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Magnetohydrodynamic and radiation effects on stagnation-point flow of nanofluid towards a nonlinear stretching sheet 

under the assumption of a small magnetic Reynolds number have been studied. Sheet is stretched with a power law velocity 

in the presence of a non-uniform magnetic field B(x) applied in a transverse direction. A nonlinear problem is modelled 

using the modified Bernoulli's equation for an electrically conducting fluid. Appropriate similarity transformations are used 

to reduce the governing nonlinear partial differential equations into a system of ordinary differential equations. These 

equations subjected to the boundary conditions are solved numerically by using the Keller-box method. Numerical results 

are plotted and discussed for pertinent flow parameters. A comparison with previous results in literature is also provided. 

The boundary layers are found shortened when free stream velocity is greater than stretching velocity. 
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Nanofluid studies have become an extensive area of 

research due to their growing applications in many 

industrial, engineering and technological processes 

such as chemical catalytic reactors, grain storage 

installations, diffusion of medicine in blood veins and 

cooling of electronic equipment. A limited attention 

was given to these fluids because of the additional 

nonlinear terms in the equation of motion that makes 

it more complex. There are some important studies for 

some intricate viscous fluid models introduced in the 

literature
1-3

 and for nanofluid some recent studies 

have been conducted
4-6

. Choi
7
 introduced convection 

heat transfer fluids as nanofluid having substantially 

higher thermal conductivities to study the enhancement 

in heat transfer phenomenon. Furthermore, some 

important experimental studies have been done
8-10

  

to evaluate the increase in the thermal conductivities 

of nanofluid. 

On the other hand, a stagnation-point occurs 

whenever a flow impinges on a solid object. For 

orthogonally or non-orthogonally/obliquely stagnated 

flows, the velocities go to zero along with the highest 

pressure on the surface
11

. Based on the pioneering 

work of Heimenz
12

 many researchers have discussed 

the stagnation point flows on stretching sheet
13-15

. 

Mustafa et al.
16

 studied the stagnation point flow of a 

nanofluid towards a stretching sheet. Hamad and 

Ferdows
17

 presented a Lie group analysis to find the 

similarity solution of boundary layer stagnation-point 

flow towards a heated porous stretching sheet 

saturated with a nanofluid with heat absorption/ 

generation and suction/blowing. After words, Alsaedi 

et al.
18

 obtained results for convective boundaries by 

considering the effects of heat generation/absorption 

on stagnation-point flow. Recently, Nadeem et al.
19

 

reported solutions for axi-symmetric stagnation flow 

of a micropolar nanofluid in a moving cylinder. 

In addition, the study of MHD stagnation-point 

flow over a nonlinearly stretching sheet has important 

applications in several manufacturing processes  

from industry such as extrusion of polymers, the 

cooling of metallic plates and aerodynamic extrusion 

of plastic sheet
20

. Having such a motivation, Hayat  

et al.
21

 studied MHD flow of a micropolar fluid near  

a stagnation-point towards a nonlinear stretching 

surface. Mahapatra and Gupta
22

 considered the MHD 

stagnation-point flow towards a stretching sheet. 

However, such studies for nanofluid are found to be 

scanty. To the best of our knowledge, no attention  

has been focused on MHD and radiation effects  

on stagnation-point flow of nanofluid towards a 

nonlinear stretching sheet. Hence, in the present 

paper, this study has been reported. 
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Experimental Methodology 
The unsteady two dimensional boundary layer 

stagnation-point flow of a nanofluid over a nonlinear 

stretching sheet is considered. The stretching and free 

stream velocities are assumed to be of the forms 

( ) m

w axxu =  and ( ) mbxxu =∞
 respectively, where  

a and b are constants, m ( )0≥m  is the velocity 

exponent parameter
23

 and x  is the coordinate 

measured along the stretching surface. A non-uniform 

transverse magnetic field of strength )(xB  is imposed 

in the −y direction normal to the flat sheet. It is 

assumed that the induced magnetic field due to the 

motion of the electrically conducting nanofluid is 

negligible. Further, it is also assumed that the external 

electrical field is zero and the electric field due to the 

polarization of charges is negligible. It is assumed that 

at the stretching surface, the temperature T and the 

nanoparticles fraction C take constant values Tw and 

Cw whereas the ambient values of temperature T∞ and 

the nanoparticles fraction C∞ are attained as y  tends 

to infinity (Fig. 1). The governing boundary layer 

equations that are based on the balance laws of mass, 

linear momentum, energy and concentration species 

for the present problem 
4, 16, 20

 are given below: 
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where V is the velocity vector; σ, the electrical 

conductivity; B, the magnetic field; µ, the viscosity;  

ρf, the density of the base fluid; DB, the Brownian 

diffusion coefficient; DT, the thermophoresis diffusion 

coefficient; k the thermal conductivity; (ρc)p, the heat 

capacitance of the nanoparticles; (ρc)f, the heat 

capacitance of the base fluid and qr, the Rosseland 

approximation as defined
24, 25

 below: 
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where σ*
 is the Stefan-Boltzmann constant; and k

*
,  

the mean absorption coefficient. It is assumed that the 

temperature difference between the free stream 

temperature T∞ and local temperature T is small 

enough, expanding T
4
 in a Taylor series about T∞ and 

neglecting higher order terms results for 
 

434
34 ∞∞ −≅ TTTT  

 … (6) 
 

For the steady laminar two-dimensional stagnation-

point flow, Eqs (1)-(4) respectively reduce to 
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where u  and v  are the velocity components in the x  

and −y directions respectively; ( )
fck ρα /= ; and 

( ) ( )
fp cc ρρτ /= . 

The associated boundary conditions are 
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Fig. 1–Physical model and coordinate system 
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According to the modified Bernoulli's equation for 

the steady MHD flow, the pressure gradient in the 

−x direction
20

 is: 
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Eliminating xp ∂∂ /  between Eqs (8) and (12) 
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The stream function ( )yx,ψψ =  is introduced  

for which the velocity components u and v are 

defined as 
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where continuity Eq. (7) is 

satisfied identically. Further, the similarity 

transformations are defined as
26
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Substituting Eq. (14) into Eqs (9), (10) and (13), 

the coupled system of nonlinear ordinary differential 

equations is: 
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where M is the magnetic parameter called Hartmann 

number; ɛ, the velocity ratio parameter; Le, the Lewis 

number; ν, the kinematic viscosity of the fluid; Nb  

the Brownian motion parameter; and Nt the 

thermophoresis parameter. Here the magnetic field 

strength B should be proportional to x  to the power 

(m–1)/2  in order to eliminate the dependence of M  

on ,x  i.e. ( ) 2/1

0)(
−= m

xBxB where 0B  is the uniform 

magnetic field strength
26

. 

The corresponding boundary conditions are 

transformed to 
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The quantities of practical interest in velocity, heat 

and mass transfer characteristics for the nanofluid 

motions are expressed in terms of the dimensionless 

parameters, such as skin-friction, Cf Nusselt number 

Nu and Sherwood number Sh, as defined below: 
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yBm yCDq  these are the shear stress 

( )wτ , heat flux ( )wq  and mass flux ( )mq  at the surface 

respectively. Using variables [Eq. (14)], the 

associated expressions for dimensionless skin-friction 

coefficient ( ) ( )00 fC fx
′′= , reduced Nusselt number 

)0(θ ′−  and reduced Sherwood number )0(φ′−  are 

defined as 
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where ( ) ν/Re xxuwx =  is the local Reynolds number 

based on the stretching velocity. The transformed 

nonlinear ordinary differential Eqs (15)-(17) subjected 

to boundary conditions [Eq. 19] are solved numerically 

by means of Keller-box method
27-30

. 
 

Results and Discussion 

The magnetohydrodynamic (MHD) and radiation 

effects on the stagnation-point flow of nanofluid 

towards a nonlinear stretching sheet are investigated 
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theoretically. The transformed nonlinear ordinary 

differential equations [Eqs (15)-(17)] subjected to 

boundary conditions [Eq. (19)] are numerically solved 

using the Keller-box method. Results for some 

physical parameters of interest such as Hartmann 

number (M), velocity ratio parameter (ε), radiation 

parameter (N), Prandtl number (Pr), Lewis number 

(Le), Brownian motion parameter (Nb) and 

thermophoresis parameter (Nt) for the velocity, 

temperature and concentration profiles as well as for 

the skin-friction coefficient, the reduced Nusselt and 

Sherwood numbers are reported. Table 1 shows a 

comparison of our results for reduced Nusselt number 

)0(θ ′−  and reduced Sherwood number )0(φ′−  by 

taking the Hartmann number (M), radiation parameter 

(N) and the velocity ratio parameter (ε) equal to zero 

and the power law velocity parameter 1=m , with 

those obtained by Khan and Pop
6
 and the findings are 

found to be in a good agreement. 

The variations of reduced Nusselt number )0(θ ′− , 

reduced Sherwood number )0(φ′−  and skin-friction 

coefficient ( )0fxC  for different values of Nb, Nt, Pr, 

Le, M, N, ε and m are shown in Table 2. It is observed 

that )0(θ ′−  decreases with the increasing values of 

Nb, Nt, N and Le while it increases with the increasing 

values of Pr and ε. The large values of Brownian 

motion parameter impacts a large extent of the fluid 

and results in thickening of the thermal boundary 

layer. Also, the increasing values of thermophoresis 

parameter results in a deeper penetration into the fluid 

and causes the thermal boundary layer to be thicker. 

However, it is found that )0(φ′−  decreases for the 

increasing values of Nt and Pr, whereas increases for 

the increasing values of Nb, Le, N and ε. Further, it is 

also observed that ( )0fxC  decreases for the increasing 

values of ε. Physically, it is true that positive values of 

skin-friction coefficient for the case when ε < 1 means 

that the fluid exerts a drag force on the solid boundary 

and vice versa for the negative values of skin-friction 

coefficient when ε > 1
31

. Furthermore, it is noted that 

for the increasing values of M and m, the values of 

)0(θ ′−  and )0(φ′−  decrease when ε < 1, whereas 

increase when ε > 1 and ( )0
fx

C  increases when ε < 1 

while decreases when ε > 1. 

Graphical results for different flow parameters are 

shown in Figs 2 - 4. The effects of M and m on the 

velocity profile ( )ηf ′  for the fixed values of Nb, Nt, 

N, Pr and Le for both cases of ε < 1 and ε > 1 are 

shown in Fig. 2. It is evident from this figure that for 

the case when 1<ε , ( )ηf ′  decreases for the 

increasing values of M and m, whereas it increases for 

the increasing values of M and m  when .1>ε  It is 

Table 1—Comparison of the reduced Nusselt number )0(θ ′−  and 

the reduced Sherwood number )0(φ′−  when M = N = ε = 0, Pr = 

Le = 10 and m = 1 

Nb Nt Khan and Pop6 Present Results 

)0(θ ′−  )0(φ′−  )0(θ ′−  )0(φ′−  

0.1 0.1 0.9524 2.1294 0.9524 2.1294 

0.2 0.2 0.3654 2.5152 0.3654 2.5152 

0.3 0.3 0.1355 2.6088 0.1355 2.6088 

0.4 0.4 0.0495 2.6038 0.0495 2.6038 

0.5 0.5 0.0179 2.5731 0.0179 2.5731 

Table 2–Variations in reduced Nusselt number )0(θ ′− , the reduced 

Sherwood number )0(φ′−  and skin-friction coefficient ( )0fxC  

Nb Nt Pr Le M N ε m )0(θ ′−  )0(φ ′−  ( )0fxC  

0.1 0.1 1.0 10 0.1 1.0 0.1 0.5 0.3273 2.2490 0.9161 

0.5 0.1 1.0 10 0.1 1.0 0.1 0.5 0.2801 2.3165 0.9161 

0.1 0.5 1.0 10 0.1 1.0 0.1 0.5 0.3019 1.9989 0.9161 

0.1 0.1 7.0 10 0.1 1.0 0.1 0.5 0.8442 2.0837 0.9161 

0.1 0.1 1.0 25 0.1 1.0 0.1 0.5 0.3267 3.7444 0.9161 

0.1 0.1 1.0 10 2.5 1.0 0.1 0.5 0.2651 2.2143 1.8490 

0.1 0.1 1.0 10 2.5 1.0 1.1 0.5 0.5202 2.5005 -0.2302 

0.1 0.1 1.0 10 0.1 3.0 0.1 0.5 0.2093 2.2858 0.9161 

0.1 0.1 1.0 10 0.1 1.0 0.6 0.5 0.4299 2.3519 0.5041 

0.1 0.1 1.0 10 0.1 1.0 1.1 0.5 0.5073 2.4781 -0.1460 

0.1 0.1 1.0 10 0.1 1.0 2.0 0.5 0.6207 2.7167 -1.7629 

0.1 0.1 1.0 10 0.1 1.0 0.1 5.0 0.3115 2.2038 1.1775 

0.1 0.1 1.0 10 0.1 1.0 1.1 5.0 0.5089 2.4851 -0.2034 

 

 
 

Fig. 2–Variation in velocity profiles ( )ηf ′  with η for different 

values of M, ε and m 
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also observed that ( )ηf ′  increases for increasing 

values of ɛ in both cases (ɛ >1 and ɛ >1) Physically, 

this is true because of the reason that increasing 

values of Hartmann number (M) increase the resistive 

forces on the sheet which reduce the fluid velocity 

and hence the motion of the fluid becomes slow. 

Further, it is noted that for the increasing values of 

different flow parameters, ( )ηf ′  coincides with each 

other when ε = 1. This means that in the case when 

the external stream velocity becomes equal to the 

stretching velocity, the flow field is not influenced by 

the different values of the incorporated parameters. 

This implies that the fluid and surface velocities  

are same. It is interesting to note that for the case of ε 

> 1 i.e. when the external stream velocity increases as 

compared to the stretching velocity, momentum 

boundary layer thickness becomes shorten in 

comparison to the case when ε < 1 and causes 

inverted boundary layer structure. Moreover, for the 

case ε = 1, ( )ηf ′  coincides with each other and results 

in a degenerate inviscid flow where the stretching 

matches the conditions at infinity
32

. This means that 

in the case when the external stream velocity becomes 

equal to the stretching velocity, the flow field is not 

influenced by the different values of the incorporated 

flow parameters. 

Figures 3(a) and (b) present the temperature 

profiles θ(η) for the combined effects of Nb, Nt, Pr, 

M, N, ε and m for the both cases of ε < 1 and ε >1 

when Le = 10. It is observed that θ(η) decreases for 

the increasing values of Pr and ε, whereas it increases 

for the increasing values of Nb, Nt and N. Physically, 

this behavior is meaningful due to the fact that it 

depends upon the formation of nanofluid which is a 

combination of the base fluid (water and ethylene 

glycol) and nanoparticles (Cu, aluminium, titanium). 

With increasing the viscosity of the base fluid, the 

thermal boundary layer thickness decreases and the 

heat transfer is found to be smaller for large values of 

Pr. It shows that the suspended nanoparticles motions 

are more affected by the highly viscous fluids and 

results for less colloidal forces among each other. 

Further, Figs 3(a) and (3b) indicate that θ(η) increases 

for the increasing values of M and m when ε < 1, 

whereas it decreases for the increasing values of  

 

Fig. 3–Variation in temperature profiles θ(η) with η for different 

values of Nb, Nt, Pr, M, N and m when (a) ε < 1 and (b) ε > 1 

 

Fig. 4–Variation in concentration profiles φ(η)  with η for 

different values of Nb, Nt, Pr, Le, M, N and m when (a) ε < 1 and 

(b) ε > 1 
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M and m when 1>ε . These figures show that for 

1<ε , the thermal boundary layer thickness is greater 

compared to the case when .1>ε  

The concentration profiles φ(η) are shown in Fig. 4 

for different values of embedded flow parameters in 

both cases of ε < 1 and ε < 1. It is observed from Fig. 

4(a) that φ(η)   decreases for the increasing values of 

Nb, N, Le and ε, whereas it increases for the 

increasing values of Nt, Pr, M and m. The large values 

of Le play an important role in shortening the 

concentration boundary layer for the mass fraction. 

Figure 4(b) depicts that for the dominated free  

stream velocity, φ(η) increases for increasing values 

of Nb  and Pr, whereas it decreases for the increasing 

values of Nt, M, N, Le, ε and m. These figures show 

that concentration boundary layer thickness is greater 

for 1<ε  as compared to that for .1>ε  Since all the 

profiles discussed above descend smoothly in the free 

stream satisfying the boundary conditions, this ensures 

the accuracy of the obtained numerical results. 
 

Conclusion 

For the accuracy purpose, present results are 

compared with those obtained by Khan and Pop
6
 and 

found in a good agreement. The point wise conclusion 

of the presented study is given as follows: 

• The reduced Nusselt number and the reduced 

Sherwood number decrease for the increasing 

values of M and m, whereas skin-friction 

coefficient increases when 1<ε  but opposite 

effects are observed for the case when 1>ε . 

• The increasing values of Nt and N show that the 

reduced Nusselt number decreases, whereas the 

reduced Sherwood number is found in opposite 

behavior. 

• The magnitude of the skin-friction coefficient 

( )0fxC  is zero for 1=ε . 

• Velocity profiles are observed in opposite manner 

for the increasing values of M and m when 1<ε  

and 1>ε  but these profiles are increased for  

the increasing values of .ε  

• The momentum, thermal and concentration 

boundary layers are found shortened when free 

stream velocity is greater than stretching velocity. 
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