HF MESSAGING SYSTEM WITH AUTOMATIC LINK ESTABLISHMENT (ALE) CAPABILITY

NURULFADZILAH BT HASAN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > JANUARY 2006

Dedicated to my beloved husband and parents Thank you for the inspirations

ACKNOWLEDGEMENT

First and foremost the greatest praise to Allah for the blessings, guidance and for the gift of courage for me to accomplish this research.

Highest gratitude and appreciation goes to my supervisor, Assoc. Prof. Dr. Ahmad Zuri Sha'ameri, Thank you for the invaluable guidance, support, knowledge and advices given to me throughout this study. I would also like to thank En. Wan Roz for the priceless help and information he gave to make me better understand this research.

To En. Jeffri Ismail, DSP lab technician, I would like to thank him for his technical assistance throughout my study. Also, special thanks to Rahim, Sazali and Fong Fong for helping me complete the field-testing for this research. To my friends who are always there for me, thank you so much.

Finally, I would like to express endless appreciation to my family for their love, patience and prayers.

ABSTRACT

HF radio spectrum, ranging from 3 to 30 MHz can be utilized for voice and data communication. One of the benefit of using HF for communicating is that HF system is low-cost, requires minimum equipments and easy to set up. But due to the unpredictability and propagation problems such as multipath fading, interference and attenuation, communication using HF becomes very challenging. Besides, the availability of the channels varies depending on the time of day, seasons and the condition of the ionosphere. The purpose of this research is to design a HF messaging system equipped with Automatic Link Establishment (ALE) capability. ALE is an adaptive radio technology for automatically establishing communications over HF single sideband (SSB) links using the best frequency possible. The objective of the research is to design a messaging system that permits reliable data transmission over the HF radio with minimum cost and equipments. This research also looked at the feasibility of implementing ALE as software, designed using Visual C++ programming language. Equipments used in this research are commercial HF radio and modem, which are both controlled by the software. Field testing is conducted between UTM Skudai and several places in Malaysia to verify the performance of the system. From the results, it is proven that by applying adaptive radio technology, propagation problems can be overcome and reliability of data transmission can be improved. Moreover, amateur radio users can use the system, as it requires minimum equipment.

ABSTRAK

Spektrum radio berfrekuensi tinggi atau HF iaitu dari 3 hingga 30 MHz boleh digunakan untuk komunikasi suara dan juga data. Salah satu kebaikan menggunakan HF ialah ia memerlukan kos yang rendah, memerlukan peralatan yang minimum dan mudah untuk dibangunkan. Tetapi disebabkan keadaan HF yang sukar dijangka dan masalah perambatan seperti multipath fading, gangguan dan pelemahan isyarat menjadikan komunikasi menggunakan HF mencabar. Selain itu, kebolehan sesuatu frekuensi bergantung kepada faktor masa, musim dan keadaan lapisan ionosfera. Tujuan kajian ini adalah untuk membina sebuah sistem pesanan HF yang dilengkapi dengan kebolehan capaian pautan secara automatik (ALE). ALE merupakan teknologi radio ubah suai yang digunakan untuk menghasilkan jaringan komunikasi dalam jalur tunggal (SSB) HF menggunakan frekuensi yang terbaik. Objektif kajian ini adalah untuk menghasilkan sistem pesanan HF yang membolehkan penghantaran data melalui HF dilakukan dengan baik menggunakan kos serta peralatan yang minimum. Kajian ini juga bertujuan mengkaji kesesuaian menghasilkan ALE dalam bentuk perisian, yang dibangunkan menggunakan bahasa pengaturcaraan Visual C++. Peralatan yang digunakan dalam kajian ini adalah radio HF dan modem HF komersil yang mana keduanya akan dikawal oleh perisian yang dinyatakan tadi. Kajian lapangan diadakan antara UTM Skudai dan beberapa tempat di Malaysia untuk menguji prestasi sistem tersebut. Keputusan yang diperolehi dapat membuktikan bahawa dengan menggunakan teknologi radio mudah ubah suai, masalah perambatan dapat diatasi dan kebolehpercayaan penghantaran data ditingkatkan. Malah, sistem tersebut dapat digunakan oleh pengguna radio amatur kerana ia memerlukan peralatan yang minimum.

TABLE OF CONTENT

		PAGE
CHAPTER	TITLE	
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xiii
	LIST OF SYMBOLS	xvii
	LIST OF ABBREVIATIONS	xviii
	LIST OF APPENDICES	XX
1	INTRODUCTION	
	1.1 Background	1
	1.2 Objective	2
	1.3 Problem Statements	3
	1.4 Scope of Study	4
	1.5 Research methodology	4
	1.6 Thesis Outline	5
2	LITERATURE REVIEW	
	2.1 Introduction	7
	2.2 The Ionosphere	8
	2.2.1 Variations of the Ionosphere	10
	2.3 HF Radio Propagation	12
	2.3.1 Multipath Effects on HF Propagation	14

2.4	Automatic and Adaptive HF Communication System	16
2.5	Recent Developments in HF ALE Messaging	10
2.6	Summary	17
		19
FRE	QUENCY PREDICTION FOR HF	
CON	IMUNICATION	
3.1	Introduction	20
3.2	Types of Frequency Prediction	21
3.3	Ionospheric Measurement	21
	3.3.1 Ionograms	22
	3.3.2 MUF and LUF Calculations	23
3.4	Important Factors in Frequency Prediction	24
	3.4.1 Ionospheric Models	24
	3.4.2 Geometry of The Circuit	25
	3.4.3 Ionospheric Index	25
	3.4.4 Other Parameters	26
3.5	Advanced Stand-Alone Prediction System (ASAPS)	27
	3.5.1 ASAPS GRAFEX Frequency Prediction	
	3.5.2 ASAPS Field Strength Prediction	27
	3.5.3 Frequency Prediction for UTM Skudai-Kota	
	Bahru Circuit	30
	3.5.4 Frequency Prediction for UTM Skudai-	30
	Chemor Circuit	
3.6	Summary	34
		37

4

3

AUTOMATIC LINK ESTABLISHMENT (ALE)

4.1	Introduction	39
4.2	ALE Protocols and Operational Rules	40
	4.2.1 ALE Signal Structure	42
	4.2.1.1 Word Structure	43

	4.2.1.2 Coding	45
	4.2.1.3 Frame Structure	46
	4.2.2 Calling Protocol	47
	4.2.3 Scanning	50
	4.2.4 Sounding	51
	4.2.5 Link Quality Analysis (LQA)	52
	4.2.6 Automatic Channel Selection	53
	4.2.7 Oderwire Messages	54
4.3	Summary	55
SYS	FEM DESIGN and IMPLEMENTATION	
5.1	Introduction	56
5.2	Equipments Setup	56
	5.2.1 HF Transceiver	57
	5.2.2 HF Modem	58
	5.2.3 Dipole Antenna	61
5.3	System Design	67
	5.3.1 PACTOR Data Format	69
	5.3.2 ALE protocols	70
	5.3.2.1 Frame Structure	70
	5.3.2.2 Linking to another station	72
	5.3.2.3 Sounding and Link Quality Analysis	73
	(LQA)	75
	5.3.2.4 Scanning	76
	5.3.2.5 ALE Database	78
	5.3.2.6 Comparison With Standard ALE	79
	Systems	
	5.3.3 Graphical User Interface (GUI)	80
5.4	Summary	83
FIEI	LD TESTING RESULT	
6.1	Introduction	85
6.2	Equipments setup	

ix

5

6

)

	6.3.1 Kota Bahru	88
	6.3.2 Chemor	90
6.4	Channels Selection	91
6.5	Field-testing Timeslots	92
6.6	Results and Discussions	93
	6.6.1 Skudai-Kota Bahru Reults	96
	6.6.1.1 Sounding Results During Timeslot	1 97
	6.6.1.2 Sounding Result During Timeslot 2	2 103
	6.6.1.3 Sounding Result During Timeslot 3	109
	6.6.1.4 Comparisons Between Skudai-Kota	116
	Bahru Results and ASAPS Predictio	n
	Results	
	6.6.2 Skudai-Chemor Result	118
	6.6.2.1 Skudai-Chemor Sounding Results	118
	During Timeslot 1	
	6.6.2.2 Skudai-Chemor Sounding Results	125
	during Timeslot 2	
	6.6.2.3 Comparisons Between Skudai-Kota	131
	Bahru Results and ASAPS Predictio	n
	Results	
6.7	Summary	133
Conc	clusions and Recommendations	
7.1	Conclusions	135
7.2	Recommendations for Future Works	136
REF	ERENCES	138
APP	ENDICES	143

7

LIST OF TABLES

TABLE	TITLE		
NO.			
3.1	Station specification for Skudai-Kota Bahru circuit	31	
3.2	Station specification for Skudai-Chemor frequency	34	
	prediction		
4.1	ALE Operational Rules (listed in order of decreasing	41	
	precedence)		
4.2	ALE word type and its functions	43	
5.1	Preambles and their functions	71	
5.2	Example results of LQA	77	
5.3	Tables in ALE database.	79	
5.4	Comparisons of ALE	80	
5.5	Functions available on the system's GUI	82	
6.1	List of channels used in field-testing		
6.2	Timeslots allocation		
6.3	LQA Score categories		
6.4	Skudai-Kota Bahru Result Analysis for Sounding made		
	by Skudai during timeslot 1		
6.5	Skudai-Kota Bahru Result Analysis for Sounding made	102	
	by Kota Bahru during timeslot 1		
6.6	Summary of LQA results for Skudai-Kota Bahru Circuit	103	
	during timeslot 1		
6.7	Skudai-Kota Bahru Result Analysis for Sounding made	105	
	by Skudai during timeslot 2		

6.8	Skudai-Kota Bahru Result Analysis for Sounding made	108
	by Kota Bahru during timeslot 2	
6.9	Summary of LQA Result for Skudai-Kota Bahru Result	109
	during Timeslot 2	
6.10	Skudai-Kota Bahru Result Analysis for Sounding made	111
	by Skudai during timeslot 3	
6.11	Skudai-Kota Bahru Result Analysis for Sounding made	114
	by Kota Bahru during timeslot 3	
6.12	Summary of LQA Result for Skudai-Kota Bahru Circuit	115
	during Timeslot 3	
6.13	Result analysis for Sounding made by Skudai during	120
	timeslot 1	
6.14	Result analysis for Sounding made by Chemor during	123
	timeslot 1	
6.15	Summary of LQA Results for Skudai-Chemor Circuit	125
	during Timeslot 1	
6.16	Result analysis for Sounding Made by Skudai during	127
	Timeslot 2	
6.17	Result analysis for Sounding made by Chemor during	129
	timeslot 2	
6.18	Summary of LQA results for Skudai-Chemor Circuit	131
	during Timeslot 2	

LIST OF FIGURES

FIGURES NO.	TITLE		
2.1	The ionosphere layers	9	
2.2	HF propagations	13	
2.3	Multipath in HF propagation	15	
3.1	Vertically indices ionosonde	22	
3.2	Upper and lower frequency range for HF sky wave	28	
	communication		
3.3	GRAFEX frequency prediction table for Skudai-Kota	31	
	Bahru circuit		
3.4	Field Strength Table for Skudai-Kota Bahru circuit	34	
3.5	GRAFEX frequency prediction table for Skudai-	35	
	Chemor circuit		
3.6	Field Strength Table for Skudai-Chemor Circuit	37	
4.1	ALE state diagram	42	
4.2	The general structure of an ALE word	43	
4.3	ALE word coding and interleaving process	45	
4.4	Frame Structure	46	
4.5	Basic call structure	48	
4.6	Multiple channel call protocol	49	
4.7	Structure of a sound	52	
5.1	Kenwood TS570D HF transceiver	57	
5.2	Connection between transceiver to computer using	58	
	RS-232C cable		
5.3	Kantronics KAM '98 modem	59	
5.4	Wiring to connect the modem and transceiver	60	

5.5	Connection between HF modem and transceiver	60
5.6	System setup	61
5.7	Dipole antenna	62
5.8	Dipole Antenna Vertical Plane Radiation Pattern	63
5.9	Dipole antenna horizontal Plane Radiation Pattern	64
5.10	Yagi antenna horizontal radiation pattern	65
5.11	Contruction of dipole antenna	66
5.12	Dipole antenna at DSP Lab, UTM	68
5.13	System flowchart	66
5.14	Basic structure of ALE	70
5.15	General structure of an ALE frame	71
5.16	Flowchart for link establishment	72
5.17	Call, response and acknowledgment frames	73
5.18	Sounding frame	75
5.19	Sounding process	73
5.20	User interface for the system	79
6.1	Equipments setup for field-testing	86
6.2	Location of field testing sites with estimated antenna	87
	radiation pattern	
6.3	Equipments setup at Kota Bahru station	89
6.4	Antenna setup at Kota Bahru	89
6.5	Equipments setup in Chemor	90
6.6	Antenna setup at Chemor	91
6.7	LQA result for sounding by Skudai station during	98
	timeslot 1	
6.8	Channels Ranking for Sounding by Skudai During	98
	timeslot 1	
6.9	LQA result for sounding made by Kota Bahru during	101
	timeslot 1	
6.10	Channels ranking for sounding by Kota Bahru during	101
	timeslot 1	
6.11	LQA result for sounding made by Skudai station	104
	during timeslot 2	

6.12	Channels Ranking for Sounding by Skudai during Timeslot 2	105
6.13	LQA result for sounding made by Kota Bahru during timeslot 2	107
6.14	Channels ranking for sounding by Kota Bahru during timeslot 2	107
6.15	LQA result for sounding made by Skudai station during timeslot 3	110
6.16	Channels ranking for sounding by Skudai during timeslot 3	111
6.17	LQA result for sounding made by Kota Bahru during timeslot 3	113
6.18	Channels ranking for sounding by Kota Bahru during timeslot 3	113
6.19	Comparisons between highest-ranked channels and OWF values for Skudai-Kota Bahru circuit: sounding by Skudai	116
6.20	Comparisons between highest-ranked channels and OWF values for Skudai-Kota Bahru circuit: sounding by Kota Bahru	117
6.21	LQA result of sounding by Skudai during timeslot 1	119
6.22	Channel ranking for sounding by Skudai during timeslot 1	120
6.23	LQA result of sounding by Chemor during Timeslot 1	122
6.24	Channel ranking for sounding by Chemor during timeslot 1	123
6.25	LQA result of sounding by Skudai during timeslot 2	126
6.26	Channel ranking for sounding by Skudai during timeslot 2	126
6.27	LQA result of sounding by Chemor during timeslot 2	128
6.28	Channel ranking for sounding by Chemor during timeslot 2	129

6.29	Comparisons between highest-ranked channels and	
	OWF for Skudai-Chemor Circuit: sounding by	
	Skudai	
	~	
6.30	Comparisons between highest-ranked channels and	132
	OWF for Skudai-Chemor circuit: sounding by	
	Chemor	

LIST OF SYMBOLS

ϕ_I	-	Angle of incidence
f_c	-	Critical frequency
k	-	Correction factor
$f_{\scriptscriptstyle N}$	-	Plasma frequency
h	-	Height
h_{m}	-	Height of a layer's peak
R	-	Levels of solar activity
Ap	-	Geomagnetic effects
Кр	-	Geomagnetic effects
T _{CC}	-	Calling cycle
T _{SC}	-	Scanning call cycle
T_{LC}	-	Leading call section
T _s	-	Total scan period
T _d	-	Dwell time
$T_{\rm rw}$	-	Redundant word time
T _s	-	Total scan period
$T_{\rm wr}$	-	Wait-for-response time
L	-	Length of the antenna
F	-	Desired dipole antenna frequency

LIST OF ABBREVIATIONS

AFSK	-	Audio FSK
ALE	-	Automatic Link Establishment
ALF	-	Absorption limiting Frequency
AMD	-	Automatic Message Display
AMTOR	-	AMateur Teleprinting Over Radio
ASAPS	-	Advanced Stand-Alone Prediction System
ASCII	-	American Standard Code for Information Interchange
BER	-	Bit-Error Rate
BUF	-	Best Usable Frequency
CDMA	-	Code Division Multiple Access
CME's	-	Coronal Mass Ejection
CRC	-	Cyclic Redundancy Check
CS	-	Control Signals
CSMA	-	Carrier Sense Multiple Access
CW	-	Morse Code
DBM	-	Data Block Mode
DCE	-	DataCircuit-terminating Equipment
DTE	-	Data Terminal Equipment
DTM	-	Data Text Message
EIRP	-	Effective Isotropic Radiated Power
EMUF	-	E-layer Maximum Usable Frequency
EPR	-	Estimated Power Required
EUV	-	Extreme Ultraviolet
FEC	-	Forward Error Correction

FSK	-	Frequency Shift Keying
GTOR	-	Golay Teleprinting Over Radio
HF	-	High Frequency
ISI	-	Inter Symbol Interference
LAN	-	Local Area Network
LQA	-	Link Quality Analysis
LSB	-	Least Significant Bit
LSB	-	Lower Side Band
LUF	-	Lowest Usable Frequency
MCMC	-	Malaysian Communications and Multimedia
		Commission
MSB	-	Most Significant Bits
MUF	-	Maximum Usable Frequency
OWF	-	Optimum working Frequency
PACTOR	-	Packet Teleprinting Over Radio
RTCE	-	Real-Time Channel-Evaluation
RTTY	-	Radio Teletypewriter
SINAD	-	Signal-plus-noise-plus-distortion to noise-plus-
		distortion ratio
SMARTNET	-	Skywave Management for Automatic Robust
		Transmission Network
SNR	-	Signal-to-Noise Ratio
SSB	-	Single Sideband
TDMA	-	Time Division Multiple Access
TNC	-	Digital Terminal Node Controller
UD MUF	-	Upper Deciles Maximum Usable Frequency
UT	-	Universal Time

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	ASAPS Prediction Results	143
В	Kenwood TS570D Transceiver Specifications	148
С	Kantronics Kam '98 Modem Specifications	150
D	Experimental License For HF	153
E	LQA Results For Skudai-Kota Bahru Field-Testing	156
F	LQA Results For Skudai-Chemor Field-Testing	161

CHAPTER I

INTRODUCTION

1.1 Background

For decades, HF radio frequencies spectrum from 3 to 30 MHz has been used as a medium for long distance communication. This is possible because these bands of frequencies are reflected back to earth by free electrons in the ionosphere layer. By using the proper frequency and set of equipments, a person can communicate with another person as far away as on the other end of the earth via the HF layer. Moreover, transmissions of digital data such as text, fax and images is also possible by using HF modem, which converts digital data into analog form when transmitting, and converts analog data to digital form when receiving.

Compared to satellite communication, the cost to set up and maintain a HF communication system is much lower [Abdullah et. all, 2003]. Also, unlike the high payment needed to use satellite communication services, the usage of HF does not require payment to any service provider. HF communication however, suffers from several propagation problems and effects from the variation of the ionosphere layer. But today, with new technologies and many researches done, HF radio's usage has been expanded and propagation problems can be overcome. Adaptive and automatic

radio technology for example, permits modern radio systems to adjust automatically to changing propagation condition [Hess, 2000].

The purpose of this research is to design a HF messaging system that has automatic link establishment (ALE) capability. The messaging system allows digital data to be exchanged via HF medium. ALE is an adaptive radio technology, which make HF radio communication more reliable and less prone to propagation problems by automatically selecting the best channel to use at any given time and place.

1.2 Objective

The objective of this research is to allow effective and reliable data transmission over HF radio with ALE capability. The system is to be built with minimum cost and equipments so that it can be made available to amateur radio operator, telemetry and shipping. The main features of this research are as follows:

- i) Design a HF messaging system
- ii) Improve the reliability of data transmission of the messaging system by including ALE capability to the messaging system.
- iii) ALE is implemented as software.
- iv) Commercial modems and radios are used as the building block of the system.
- v) Field testing is conducted to verify the system.

1.3 Problem Statement

Unlike telephone line and fiber optic, the HF environment is not noiseless as interference does exist; transmitted signal is distorted and with high noise levels [Goodman, 1992]. The effects of multipath fading and interference are significant in HF communication. Moreover, its propagation environment is also constantly changing due to the seasonal and diurnal variations in the ionosphere. Propagation conditions vary by location, frequency, season, time of day, and can be affected by unexpected ionospheric disturbance.

The main challenge in HF communication is to choose the most suitable frequency to be used for communication. Conventionally, radio operators must always listen to HF channels, to find available channel for communication. However, in order to do this, the operators must be highly trained in operating a HF radio, besides knowledgeable in HF radio propagation and channel predictions. Another way is by using propagation prediction programs that predict the best channel based on empirical data. Unfortunately, this is not the best way to determine the best channel for communication. The frequency prediction method does not give real time channel evaluation because all the data are obtained from calculation and forecasting. Sometimes, the data acquired are not accurate. This is due to unpredictable propagation factors such as sporadic E-layer propagations, interference from other users on an otherwise usable channel [Johnson et al, 1997]. To solve this problem, ALE is used. ALE performs real time channel evaluation, and helps select the most suitable frequency to be used at different time of day.

Even though ALE can help improve the reliability of HF communication, available ALE systems today are in a form of optional equipment for HF system. The equipment is usually known as ALE controller and has its own modem for ALE purposes. Thus users who want to experience the benefits of using ALE, has to buy the expensive equipments and end up having two different modems, each for ALE and data transmission.

1.4 Scope of Study

Existing systems such as ALE controllers developed by Rockwell-Collins Company [Rockwell-Collins, 2004] and Rhode-Schwarz Company [Rohde-Schwarz, 2004], implement ALE as additional equipment, which controls an HF radio. However in this research, ALE is implemented as software and part of a messaging system. Thus in the system developed in this research, no additional equipment is needed for ALE. The scope of this research are as follows:

- This research does not involve building a HF radio and HF modem.
 Existing radio and modem is used.
- ii) The equipment compatible with the system are limited to
 KENWOOD TS-570D HF Transceiver and Kantronics Kam 98 HF
 modem. This is because other equipments require different
 controlling methods and may not be suitable for the system
 designed in this research.
- iii) Unlike existing systems, this system will use the same modem for both data transmission and ALE purposes.

1.5 Research Methodology

The following steps are taken to achieve the research objective:

 To understand the basic concept and problems, literature and technology review on HF communication was done. Review on ALE technology and available HF messaging systems is also required for comparison and reference.

- ii) Attend DSP and digital communication courses to enhance basic knowledge on the area of the research.
- iii) The system design begun with building a messaging system using Visual C++. This system connects two computers via HF radio as a medium. The program is capable to control basic functions of both transceiver and modem such as transmitting data and scanning through channels (for transceiver).
- iv) The next step is to design the ALE system, first for single channel followed by multiple channels. Next sounding processes, together with link quality analysis (LQA) are included to the system.
- v) Before testing the system, frequency prediction was done. The purpose of this is to choose the suitable channel to use for fieldtesting. Advanced Stand-Alone Prediction System (ASAPS) is the frequency prediction software chosen used for this purpose.
- vi) The final step was field-testing that which was conducted at several sites in Malaysia.

1.6 Thesis Outline

This report is divided into seven chapters. Chapter 1 is the introduction; which includes objective, scope of study, and problem statement. Next, in chapter 2, the literature review on HF radio, including its propagation characteristic and problems. Other than that, recent developments in adaptive HF radio communication systems are also presented. Then chapter 3 describes on frequency management and prediction, an important tool in HF communication. Next, explanation on ALE is presented in chapter 4. In this chapter, the concept and theory of ALE is described including the frame structures and protocols used. Following after that is Chapter 5, which concentrate in explaining system design and implementation. This chapter explains in detail how the system is built, including equipments used, system requirements and ALE protocols. Then the result of the system's field-testing is presented in chapter 6. Here, the LQA results are presented using graphs and then discussions are done based on the results. Finally the last chapter, which is chapter 7, is for conclusion and recommendations.

- Other ALE features such as orderwire message capability and multi stations application can also be added to the system.
- iii) To upgrade the efficiency of this system, the predicted results from propagation prediction programs such as ASAPS should be uploaded automatically by the system. The system can also be made able to select which frequencies to be used automatically based on the results from propagation prediction software. Frequency selection should be based on predicted OWF, MUF, ALF and also the SNR of the possibly usable frequencies.
- iv) The field-testing sites selected in this research are both located in peninsular Malaysia. For future work, the field-testing sites can be expanded to location outside peninsular Malaysia. Other than that, field-testing can also be done between land and sea (on ship).
- v) Finally, this system can also be upgraded to make it available to use with other type of HF radio and modem.

REFFERENCES

- Cook, S.C. (1997), HF Communications In the Information Age, *IEEE Conference* on *HF Radio Systems and Techniques*, July 7–9. Nottingham UK: IEEE, 1-5.
- Abdullah, M.A., Husni, E.M., S. Hassan, S.I. (2003), Investigation of a Rural telecommunication System using VSAT Technology in Malaysia. 9th Asia Pacific Conference on Communications, 2003(APCC), Septrmber 21-24, Penang, Malaysia: IEEE, 990-993.
- National Telecommunications and Information Administration (NTIA) (1998). *High Frequency Radio Automatic Link Establishment (ALE) Application Handbook.* Washington D.C, U.S.A: NTIA.
- U.S. National Communications System Office of Technology & Standards (NCS) (1993). Federal Standard 1045A:Telecommunications: HF Radio Automatic Link Establishment. Washington D.C., FED-STD 1045A.
- U.S. National Communications System Office Of Technology & Standards (NCS) (1996). Federal Standard 1037C Telecommunications: Glossary of Telecommunication Term. Washington D.C., FED-STD 1037C.
- U.S Department of Defense (1999). Interoperability and Performance Standards For Medium And High Frequency Radio System. Washington D.C., MIL-STD-188-141B.
- Harris Corporation (1996). *Radio Communications in the Digital Age Volume I: HF Technology*. U.S.A: Harris Corporation.

- McNamara, L.F. (1991). *Ionosphere: Communications, Surveillence, and Direction Finding*. Malabar, Florida: Krieger Publishing Company.
- Goodman, J.M (1992), *HF Communications Science and Technology*. New York: Van Nostrand Reinhold.
- Goodman J.M, Reilly M.H. (1998), "Shortwave Propagation Prediction Methodologies", *IEEE Transactions on Broadcasting*. IEEE, Vol. 34, No. 2.
- Johnson, E.E., Desourdis Jr., R. I., Earle, G.D., Cook, S.C., and Ostergaard, J.C. (1997). *Advanced High-Frequency Radio Communications*. Norwood, M.A.: Artech House.
- Johnson, E.E. (1998), Third-Generation Technologies for HF Radio Networking.
 1998 IEEE Military Communications Conference (MILCOM '98). October 18 –
 21. Boston, MA: IEEE, 386-390 vol.2.
- Johnson, E.E. (2000), Analysis of Third-Generation Technologies for HF Radio Networking. 2000 IEEE Military Communications Conference (MILCOM 2000). October 20-25. Los Angeles, CA: IEEE, 1139-1143 vol.2.
- Johnson, E.E. (2001). *E-Mail Standards for HF Radio: Technical Report*. New Mexico: New Mexico State University.
- Lay, R (1996), Error correction in high frequency automatic link establishment radios with and without link protection, *Military Communications Conference*1996 (*MILCOM '96*). October 21-24. McLean, VA: IEEE, 696 -699 vol.3.
- Beamish B. (1991). Automatic Link Establishment (ALE) The Automation of HF Radio. *Engineering Application Note AP-8*. Harris Corporation.
- Redding, C., Weddle, D. (1994). Adaptive HF radio test results using real-time channel evaluation systems. *Military Communications Conference*, 1994.

(*MILCOM '94*). 1994, 2-5 November Fort Monmouth, NJ: IEEE, 890 - 894 vol.3.

- Street, M.D., Darnell, M. (1996). Results of New Automatic Link Establishment and Maintenance Techniques for HF Rradio Systems. *Proceedings of Military Communications Conference 1994 (MILCOM 1996)*. 2-5 November. Fort Monmouth, NJ: IEEE, 1067-1071.
- Willink, T.J.; Davies, N.C.; Clarke, J.; Jorgenson, M.B. (1996), Validation of HF channel simulators, *IEE Colloquium on Frequency Selection and Management Techniques for HF Communications*. 7-8 February 1996. London, UK: IEEE, 13/1 -13/6
- Riley, T.J. (1997) A comparison of HF radio digital protocols., *HF Radio Systems* and Techniques, Seventh International Conference on. 7-10 July 1997, Nottingham: IEEE, 206 – 210.
- Soyer, L. (2001) HF Messenger: European Trials and R&D Efforts, *IEEE Military* Communications Conference 2001. (MILCOM 2001). 28-31 October. Mclean, VA: IEEE, 491- 500 vol.1
- Renfree, P. (2001), The US Navy returns to HF with STANAG 5066 as the path. *Military Communications Conference*, 2001 (MILCOM 2001). 28-31 October, Mclean, VA: IEEE, 471-476 vol.1
- Blair, W., Au, T.A., Taylor, R. (2000), Improving the performance of a high frequency radio message network. *Proceedings of Military Communications Conference 2000 (Milcom 2000)*. 22-25 October, Los Angeles: IEEE, 48-53.
- Hess, A.M., (2000), Advanced Use of LQA data in improving the quality and the speed of ALE link establishment while reducing sounding requirements in HF

networks, *Eighth International Conference on HF Radio Systems and Techniques*, 10-13 July. Guildford, UK: IEEE, 91-94.

Kenwood Corp., HF Transceiver TS-570D Instruction Manual.

Kantronics Co. (1998), Kantronics KAM '98 Multi-Mode HF/VHF Digital Controller User's Guide. U.S.A: Kantronics Co.

Australian Space Weather Agency (2003). ASAPS 5 User Guide

- Rohde-Schwarz (2005). ALE Automatic Link Establishment. In: *Application Note*. ©2005 ROHDE&SCHWARZ. All rights reserved. <u>http://www.rohde-schwarz.com</u>.
- Australian Space Weather Agency (2005). Introduction to HF Radio Propagation. In IPS Radio and Space Services. <u>http://www.ips.gov.au</u>
- Rockwell Collins (2004), Automatic link Establishment: Product Catalog. http://www.rockwellcollins.com/

Cruiseemail (2004), CruiseEmail User manual. http://www.cruiseemail.com/

- Army Knowledge Online (2003). Multi-Service Tactics, Techniques, and Procedures for The High Frequency-Automatic Link Establishment (HF-ALE) Radios. In: *Army Knowledge Online*. U.S Air, Land and Sea Application Center. <u>www.us.army.mil</u>
- Sailmail (2005), Sailmail : Email Services for Yachts via Marine HF SSB Radio. In: http://www.sailmail.com/
- Wan Roz Wan Hussain (2004), Meeting with UTM on HF Communication, RF Communications (M) Sdn Bhd, Kuala Lumpur, 19 June 2004.

ARRL (2001). *The Arrl Handbook for Radio Amateurs 2002*. 79th edition. USA: The American Radio Relay league, Inc.

U.S. Department of Commerce (2005). U.S. Department of Commerce NTIA/ITS Institute for Telecommunication Sciences High Frequency Propagation Models in <u>http://elbert.its.bldrdoc.gov/hf.html</u>

Rockwell-Collins (2005). *PropMan-2000-Propagation Resource Manager* product catalog In: <u>http://www.rockwellcollins.com/ecat/gs/PropMan-2000.html</u> © Rockwell Collins, Inc. All rights reserved.

Carr J. J (2001), Practical Antenna Handbook Fourth Edition. Hightstown, N.J: McGraw-Hill.