 43]. The graph also shows that the penetration of the apple 

is still the same as the paper but the value of penetration in the 

apple tissue is higher compared to the paper. Based on 

observations of the subject, we can see that the apple tissue is 

more transparent compared to the paper; this is because of the 

quantity of material inside the subject tissue [1, 4, 41]. Based on 

Figure 2.2, the result shows that paper can block more light than 

apple.  

  For the next test in this experiment, a convex lens is applied 

to the LED light system to verify the action or the effect of the 

light produced by LEDs through a convex lens. As we know, 

convex lenses diverge light after penetration but we must consider 

the focus point in this case [9, 23, 26]. The convex lens used had a 

0.5 cm focus point distance. The collected data starts from that 

point to make it more accurate.  

 

 
 

Figure 2.3  Thickness vs. brightness with convex lens 

 

 

  Figure 2.3 shows the result of applying a convex lens to the 

front of the LED component. The same voltages as before, that 

are 3.5, 6, 8, 10, and 12.3 V, were used to manage the brightness 

produced by the LED components. We also used the same subject 

matter, apple and paper, to assess light penetration. As mentioned 

above, we used a convex lens to check the effect of the light 

output from the lens and after penetrating the subject. From result 

for using 12.3 volt value we can see both of subjects (apple and 

paper) for convex lens testing. Based on the convex lens result 

shown in Figure 2.3, the effect of lens can only be seen on an 

apple as a result by using 12.3 volt as a voltage supply (at the top 

side) when the thickness is achieve to1.5 cm. The graph of apple 

for 12.3 volt fall significantly once the thickness of apple is equal 

to 1 cm compared with other graph [16, 17]. The value showed, 

using 12.3 volt is higher compare with other result. The increases 

of data for other result is consistent but for this voltage value 

(12.3 volt), the data captured by the sensor is higher even other 

parameter are constant [9, 26, 33, 52]. Base on Figure 2.3 for 

other result 3.5, 6, 8, 10.3, and 12.3 volt for paper and 3.5, 6, 8, 

and 10.3 for apple subject, the graph pattern is quiet same which 

is when the voltage is increased, the data captured by the sensor 

also increases and when the thickness of the subject is increase the 

data captured by a sensor is decrease. 

  In the next experiment we used a concave lens to identify the 

light output effect after penetration. As we know, concave lenses 

make light diverge once the light emerges from the lens [9, 23, 

26]. The rate of divergence depends on the internal lens properties 

[9, 23, 26]. We used a collimator to manage the excess light 

produced from the LED component. 
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Figure 2.4  Thickness vs. brightness with concave lens (LED) 

 

 

  The graphs in Figures 2.3 and 2.4 show the same result as 

with the light source without a lens. From the graphs, the convex 

lens is brighter than concave lens. Based on lens theory, the light 

after penetrating the concave lens will diverge and the light has 

greater angles compared to normal light [37, 40, 52, 55, 56]. The 

outgoing light from the convex lens will be more focused and the 

thickness of the light beam more constant [37, 40, 52, 55, 56]. In 

this case and based on the properties of the light beam, the lens is 

more focused compared to light without a lens [37, 40, 52, 56].  

However, the jig must include a chamber to ensure that the 

unused light is blocked [2]. Another factor that causes the 

inconsistent decrease in the graph is the material inside the tissue; 

for example, alkali, acid, water content, etc [30, 31, 34, 39, 44, 53, 

57-59]. The refraction effect also makes the value captured by the 

sensor decrease rapidly. As can be seen from Figure 2.4, the 

significant point on the graph is at 6 V when the apple is 1 cm 

thick. Subsequently the graph is relatively stable compared to the 

point before where the thickness was 0.5 cm. The graph decreased 

dramatically from 0.5 to 1 cm thickness. If we compare the solid 

light produced by the LED component (without a lens), the graph 

for the concave lens decreased and increased dramatically at a 

thickness of 1 cm [9, 25]. Based on the observation of light 

coming from the lens which is outgoing from lens or the light 

after penetration of lens, when comparison value data base testing 

by applying concave lens (Figure 2.4) and the testing without lens 

(Figure 2.2), we can see the reduction of value captured by a 

sensor but it is still can be accepted because the percentage 

reduction is not more than 10% and for reference point (3.5 volt 

paper subject), the sensor captured without lens testing is equal to 

0.1634 (figure 2.2) volt and for concave lens testing show 0.1479 

volt[18, 33, 40, 41, 55]. 

  Based on the three figures (2.2 to 2.4), we calculated the 

average, shown in Figure 2.5. The result shows the average of the 

three methods: tests with direct light from LED components, light 

from the LED component applying a concave lens and light from 

the LED component applying a convex lens. 

 

 

 
 

Figure 2.5  Average thickness vs. average brightness (LED) 

 

 

  Based on the average result, the brightness of the penetration 

will be slightly increased depending on the thickness of the 

material, the properties of the material and the voltage supply 

(brightness of light source) [4, 9, 25, 26, 33]. Based on the graph, 

the penetration using the convex lens is better than that using the 

concave lens. The angle of light also plays a distinctive role in the 

choice of lens [4]. The researcher must decide on the types of 

light source, the types of angle and the processes to be chosen for 

the outgoing properties of the light 

  As a conclusion based on result from Figure 2.1 until 2.5 for 

LED light source, we can conclude that the LED is not so 

effective when it applies to lens. The situation happens because 

the LED already has the thickness of light produced from LED 

component itself [14, 22, 48, 49, 60, 61]. The researchers also 

must consider the focus point produced after penetration of light 

to lens or in other word is the output after lens [18, 33, 40, 56]. 

Other than that, the material would to be penetrated must be 

considered to make the result is more effective [27, 44, 45, 49, 51, 

62, 63]. 

 

3.2  Experiment result for Laser light source 
 

The light from the laser produces the same effect as compared 

with the LED. A laser normally will produce a straight line [4, 

23]. The angle produce by the laser can be increased by using lens 

without modifying the properties of light [4, 37, 40, 55, 56]. 

Based on the Ohm’s law, when the resistance is same with the 

value of current, it will increase when the voltage of supply 

increases. Table below showed that the penetration will increase 

when the voltage increases. 

  In this experiment, we focused more on the effect of 

applying the lens to the straight light [23, 64-66]. The effect of 

lens will be investigated for soft tissue and paper tissue. As we 

know, when lights penetrate the lens, straight line light will be 

changed into a cone type pattern [2, 3, 8, 40, 47]. Normally, 

straight line light changes into cone type after penetration through 

the lens but the density, distance, brightness and other light effects 

will be increased or decreased to balance the energy [18, 33, 40, 

52, 55].   

  Table 3.1 shows the result of using the laser as the light 

source to assess the light penetration of the subject, assessing 

whether the maximum voltage and current are accepted for the 

laser pointer component. The experiment was conducted using 

two types of lens: basic concave and convex lenses. 
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Table 3.1  Result of the voltage and brightness tests using a laser as a light 

source 

 

  Transmitter Receiver 

No 

Voltage 

(volt) 

Current 

(amp) 

Without 

lens (v) 

Concave 

lens (V) 

Convex 

lens (v) 

1 3.9 0.01 0.2466 0.2241 0.185 

2 8.7 0.02 0.2867 0.2601 0.2279 

3 9.9 0.03 0.3081 0.2783 0.2479 

4 12.7 0.04 0.3113 0.2831 0.2344 

5 15.6 0.05 0.3053 0.2113 0.1602 

 

 
 

Figure 3.1  Graph of light source vs. detector for laser 

 

 

  Figures 3.1 to 3.4 show that light penetration also occurs 

through a lens [37, 40, 55, 56]. The graph patterns with and 

without the lenses are similar. Table 3.1 shows three columns for 

the receiver data: without a lens, with a concave lens and with a 

convex lens. As described above, the light from the laser 

component (straight line) will be transformed to a cone pattern 

and the data from the column without a lens will be used as the 

reference for this test. The graphs shown in Figure 3.1 are similar 

and from that we can assume that the light density is also similar 

[55, 56, 67-70]. In addition, the light penetration is also much the 

same and the brightness of light decreases when the voltage 

reaches 12.7. From this we know that the maximum voltage for 

the laser component is less than 12. 

  The next test covers penetration for soft tissue (apple) and 

paper. The apple was cut into slices and was superimposed with 

five layers with a maximum thickness equal to 2 cm [6, 27, 28, 

32, 38, 46, 71]. The results are shown in Figure 3.2. The voltage 

used for this test ranged from 3.9 to 15 V. The results cover the 

solid light from the laser without a lens. 

 

 
 

Figure 3.2  Thickness vs. brightness without a lens (laser) 

 

 

  This graph is not so smooth but a decreasing trend still 

appears as the thickness of the tissue increases. For example, the 

3.9 V pair in Figure 3.2 shows a similar trend and a small 

difference in penetration value for all thicknesses [18, 26, 33, 41, 

55, 56]. This is because the brightness is so small and light 

captured by the sensor is similar. Comparison of the 12.7 V pair 

can also be made from Figure 3.2. The apple is a blue starred line 

and the paper is a plain green line. The trends are similar but there 

is a huge difference in the penetration detected by the sensor [18, 

33, 41]. Previous studies have shown that the value of properties 

such as acid and alkali, among others, make the light warp on the 

other side depending on the value of the material in the tissue [30, 

31, 34, 36, 38, 39, 41, 44, 53, 57, 59]. The values for the 12 V 

data show that the difference between the two subjects is around 

±0.01 to ±0.04 V [18, 33, 37, 40, 41, 52, 55, 56]. 

  The next test covers the convex lens. As discussed above, 

once the light has passed through the lens, the inner properties of 

the light, the diameter or the thickness of the light will change. 

Based on convex lens theory, the light will focus more and 

increase after 0.5 cm; this is known as lens focus [18, 23, 24, 26, 

33, 37, 40, 41, 52, 55, 56]. The lenses used in this test have a 

focus point at 0.5 cm. Light will be accepted beyond the focus 

point, in other words, light will be exposed beyond 0.5 cm from 

the lens. 

 

 
Figure 3.3  Thickness vs. brightness with convex lens (laser) 



129                                        Ruzairi Abdul Rahim et al. / Jurnal Teknologi (Sciences & Engineering) 70:3 (2014) 123–134 

 

 

Figure 3.3 shows the light penetration activity using a convex lens 

through paper and apple. The graphs appear unstable but the 

pairings of the graphs are still the same for the light exposed with 

different types of subject. Figure 3.3 shows that two of the graphs 

decreased drastically, 9.9 and 12.7 V for the apple, becoming 

more stable after the thickness of the tissue reached around 1 cm. 

From that we can conclude that light is fully functional when the 

component is supplied with a suitable voltage [2, 3, 8, 23, 25, 47, 

52]. The graphs for paper at 9.9 and 12.7 V show the same 

situation but the rate of changes is lower compared to the apple. 

As with the other method, this shows that the graph is stable once 

the thickness of the material and the rate of penetration are 

increased [1, 4, 18, 26, 33, 41, 52]. 

  Figure 3.4 shows the test results using a laser with a concave 

lens which converts the light to a cone pattern with a focus spot in 

the centre of the light. As we know, a concave lens will make the 

light diverge once it emerges from the lens [18, 25, 33]. The rate 

of light divergence depends on the internal lens properties.  

 

 
 

Figure 3.4  Thickness vs. brightness with concave lens (laser) 

 

 

  Figure 3.4 shows unstable graphs for several methods. With 

low brightness or low voltage the results show that the change in 

penetration is very small or penetration does not occur. This is 

because brightness cannot pass through into the tissue. Unstable 

graphs occur because the centre of the light output from the lens 

has a centre point making it focus more [9, 23, 26]. We have 

already fixed the subject, that is the material inside the tissue, 

particularly the apple [9, 25, 26, 33, 52]. The result is still 

unstable due to the output after the lens [9, 18, 23, 26, 52]. The 

output image normally has its focus point from the centre as in an 

eclipse [18, 23, 33, 40, 52, 56]. The graph in Figure 3.4 shows 

that point two is higher and the rate slows down to the next point. 

From that we know that the focus point for the lens is at point 

two. From that situation, they have no more due of the material 

inside the tissue but the lens make the value capture is not so 

stable for that point. As mention above, apple subject have 

properties of minerals itself. The minerals changed the refractive 

index of the apple and the refraction pattern inside the subject also 

uncontrolled and make the light go more on the sensor. The 

situation of that make the sensor captured more density of lights 

and the value come out from the measurement device is higher 

[18, 33, 37, 56]. 

  Upcoming result show the average thickness for three 

methods which is without lens, basic convex lens, and basic 

concave lens it show in Figure 3.5. The data is combination of 

data above which has been shown in Fgure 3.1 until 3.4. The 

average result will be based on three methods which is the laser 

component without lens, the laser component is applied with the 

convex lens and the laser component applies with the concave 

lens. 

 

 
 

Figure 3.5  Average thickness vs. average brightness (laser) 

 

 

  Figure 3.5 shows the average of the results from the three 

tests above. From the figure we can calculate that the laser is 

effective with regard to penetration. The majority of paper graphs 

show slight decreases compared with the apple graphs [9, 18, 23-

26, 33, 37, 40, 41, 52, 56]. The materials or the properties of the 

subject make the both of the graphs in two different sides.  Based 

on the subject inside properties, the apple tissue has an alkali, 

acid, water content, etc. The minerals make the refractive index 

change other than that, the refraction pattern inside the subject 

also uncontrolled and make the light go more into the sensor. The 

situation of that make the sensor capture more light and the value 

come out from the device measurement is high [24, 30, 40, 41, 55, 

56].  

 

3.3  Experiment Result for Infrared Light Source 
 

Infrared light is a special light and it cannot be seen with the 

naked eye. Infrared light can only be detected by using the correct 

sensor [2, 25]. The main property of infrared light is its 

wavelength which is set at 100 nm in this experiment [2, 25]. 

  The infrared experiment included a brightness test using the 

three methods: solid infrared light without a lens, infrared light 

with a concave lens and infrared light with a convex lens. The 

results are shown in Figure 4.1 and the Table 4.1. The test used 

five voltages: 3.1, 5.0, 7.0, 9.2, and 11.3. The voltage was chosen 

by checking the current change from 0.01 until 0.05 at which 

points the stated voltages were chosen [14, 16, 17]. We used only 

one sensor to proceed with the infrared experiment to ensure a 

constant detected value [20, 72-79]. As we know, infrared can’t 

be seen with the naked eye, we can see the pattern of infrared 

light coming out from the lens and from the infrared component 

itself [18, 26, 33, 37, 40, 41, 52, 55, 56]. In this case, the result 

symbolizes only a method to be used in this test to check whether 

or not the sensor is functioning. Digital cameras also use this 

method to ensure that the infrared component produces the 

infrared light. By using a digital camera we can see the infrared 

colour but in this device we cannot measure or assume the 

thickness of the infrared. 
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Table 4.1  Results for the voltage and brightness tests using infrared as a 

light source 

 

  Transmitter Receiver 

No 

Voltage 

(volt) 

Current 

(amp) 

Without 

lens (v) 

Concave 

lens (V) 

Convex 

lens(v) 

1 3.1 0.01 0.3041 0.2759 0.3245 

2 5.0 0.02 0.326 0.2987 0.351 

3 7.0 0.03 0.345 0.341 0.369 

4 9.2 0.04 0.354 0.352 0.383 

5 11.3 0.05 0.364 0.332 0.392 

 

 
 

Figure 4.1: The voltage vs. the brightness for infrared light 

 

 

  Table 4.1 and Figure 4.1 show the results of the infrared 

tests. From Table 4.1 we produced the graph shown in Figure 4.1. 

Figure 4.1 shows a slightly increases trend for the infrared test 

without a lens and with a concave lens. The concave lens 

properties cause the light to pass through and modify, with the 

light becoming more focused and the distance between the light 

and the exposure is increased because of the deformation of the 

light [1, 33, 40, 52]. It is known that when the voltage increases 

the brightness of light also increases. However, this was not the 

case with the convex lens. As can be seen in Figure 4.1, the 

convex lens has two higher points compared to the test without a 

lens although the voltage supply was the same [80-85]. Based on 

observations, the laser component used reduces the brightness 

value when the voltage is more than ten [9, 18, 33, 41, 55]. The 

specification of the infrared component already includes 

resistance to protect the component itself. As a result, when the 

voltage is high and shoots into the component, the resistance will 

fix the current and reduce the brightness [9, 23, 26]. Based on the 

specification of the infrared component and Figure 4.1, the 

concave lens result shows that at two points on that graph the 

trend increased dramatically compared to the point after 9.2 V. 

  In the next test, the basic value will be captured by a sensor. 

The test will be conducted using a solid infrared light, that is, an 

infrared component without applying a lens to the front [9, 18, 23-

26, 33, 37, 40, 52, 55, 56]. The main objective of this test is to 

verify the penetration of the infrared light into the slice of apple 

and the white paper and to assess when the subject is at the centre 

of the light line without the lens [1, 9, 18, 23-26, 40, 41, 52, 55, 

56].  

 

 
 

Figure 4.2  Thickness vs. brightness without lens (infrared) 

 

 

  Figure 4.2 shows the light penetration of the infrared source 

without a lens [10-13, 86]. The graph shows that the value 

captured by the sensor will be reduced as the thickness of the 

subject increases [1, 24-26, 37, 41, 52, 55, 56]. Based on the 

results, the value for the block of paper is higher than that of the 

apple. This happened because the properties of the material inside 

the tissue are different [1, 4, 28-31, 34, 36-39, 41, 44, 53, 55, 57-

59]. As we know that water content of the apple tissue contains 

such things as acid, alkali etc., the gradient will be different [28, 

29, 31, 34, 36, 38, 39, 44, 53, 57-59]. The gradient difference can 

be seen by observe the Figure 4.2 above in both of the subject 

which is apple and the paper subject. The changes for the gradient 

parameter for this testing are very small. This situation happens 

because this testing is not applied to the lens and the light is 

normally penetrated into the subject (apple and paper) and it can 

be seen in the next result.   

  This test will be used as a reference for the infrared 

experiment with the convex and concave lenses. The next test 

covers the convex lens and applies infrared light at the front of the 

infrared light component [2, 3, 8, 23, 24, 47, 52]. Based on the 

convex lens concept, the lens can focus the light that passes 

through to the lens or, in other words, is the focus point for this 

lens. In this test we used a convex lens with a 0.5-cm focus point, 

from which we know that the focus point is 0.5 cm from the lens. 

The light was considered in the test range beyond 0.5 cm from 

lens. For the next test we also used the same voltage source, 

which is 3.1, 5, 7, 9.2, and 11.3 V to control the brightness 

produced by an infrared component [2, 3, 8, 23-25, 47, 52]. 
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Figure 4.3  Thickness vs. brightness with convex lens (infrared) 

 

 

  Figure 4.3 shows the penetration results for the two subjects, 

the apple and the paper, using infrared with a convex lens as the 

light source. The graph pattern is no different to those produced 

by the infrared without a lens or the solid infrared produced by the 

infrared component. The comparison value captured by the sensor 

for the result without the lens and a convex lens are not so 

different but they still show a difference of around 0.01 V. In 

terms of the tests without a lens and with the convex lens, the 

values captured by the sensor are different; that for the convex 

lens is less than that without the lens. This happened due to the 

changing pattern of light when the convex lens was applied but 

the graph pattern is still the same due to the thickness making the 

reading from the sensor decrease[20, 22, 48, 49, 72-79]. Base on 

properties of tissue on the subject are used in this experiment, 

they have unstable refractive index because of the properties and 

make the data have different gradient happen and show in Figure 

4.3. As an example, the 11.3 volt data are chosen to be elaborated, 

based on Figure 4.3 for convex lens testing the 11.3 volt data 

showed that decrease dramatically until the thickness of subject 

archive to 2 cm the value become lower compared to data for 

subject paper in same voltage value. These situations happen 

because of the material inside the apple tissue itself.  

  For the next testing, the basic concave lens will be applied in 

front of the infrared component to verify the effect of concave 

lens to infrared light [10-13, 86]. Based on the theory of the basic 

concave lens, the basic of concave lens makes the light go through 

into lens and changes the properties of the light pattern for 

example the straight line light go through into that lens the 

straight line will change into the cone pattern type [9, 23-26]. The 

experiment by using the concave will be conducted by using two 

subjects with is the paper and apple tissue [27-29, 32, 38, 46, 71]. 

The result for this testing will be show in Figure 4.4. The lens will 

be placed 0.5 cm in front of the infrared component and the lights 

consider in range 0.5 cm from lens [9, 18, 23-26, 37, 40, 52, 55, 

56]. 

 
 

Figure 4.4  Thickness vs. brightness with concave lens (infrared) 

 

 

  As stated above, the results for the infrared light with the 

concave lens are shown in Figure 4.4, which shows the trend 

decreasing as the thickness of the subject increases. This is the 

same as in the previous test for infrared [28, 31, 34, 36, 38, 39, 44, 

53, 57-59]. The results for the paper show a more consistent 

gradient for every brightness value produced by the infrared 

component [10-13, 86]. The gradient results for the apple are not 

so consistent. The graph is not as straight as that for paper, 

especially when the voltage is above 5 V. 

  From the three tests, infrared without a lens, infrared with a 

concave lens and infrared with a convex lens, the average result 

was calculated and is shown in Figure 4.5 [24, 37, 40, 55, 56]. 

The combination graph shows the effect of brightness versus the 

thickness of the subject. 

 

 
 

Figure 4.5  Average thickness vs. brightness (infrared) 
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Referring to Figure 4.5 we can see that the trend is slightly 

increased from subject thickness 0 until 1.5 cm for both the apple 

and the paper [27-29, 32, 38, 46, 71]. Based on that result, they 

have 6 graph pattern in that figure and one graph show the 

maintain penetration when the brightness of light is increases 

which is for paper without lens. The observations on the graph 

pattern show in Figure 4.5, the paper subject have maintain 

penetration for every parameter (lens) but the penetration will be 

decreases when the thickness will archive to last thickness. The 

graphs show the maintain increases of value after thickness 

achieve 1.5 cm compared other thickness and the value capture by 

a sensor directly and it show in graph apple with convex lens 

apply in the infrared light source [9, 43]. From the result, the 

small increase in value captured by a sensor before 1.5 cm 

thickness of subject tested the situation happen because of the 

property material inside of the subject itself [29-31, 34, 36, 53, 58, 

59]. Base on the figure 4.5 result, the higher value capture by a 

sensor are show in apple without lens and the sec high is show in 

apple concave lens result and we know that happen because of the 

material inside the apple tissue. 

  Applying the lens in front of the infrared light component 

produces only a small effect. The effect normally happens when 

the brightness of the light successfully penetrates the subject. 

Previous studies have shown that light can also be used to destroy 

bacteria to make packaged food more durable [4, 45]. 

  The 11.3 v are chosen as a reference for elaborated based on 

Figure 4.3 and 4.4. Base on the figures that are state before, the 

convex lens how the high value capture by a sensor compare to 

the concave lens. From that value, the convex lens is more 

effective to divergent the light and leveling light divisions 

compare with the concave lens. Base on the lens industry, the 

convex lens are popular apply and it easy in theory of the light 

divergent [87]. 

 

 

4.0  DISCUSSION 

 

The results above show that increased voltage produces brighter 

light. The experiments were undertaken in accordance with 

Ohm’s law, that is, when voltage increases, the current also 

increases the voltage if the resistance (laser component) is 

constant. Figures 2.1 to 2.5, 3.1 to 3.5 and 4.1 to 4.5 show the 

experimental results for the penetration of light through two 

subjects paper and a slice of apple [4, 25]. The data showed 

positive penetration when the correct component and the correct 

voltage are used for the maximum performance of the component 

[14, 16, 17]. 

  Penetration also depends on the subject properties, for 

example the moisture in the subject [4]. In comparison, apples 

contain more moisture than paper. Based on the results above, the 

entire light source can be used to penetrate tissue but we must first 

select a better voltage value to ensure that maximum penetration 

occurs [14, 16, 17]. 

  Lenses can be used to create light properties, for example, 

with respect to a laser, by using a lens we can modify the light 

from a straight line to light with an angle [4]. The wavelength of 

the light does not change once the light has penetrated the lens. 

The wavelengths after penetration for a laser and an LED are still 

the same at 700nm and for infrared at 1000nm [3, 64, 66].  

  Based on naked eye view, the subject will be infringed by 

light and the light will fulfill the subject with maximum size of 

light in other word the light stuck in front or the surface of the 

subject [4]. The light pass the subject will be captured by a sensor 

and shown in measurement device. The sensor can capture high 

value when the refractive index of sensor is high but normally the 

value can’t be high if the value compare to the reference value. In 

this testing the reference value is refer to the data without lens. 

 

 

5.0  CONCLUSION 

 
Based on the experimental results, we can conclude that voltage 

and the type of light are important in the process of scanning an 

object. The brightness must also be considered once the type of 

material to be scanned is known, as must the soft tissue properties 

before confirming the light intensity. For future work, the tests 

could be conducted using an electric component to make the light 

brighter. 
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