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We propose a new approach to optimizing portfolios to mean-variance-CVaR (MVC) model. Although of several researches have
studied the optimal MVCmodel of portfolio, the linear weighted summethod (LWSM) was not implemented in the area. The aim
of this paper is to investigate the optimal portfolio model based on MVC via LWSM. With this method, the solution of the MVC
model of portfolio as the multiobjective problem is presented. In data analysis section, this approach in investing on two assets is
investigated. AnMVCmodel of the multiportfolio was implemented inMATLAB and tested on the presented problem. It is shown
that, by using three objective functions, it helps the investors to manage their portfolio better and thereby minimize the risk and
maximize the return of the portfolio. The main goal of this study is to modify the current models and simplify it by using LWSM
to obtain better results.

1. Introduction

In financial activity, a portfolio is a set of assets that allows
somebody to choose from several choices in investing. The
main problem in this area is to find out the optimal combi-
nation to distribute a given fund on a set of existing assets.
Maximization of expected return and minimization of risk
are two main aims of this problem [1].

Our goal is to develop the MVCmodel for portfolio with
the weighted coefficients in which this approach is adaptive
of the weighted sum method (WSM). One of the aims is to
offer a practical method for the construction and optimize
the proposed model, in order to produce the Pareto optimal
solution.There are several researches that have been done on
the optimal mean-variance-CVaR (MVC) model of portfolio
but nomuch studies have been carried out in the area by using
the linear weighted summethod (LWSM).This approach will
give better insight into the multiportfolio process and the
position of investing via finding the feasible solution set.

The paper is organized into five sections. In the next
section, this paper presents the properties of multiobjective
portfolio optimization based on mathematical approach and
MVC model of portfolio optimization. Then, MVC model

of portfolio based on LWSM will be presented. After that,
the empirical example and some challenges will be shown to
clarify the discussion. For this aim, an MVC model of the
multiportfolio was implemented in MATLAB and tested on
the presented problem. Finally, results and some future works
are presented in the conclusion.

2. MVC Model of Portfolio

We face making many decisions in the real world. There
are numerous methods to optimize them. The aim of this
paper is to find the Pareto optimal solutions. However, in the
theoretical problem cases, if Pareto set normally cannot be
solved by an algorithm, thenwe try to approximate the Pareto
sets [2].

For example, the multiobjective model for five objective
functions 𝑓

1
, . . . , 𝑓

5
and some constraints can be shown by

following model [3]:

Max [𝑓
1
(𝑥), . . . , 𝑓

5
(𝑥)]𝑇
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s.t.
𝑀

∑
𝑖=1

𝑥
𝑖
= 1 𝑥

𝑖
≥ 0,

For 𝑖 = 1, . . . ,𝑀.
(1)

MVC uses the three parameters (the expected value (𝐸),
the variance (𝜎2), and the CVaR (conditional value at risk)
at a specified confidence level 𝛼 ∈ (0, 1)) for better modeling.
The aim of the proposedmodel is to give a developedmethod
for the solution [4].

We can obtain a better model of portfolio by replacing
the three indexes instead of two parameters as usual so that
it increases the efficiency of the model [5]. Several studies
on portfolio optimizations viamathematical approaches have
been investigated in the literature. To start the construction of
this model, we consider some variables, terms, and objective
functions as the following nomenclature [6].

Let

𝑁 be the number of assets that are available;
𝑅
𝑥
= return (as a random variable) depending on a

decision vector 𝑥 that belongs to a feasible set 𝐴;
𝑥
𝑖
= amount of investing in ith asset;

Ω = the feasible set of solutions or search space;
𝑠 = a solution of problem;
𝜇
𝑖
the expected mean of the 𝑖th asset;

𝜎2(𝑅
𝑥
) = the variance belong to 𝑅

𝑥
;

𝐾 the number of assets to invest (𝐾 ≤ 𝑁).

We define the variable

𝑧
𝑖
= {
1 if the 𝑖th (𝑖 = 1, . . . , 𝑁) asset is chosen
0 otherwise;

(2)

𝑥
𝑖
= money ratio (0 ≤ 𝑥

𝑖
≤ 1) invested in the 𝑖th (𝑖 =

1, . . . , 𝑁) asset.
We consider the MVC model based on Aboulaich et al.

method with following formula [4]:

(𝑃)

{{{{{{{{{
{{{{{{{{{
{

min {CVaR, −𝐸, var} ,

s.t 𝑥 ∈
{
{
{

(𝑥
1
, . . . , 𝑥

𝑛
) |
𝑛

∑
𝑗=1

𝑥
𝑗
= 1,

𝑥
𝑗
≥ 0, ∀𝑗 ∈ {1, . . . , 𝑛}

}
}
}

.

(3)

We note that, for random variable, the value of variance
is calculated by the following formula:

𝜎2 (𝑅
𝑥
) = 𝐸 [(𝑅

𝑥
− 𝐸(𝑅

𝑥
))
2

] . (4)

To calculate the variance, let 𝑅
𝑥
= 𝑅
1
𝑥
1
+ ⋅ ⋅ ⋅ + 𝑅

𝑛
𝑥
𝑛
, so we

have

𝜎2 (𝑅
𝑥
) =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑥
𝑖
𝑥
𝑗
𝛿
𝑖𝑗
, (5)

where 𝛿
𝑖𝑗
= cov(𝑅

𝑖
, 𝑅
𝑗
). In addition, in the model above,

preferring the random variable 𝑅
𝑥
than random variable

𝑅
𝑦
is as the following conditions:

𝐸 (𝑅
𝑥
) ≥ 𝐸 (𝑅

𝑦
) ; 𝜎2 (𝑅

𝑥
) ≤ 𝜎2 (𝑅

𝑦
) ,

CVaR (𝑅
𝑥
) ≤ CVaR (𝑅

𝑦
) ,

(6)

in which CVaR is calculated according to following theorem.

Proposition 1 (CVaR calculation and optimization). Let 𝑅
𝑥

be a random variable depending on a decision vector 𝑥 that
belongs to a feasible set𝐴 and 𝛼 ∈ (0, 1). Consider the function

𝐹
𝛼
(𝑥, V) =

1

𝛼
𝐸 {[−𝑅

𝑥
, +V]+} − V, (7)

where [𝑢]+ = 𝑢 for 𝑢 ≥ 0 and [𝑢]+ = 0 for 𝑢 < 0. Then,
according to a function of V, 𝐹

𝛼
is finite and continuous (hence

convex) and

𝐶𝑉𝑎𝑅 (𝐹
𝑥
) = min

v∈R
𝐹
𝛼
(𝑥, V) . (8)

In addition, the set consisting of the values of V for which the
minimum is attained, denoted by𝐴

𝛼
(𝑥), is a nonempty, closed,

and bounded interval. Minimizing 𝐶𝑉𝑎𝑅
𝛼
with respect to 𝑥 ∈

𝐴 is equivalent tominimizing𝐹
𝛼
with respect to (𝑥, V) ∈ 𝐴𝑥𝑅:

min
𝑥∈𝐴

𝐶𝑉𝑎𝑅
𝛼
(𝑅
𝑥
) = min
(𝑥,V)∈𝐴𝑥𝑅

𝐹
𝛼
(𝑥, V) . (9)

In addition, a pair (𝑥∗, V∗) minimizes the right-hand
side if and only if 𝑥∗ minimize the left-hand side and V∗ ∈
𝐴
𝛼
(𝑥∗). 𝐶𝑉𝑎𝑅

𝛼
(𝑅
𝑥
) is convex with respect to 𝑥 and 𝐹

𝛼
(𝑥, V)

is convex with respect to (𝑥, V).
Thus, if the set 𝐴 of feasible decision vectors is convex

(which is the case for the basic version of the portfolio selection
problem), and even if we impose a further lower limit on the
expected return, minimizing CVaR is a convex optimization
problem [7].

On the other expression, MVC model denotes as the
following:

min𝜎2 (𝑥)

subject to: 𝐹
𝛼
(𝑥, V) ≤ 𝑧

𝐸 (𝑥) ≥ 𝑑

𝑥 ∈ 𝐴, V ∈ 𝑅,

(10)

where variables = (𝑥
1
, . . . , 𝑥

𝑛
) ∈ 𝐴 ⊂ 𝑅𝑛, V ∈ 𝑅, and

set of feasible decision vectors denotes via 𝐴 that is a convex
set. In the model above, there is one multiobjective system for
portfolio optimization that consists of three objective functions.
The first objective function is to minimize the conditional
value at risk for portfolio optimization. The second objective
function denotes minimizing the expected value of return of the
portfolio. And the last objective function considers minimizing
the variance of returns. This procedure shows that we can
manage our capital to invest in several assets [5].
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Table 1: Situation of two assets.

Alt.
Criteria

𝐶
1

0.10
𝐶
2

0.05
𝐶
3

0.30
A1 15 10 25
A2 30 20 10

3. MVC Model of Portfolio Based on LWSM

Thismethod was introduced by Zadeh in 1963 and it is one of
the main ways of solving theMO (see [8]).Three types of this
method are used for multiobjective portfolio optimization
(MPO) in previous research.They are weighted summethod,
weight quadratic method, and weight quadratic variation.

One of the main ways of weighting methods is the
weighted sum method. The aim of weighting method is the
optimization of the objective functions that they arranged
by linear combination (weighted sum). Different efficient
solutions can be found by changing the weights of the
objective functions [9].

The weighted sum method changes the MO problem
with a single model of mathematical optimization problem.
In the model of this method sum weighting coefficient 𝑤

𝑖

multiply each objective function 𝑓
𝑖
to make the structure of

the objective function as follows: (note that normalization of
those coefficients is not necessary)

min
𝑘

∑
𝑖=1

𝜔
𝑖
𝑓
𝑖
(𝑥)

s.t. 𝑥 ∈ Ω,

where 𝜔
𝑖
≥ 0, ∀𝑖 = 1, . . . , 𝑘

𝑘

∑
𝑖=1

𝜔
𝑖
= 1.

(11)

With convexity supposition, if 𝜔
𝑖
> 0, ∀𝑖 = 1, . . . , 𝑘, then

the solution of the above system is Pareto optimal.Thismeans
that if that system is convex then any Pareto optimal solution
can be found [10]. There are three criteria to measure the
weight.They are subjective preference of the decisionmakers,
the variance measure, and the independence of criteria.
Usually two methods can be used to achieve this aim: the
equal weights and the rank-order weights [11, 12].

Example 2 (see [13]). Consider that a multiobjective problem
includes three criteria, which are denoted by the same
unit, and two alternatives. According to Table 1 let 𝑊

1
=

0.10, 𝑊
2
= 0.05, and 𝑊

3
= 0.30. The values of 𝛼

𝑖𝑗
are

assumed to be as follows:

𝐴 = [
15 10 25
30 20 10

] . (12)

Therefore, the decision matrix for this MCDM problem is as
follows.

Criteria: 0.10, 0.05, 0.30.
Alternatives: A1, A2.

With (10) we obtain data as follows:

A1 (WSM Score) = 15 × 0.10 + 10

× 0.05 + 25 × 0.30 = 2.75.
(13)

In the same ways,

A2 (WSM Score) = 30 × 0.10 + 20

× 0.05 + 10 × 0.30 = 7.
(14)

So the optimal case in the minimization situation is alterna-
tiveA1 because it has the lowestWSM score.We can write the
alternative ranking as follows: A1 < A1 (where “<” denotes
“better than”).

Now, we formulate the portfolio revision problem with
transaction costs as a standard mathematical optimization
problem with the mean-risk framework. We will employ the
following notation.

𝑁: number of risky assets
𝑒: vector with all entries equal to ones.

Consider the optimization problem with the normalized
single objective as follows:

Maximize: 𝑓 (𝑥) =
𝑙

∑
𝑘=1

𝜔
𝑘
𝑄0
𝑘
(𝑥) ,

Subject to: 𝑥 ∈ 𝑋 = {𝑥 | 𝑓
𝑖
(𝑥) ≥ 0, 𝑔

𝑖(𝑥)
= 0, 1, 𝑙 } ,

(15)

where the weights are denoted by 𝜔
𝑖
, and

𝜔
𝑖
≥ 0,

𝑙

∑
𝑖=1

𝜔
𝑖
= 1, 𝑖 = 1, 𝑙. (16)

And the objective function of 𝑘th objective function
𝑄
𝑘
(𝑥) after normalization is denoted by 𝑄0

𝑘
(𝑥), 𝑘 = 1, 𝑙.

Also we call 𝑓
𝑖
(𝑥), 𝑔

𝑖(𝑥)
inequality and equality constraints,

respectively. With LWSM approach, we have

𝑄
𝑘
(𝑥) =

𝑙

∑
𝑖=1

𝑎
𝑘𝑖
𝑥
𝑖
, 𝑎
𝑘𝑖
∈ 𝑅. (17)

Therefore, normalized objective functions have the following
form:

𝑄0
𝑘
(𝑥) =

𝑄
𝑘
(𝑥)

𝑆
𝑘

=
𝑎
𝑘1

𝑆
𝑘

𝑥
1
+ ⋅ ⋅ ⋅ +

𝑎
𝑘𝑛

𝑆
𝑘

𝑥
𝑛
, (18)

in which case the floating-point values 𝑆
𝑘
are evaluated in the

following way:

𝑆
𝑘
=
𝑛

∑
𝑗=1

𝑎𝑘𝑗
 ̸= 0. (19)

Obviously, in many practical problems, the objective
functions are represented by various measure units (e.g., if
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𝑄
1
is measured in kilos, 𝑄

2
in seconds, etc.). For this reason

the objective function normalization is required. It is now
obvious that the coefficients have values of the segment [0, 1].
Denote that we now have the linear programming problem

Maximize: 𝑓 (𝑥) =
𝑙

∑
𝑘=1

𝜔
𝑘

𝑄
𝑘
(𝑥)

𝑆
𝑘

= 𝜔
1

𝑎
𝑘1

𝑆
𝑘

𝑥
1

+ ⋅ ⋅ ⋅ + 𝜔
𝑛

𝑎
𝑘𝑛

𝑆
𝑘

𝑥
𝑛
,

Subject to: 𝑥 ∈ 𝑋.

(20)

The following theorem gives the practical criteria for
the detection of some Pareto optimal solutions of problem
(2.4). Yu et al. [14] presented mean-CVaR model of portfolio
optimization based on LWSM inwhich they assumed that the
return of the portfolio is based on multi-t-distribution and
they obtained the model for

max (𝑢 (𝑤)) = max (𝛼
1
𝐸 (𝑅) − 𝛼

2
CVaR) (21)

as follows:

max0.5 (𝑤𝑇𝜇) + 0.5(𝛼 + 1

𝑚 (1 − 0.5)

𝑚

∑
𝑘=1

𝑢
𝑘
) ,

s.t
{{
{{
{

𝑤𝑇𝜇 + 𝛼 + 𝑢
𝑘
≥ 0 𝑢

𝑘
≥ 0

𝑛

∑
𝑖=1

𝑤
𝑖
= 1 0 ≤ 𝑤

𝑖
≤ 1.

(22)

There are some conditions for coefficients that are used
in WSM. For example, the sum of them equal 1 and they
are strictly positive. In addition to LWSM they must be
normalized. With this idea, the multiportfolio optimization
problem is as follows:

min (𝑢 (𝑤)) = min (𝛼
1
𝜎2 (𝑅) − 𝛼

2
𝐸 (𝑅) + 𝛼

3
CVaR)

Subject to: 𝑥 ∈ 𝐴,
(23)

where 𝛼
1
, 𝛼
2
, and 𝛼

3
are strictly positive and 𝐴 is as the

above assumptions. Since all objective functions on MVC
model are convex, we can define the model above to find the
solution as the Pareto optimal set [15]. For instance, if we
consider 𝛼

1
= 1, 𝛼

2
= 0, and 𝛼

3
= 0 the problem turns

to minimize the variance of the portfolio [5].
Now, according to (P2) as themultiobjective optimization

problem, LWSM will be used to solve it as in the following
procedure.

Step 1. Construct the problem based on

min (𝑢 (𝑤)) = min (𝛼
1
𝜎2 (𝑅) − 𝛼

2
𝐸 (𝑅) + 𝛼

3
CVaR) . (24)

There are several positions of investing for investor
who can manage his/her budget which is related to the
amount of 𝛼

1
, 𝛼
2
, and 𝛼

3
. This note creates several cases

for investors to increase the return or decrease the risk
of a portfolio. The risk (or return) has an inverse (direct)
relation with those coefficients.The LWSM leads to following
procedure for MVC model of portfolio.

Step 2. Consider

min𝛼
1
(𝑤𝑇𝜎𝑤) − 𝛼

2
(𝑤𝑇𝜇)

+ 𝛼
3
(𝛼 +

1

𝑚 (1 − 𝛽)

𝑚

∑
𝑘=1

𝑢
𝑘
)

s.t
{{
{{
{

𝑤𝑇𝜇 + 𝛼 + 𝑢
𝑘
≥ 0 𝑢

𝑘
≥ 0

𝑛

∑
𝑖=1

𝑤
𝑖
= 1 0 ≤ 𝑤

𝑖
≤ 1,

(25)

where 𝛼, 𝛽 are the belief degree and specific parameter,
respectively. In this paper, it is considered that 𝛽 = 0.5. In
addition, according to ∑𝑛

𝑖=1
𝛼
𝑖
= 1 we have 1−(𝛼

1
+ 𝛼
2
) = 𝛼
3
;

we rewrite problem of (18) as follows:

min𝛼
1
(𝑤𝑇𝜎𝑤) − 𝛼

2
(𝑤𝑇𝜇) + (1 − (𝛼

1
+ 𝛼
2
))

× (𝛼 +
1

𝑚 (1 − 0.5)

𝑚

∑
𝑘=1

𝑢
𝑘
) ,

s.t
{{
{{
{

𝑤𝑇𝜇 + 𝛼 + 𝑢
𝑘
≥ 0 𝑢

𝑘
≥ 0

𝑛

∑
𝑖=1

𝑤
𝑖

0 ≤ 𝑤
𝑖
≤ 1,

(26)

where the belief degree of 𝛼 set is equal to 0.95. In addition,
in CVaR formula after linearization [16, 17] we have

𝐹
𝛽
(𝑤, 𝛼) = 𝛼 +

1

𝑚 (1 − 𝛽)

𝑚

∑
𝑘=1

[𝑓 (𝑤, 𝑦
𝑘
) + 𝛼]

+

, (27)

and 𝑓(𝑤, 𝑦
𝑘
) is the loss function which can be defined [16]

by 𝑓(𝑤, 𝑦
𝑘
) = −𝑤𝑇𝑦

𝑘
. We can rewrite (19) according to the

assumptions above as follows:

min𝛼
1
(𝑤𝑇𝜎𝑤) − 𝛼

2
(𝑤𝑇𝜇) + (1 − (𝛼

1
+ 𝛼
2
))

× (0.95 +
1

𝑚 (1 − 0.5)

𝑚

∑
𝑘=1

[−𝑤𝑇𝑦
𝑘
+ 0.95]

+

) ,

s.t
{{
{{
{

[𝑢]+ = max {𝑢, 0}
𝑛

∑
𝑖=1

𝑤
𝑖
= 1 0 ≤ 𝑤

𝑖
≤ 1,

(28)

where 𝜇
𝑘
is return of 𝑘th asset. In the model above, we

consider𝑚 = 2 and we have

min𝛼
1
(𝑤𝑇𝜎𝑤) − 𝛼

2
(𝑤𝑇𝜇) + (1 − (𝛼

1
+ 𝛼
2
))

× (0.95 +
1

2 (1 − 0.5)
2 ([−𝑤𝑇𝑦

𝑘
+ 0.95]

+

)) ,

s.t
{{
{{
{

[𝑢]+ = max {𝑢, 0}
𝑛

∑
𝑖=1

𝑤
𝑖
= 1 0 ≤ 𝑤

𝑖
≤ 1.

(29)
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4. Empirical Research and Challenges

In order to evaluate the model above to find the portfolio
optimization based on LWSM we consider two assets whose
mean return 𝜇 and covariance matrix 𝜎 are as the following
data (data from [14, 16]):

𝜇 = (
0.06760987
0.034191

) ,

𝜎 = (
0.058884101 0.000464043
0.000464043 0.0003643663

) .

(30)

According to the data above and the model of (29) we have

min𝑍 = min𝛼
1
(𝑧
1
) − 𝛼
2
(𝑧
2
) + (1 − (𝛼

1
+ 𝛼
2
)) (𝑧
3
) , (31)

where

𝑧
1
= 𝛿2
𝑝
= 𝑤𝑇𝜎𝑤 =

= (0.058884101 ∗ 𝑤
1
+ 0.000464043 ∗ 𝑤

2
) ∗ 𝑤
1

+ (0.000464043 ∗ 𝑤
1
+ 0.0003643663 ∗ 𝑤

2
) ∗ 𝑤
2
,

𝑧
2
= 𝜇
𝑝
= 𝑤𝑇𝜇 = 0.06760987𝑤

1
+ 0.034191𝑤

2
,

𝑧
3
= (0.95 +

1

2 (1 − 0.5)
2 ([−𝑤𝑇𝜇 − 0.95]

+

))

= 0.95 +
1

2 (0.5)

× 2 ([− (0.06760987𝑤
1
+ 0.034191𝑤

2
) + 0.95]

+

) ,

[𝑢]
+ = max {𝑢, 0}

𝑛

∑
𝑖=1

𝑤
𝑖

= 1, 0 ≤ 𝑤
𝑖
≤ 1.

(32)

Now, we consider this proposed model for 𝛼
1
= 0.25, 𝛼

2
=

0.25. Therefore, we have

minZ = min (0.01472102525 ∗ 𝑤2
1

+ 0.00058005375 ∗ 𝑤
1
∗ 𝑤
2

+0.0003643663 ∗ 𝑤2
2
)

− (0.0169024675𝑤
1
+ 0.00854775𝑤

2
)

+ (0.475 + ([− (0.06760987𝑤
1
+ 0.034191𝑤

2
)

+0.95]
+)) ,

s.t
{{
{{
{

[𝑢]+ = max {𝑢, 0}
𝑛

∑
𝑖=1

𝑤
𝑖
= 1, 0 ≤ 𝑤

𝑖
≤ 1.

(33)

0
1000

2000
3000

−0.01

−0.005

0
−1

−0.5

0

0.5

1

10

20

30

40

50

60

Figure 1: Mean-variance model of portfolio via LWSM.
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Figure 2: MVC model of portfolio via LWSM.

In order to compare the performance of mean-variance
model and MVC model of multiportfolio optimization, the
minimum functions are demonstrated viaMATLABsoftware,
as Figures 1 and 2 show the results of LWSMmethod for two
models, respectively.

Comparative performance was measured using a MAT-
LAB software, and performance was shown in Figures 1 and
2 which are called the mean-variance and MVC model of
multiportfolio, respectively.

In summary, we compare the performance of MVC
model of multiportfolio with LWSM technique and other
models like mean-variance approaches. The mean-variance
minimization function and the MVC model are as described
in Figures 1 and 2, respectively.

Table 2 is arranged to illustrate the results of MVCmodel
of portfolio and refer to two assets byMatlab by this approach.

As shown in the above results, we tested two assets via
proposed model and we presented the results of that as
Table 2 which included 20 results from our proposed model
byMATLAB software. It showed, except for two obvious cases
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Table 2: Results of MVC model of portfolio refer to two assets (see
Section 4) by MATLAB.

𝑤
1
= 0.000000 𝑤

2
= 1.000000 𝑧 = 1.083819

𝑤
1
= 0.010000 𝑤

2
= 0.990000 𝑧 = 1.086554

𝑤
1
= 0.020000 𝑤

2
= 0.980000 𝑧 = 1.089293

𝑤
1
= 0.030000 𝑤

2
= 0.970000 𝑧 = 1.092035

𝑤
1
= 0.040000 𝑤

2
= 0.960000 𝑧 = 1.094779

𝑤
1
= 0.050000 𝑤

2
= 0.950000 𝑧 = 1.097527

𝑤
1
= 0.060000 𝑤

2
= 0.940000 𝑧 = 1.100278

𝑤
1
= 0.070000 𝑤

2
= 0.930000 𝑧 = 1.103031

𝑤
1
= 0.080000 𝑤

2
= 0.920000 𝑧 = 1.105788

𝑤
1
= 0.090000 𝑤

2
= 0.910000 𝑧 = 1.108547

𝑤
1
= 0.100000 𝑤

2
= 0.900000 𝑧 = 1.111310

𝑤
1
= 0.110000 𝑤

2
= 0.890000 𝑧 = 1.114075

𝑤
1
= 0.120000 𝑤

2
= 0.880000 𝑧 = 1.116844

𝑤
1
= 0.130000 𝑤

2
= 0.870000 𝑧 = 1.119615

𝑤
1
= 0.140000 𝑤

2
= 0.860000 𝑧 = 1.122389

𝑤
1
= 0.150000 𝑤

2
= 0.850000 𝑧 = 1.125167

𝑤
1
= 0.160000 𝑤

2
= 0.840000 𝑧 = 1.127947

𝑤
1
= 0.170000 𝑤

2
= 0.830000 𝑧 = 1.130730

𝑤
1
= 0.180000 𝑤

2
= 0.820000 𝑧 = 1.133517

𝑤
1
= 0.190000 𝑤

2
= 0.810000 𝑧 = 1.136306

𝑤
1
= 0.200000 𝑤

2
= 0.800000 𝑧 = 1.139098

𝑤
1
= 0.210000 𝑤

2
= 0.790000 𝑧 = 1.141893

𝑤
1
= 0.220000 𝑤

2
= 0.780000 𝑧 = 1.144691

𝑤
1
= 0.230000 𝑤

2
= 0.770000 𝑧 = 1.147493

𝑤
1
= 0.240000 𝑤

2
= 0.760000 𝑧 = 1.150297

𝑤
1
= 0.250000 𝑤

2
= 0.750000 𝑧 = 1.153104

𝑤
1
= 0.260000 𝑤

2
= 0.740000 𝑧 = 1.155914

𝑤
1
= 0.270000 𝑤

2
= 0.730000 𝑧 = 1.158727

𝑤
1
= 0.280000 𝑤

2
= 0.720000 𝑧 = 1.161543

𝑤
1
= 0.290000 𝑤

2
= 0.710000 𝑧 = 1.164362

𝑤
1
= 0.300000 𝑤

2
= 0.700000 𝑧 = 1.167184

𝑤
1
= 0.310000 𝑤

2
= 0.690000 𝑧 = 1.170009

𝑤
1
= 0.320000 𝑤

2
= 0.680000 𝑧 = 1.172837

𝑤
1
= 0.330000 𝑤

2
= 0.670000 𝑧 = 1.175668

𝑤
1
= 0.340000 𝑤

2
= 0.660000 𝑧 = 1.178501

𝑤
1
= 0.350000 𝑤

2
= 0.650000 𝑧 = 1.181338

𝑤
1
= 0.360000 𝑤

2
= 0.640000 𝑧 = 1.184178

𝑤
1
= 0.370000 𝑤

2
= 0.630000 𝑧 = 1.187021

𝑤
1
= 0.380000 𝑤

2
= 0.620000 𝑧 = 1.189867

𝑤
1
= 0.390000 𝑤

2
= 0.610000 𝑧 = 1.192715

𝑤
1
= 0.400000 𝑤

2
= 0.600000 𝑧 = 1.195567

𝑤
1
= 0.410000 𝑤

2
= 0.590000 𝑧 = 1.198422

𝑤
1
= 0.420000 𝑤

2
= 0.580000 𝑧 = 1.201279

𝑤
1
= 0.430000 𝑤

2
= 0.570000 𝑧 = 1.204140

𝑤
1
= 0.440000 𝑤

2
= 0.560000 𝑧 = 1.207004

𝑤
1
= 0.450000 𝑤

2
= 0.550000 𝑧 = 1.209870

𝑤
1
= 0.460000 𝑤

2
= 0.540000 𝑧 = 1.212740

𝑤
1
= 0.470000 𝑤

2
= 0.530000 𝑧 = 1.215612

𝑤
1
= 0.480000 𝑤

2
= 0.520000 𝑧 = 1.218488

𝑤
1
= 0.490000 𝑤

2
= 0.510000 𝑧 = 1.221366

Table 2: Continued.

𝑤
1
= 0.500000 𝑤

2
= 0.500000 𝑧 = 1.224248

𝑤
1
= 0.510000 𝑤

2
= 0.490000 𝑧 = 1.227132

𝑤
1
= 0.520000 𝑤

2
= 0.480000 𝑧 = 1.230019

𝑤
1
= 0.530000 𝑤

2
= 0.470000 𝑧 = 1.232910

𝑤
1
= 0.540000 𝑤

2
= 0.460000 𝑧 = 1.235803

𝑤
1
= 0.550000 𝑤

2
= 0.450000 𝑧 = 1.238699

𝑤
1
= 0.560000 𝑤

2
= 0.440000 𝑧 = 1.241599

𝑤
1
= 0.570000 𝑤

2
= 0.430000 𝑧 = 1.244501

𝑤
1
= 0.580000 𝑤

2
= 0.420000 𝑧 = 1.247406

𝑤
1
= 0.590000 𝑤

2
= 0.410000 𝑧 = 1.250314

𝑤
1
= 0.600000 𝑤

2
= 0.400000 𝑧 = 1.253225

𝑤
1
= 0.610000 𝑤

2
= 0.390000 𝑧 = 1.256140

𝑤
1
= 0.620000 𝑤

2
= 0.380000 𝑧 = 1.259057

𝑤
1
= 0.630000 𝑤

2
= 0.370000 𝑧 = 1.261977

𝑤
1
= 0.640000 𝑤

2
= 0.360000 𝑧 = 1.264900

𝑤
1
= 0.650000 𝑤

2
= 0.350000 𝑧 = 1.267826

𝑤
1
= 0.660000 𝑤

2
= 0.340000 𝑧 = 1.270755

𝑤
1
= 0.670000 𝑤

2
= 0.330000 𝑧 = 1.273687

𝑤
1
= 0.680000 𝑤

2
= 0.320000 𝑧 = 1.276622

𝑤
1
= 0.690000 𝑤

2
= 0.310000 𝑧 = 1.279560

𝑤
1
= 0.700000 𝑤

2
= 0.300000 𝑧 = 1.282501

𝑤
1
= 0.710000 𝑤

2
= 0.290000 𝑧 = 1.285445

𝑤
1
= 0.720000 𝑤

2
= 0.280000 𝑧 = 1.288392

𝑤
1
= 0.730000 𝑤

2
= 0.270000 𝑧 = 1.291341

𝑤
1
= 0.740000 𝑤

2
= 0.260000 𝑧 = 1.294294

𝑤
1
= 0.750000 𝑤

2
= 0.250000 𝑧 = 1.297250

𝑤
1
= 0.760000 𝑤

2
= 0.240000 𝑧 = 1.300209

𝑤
1
= 0.770000 𝑤

2
= 0.230000 𝑧 = 1.303170

𝑤
1
= 0.780000 𝑤

2
= 0.220000 𝑧 = 1.306135

𝑤
1
= 0.790000 𝑤

2
= 0.210000 𝑧 = 1.309103

𝑤
1
= 0.800000 𝑤

2
= 0.200000 𝑧 = 1.312074

𝑤
1
= 0.810000 𝑤

2
= 0.190000 𝑧 = 1.315047

𝑤
1
= 0.820000 𝑤

2
= 0.180000 𝑧 = 1.318024

𝑤
1
= 0.830000 𝑤

2
= 0.170000 𝑧 = 1.321003

𝑤
1
= 0.840000 𝑤

2
= 0.160000 𝑧 = 1.323986

𝑤
1
= 0.850000 𝑤

2
= 0.150000 𝑧 = 1.326971

𝑤
1
= 0.860000 𝑤

2
= 0.140000 𝑧 = 1.329960

𝑤
1
= 0.870000 𝑤

2
= 0.130000 𝑧 = 1.332951

𝑤
1
= 0.880000 𝑤

2
= 0.120000 𝑧 = 1.335946

𝑤
1
= 0.890000 𝑤

2
= 0.110000 𝑧 = 1.338943

𝑤
1
= 0.900000 𝑤

2
= 0.100000 𝑧 = 1.341944

𝑤
1
= 0.910000 𝑤

2
= 0.090000 𝑧 = 1.344947

𝑤
1
= 0.920000 𝑤

2
= 0.080000 𝑧 = 1.347953

𝑤
1
= 0.930000 𝑤

2
= 0.070000 𝑧 = 1.350963

𝑤
1
= 0.940000 𝑤

2
= 0.060000 𝑧 = 1.353975

𝑤
1
= 0.950000 𝑤

2
= 0.050000 𝑧 = 1.356990

𝑤
1
= 0.960000 𝑤

2
= 0.040000 𝑧 = 1.360008

𝑤
1
= 0.970000 𝑤

2
= 0.030000 𝑧 = 1.363030

𝑤
1
= 0.980000 𝑤

2
= 0.020000 𝑧 = 1.366054

𝑤
1
= 0.990000 𝑤

2
= 0.010000 𝑧 = 1.369081

𝑤
1
= 1.000000 𝑤

2
= 0.000000 𝑧 = 1.372111
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(𝑤
1
= 0 and 𝑤

2
= 1; 𝑤

1
= 1 and 𝑤

2
= 0), that the minimum

situation ofMVCmodel ofmultiportfoliowill occurr on𝑤
1
=

0.01 and 𝑤
2
= 0.99. The results illustrate that the proposed

method is better for investing a small amount of assets such
as the above two assets.

Despite of the several advantages, this method has some
disadvantages which one of them is the weights 𝛼

1
, 𝛼
2
,

and 𝛼
3
that are hard to understand [5]. The other one is

how to use the Simplex method to solve the weighted
sum problem. The solution of this problem is using other
techniques (e.g., interior-point methods) [10].

5. Conclusion

In this investigation, we consider three objective functions to
model portfolio optimization with LWSM. In addition, we
propose a linear weighted sum method to solve the MCV
model of portfolio optimization. Also, with empirical exam-
ple and MATLAB software, we evaluated proposed model.
Our example includes two assets for investing. However, it
is flexible to choose more assets and find the Pareto optimal
according to procedures that are used in this paper.

The contribution of this study is a presentation of MVC
model of portfolio optimization based on LWSM.The empir-
ical examples have shown that using the three objective
functions tomake a powerfulmulti-portfoliomodel.We have
described the MVC model of multiportfolio optimization
that it is extended of the model presented by Yu et al. [14].
In addition, we showed that theMVCmodel generally covers
both mean-variance and mean-CVaR models of portfolio
optimization (with changing the coefficients of 𝛼

𝑖
, 𝑖 = 1, 3).

Furthermore, this paper has given new insight into the
multiobjective decision making process via WSM. A hybrid
of this method and other techniques such as interior-point
methods can be a good idea for future researchers.

To sum up, with using three objective functions, it helps
the investors to manage their portfolio better and thereby
minimize the risk and maximize the return of the portfolio.
Also, using LWSM dues to modify the current models and
simplify it to obtain better results. The same approach can
also be used for other multiobjective optimizationmodel and
investing applications.
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