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ABSTRACT

In regression, the objective is to explain the variation in one or more response

variables, by associating this variation with proportional variation in one or more

explanatory variables. A frequent obstacle is that several of the explanatory variables will

vary in rather similar ways. This phenomenon called multicollinearity, is a common

problem in regression analysis. Handling multicollinearity problem in regression analysis

is important because least squares estimations assume that predictor variables are not

correlated with each other. The performances of ridge regression (RR), principal

component regression (PCR) and partial least squares regression (PLSR) in handling

multicollinearity problem in simulated data sets are compared to help and give future

researchers a comprehensive view about the best procedure to handle multicollinearity

problems. PCR is a combination of principal component analysis (PCA) and ordinary

least squares regression (OLS) while PLSR is an approach similar to PCR because a

component that can be used to reduce the number of variables need to be constructed. RR

on the other hand is the modified least square method that allows a biased but more

precise estimator. The algorithm is described and for the purpose of comparing the three

methods, simulated data sets where the number of cases was less than the number of

observations were used. The goal was to develop a linear equation that relates all the

predictor variables to a response variable. For comparison purposes, mean square errors

(MSE) were calculated. A Monte Carlo simulation study was used to evaluate the

effectiveness of these three procedure. The analysis including all simulations and

calculations were done using statistical package S-Plus 2000 software.
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ABSTRAK

Objektif bagi regresi ialah untuk menerangkan variasi bagi satu atau lebih

pembolehubah bersandar dengan cara menghubungkan variasi ini berkadaran dengan satu

atau lebih pembolehubah tak bersandar. Halangan yang sering berlaku ialah apabila

wujudnya kebersandaran antara pembolehubah-pembolehubah tak bersandar. Fenomena

ini dipanggil multikolinearan. Mengawal dan mengatasi masalah multikolinearan di

dalam analisis regresi adalah penting kerana kaedah penganggaran kuasa dua terkecil

menganggap bahawa pembolehubah tak bersandar tidak berkorelasi antara satu sama lain.

Perbandingan antara penggunaan kaedah regresi permatang (RR), regresi komponen

berkepentingan (PCR) dan regresi sebahagian kuasa dua terkecil (PLSR) di dalam

mengawal masalah multikolinearan dilakukan menggunakan set data yang disimulasi

bagi membantu dan memberi satu pendekatan kepada para pengkaji yang akan datang

tentang pemilihan kaedah terbaik bagi mengawal masalah multikolinearan. Kaedah

regresi permatang ialah pengubahsuaian kaedah kuasa dua terkecil (LS) yang

memasukkan pemalar kepincangan, di dalam penganggar kuasa dua terkecil. Regresi

komponen berkepentingan pula merupakan gabungan analisis komponen berkepentingan

(PCA) dengan kaedah kuasa dua terkecil biasa (OLS) sementara kaedah regresi

sebahagian kuasa dua terkecil adalah hampir sama dengan kaedah regresi komponen

berkepentingan di mana komponen baru perlu dibina untuk mengurangkan bilangan

pembolehubah. Algoritma bagi setiap kaedah turut diterangkan dan untuk tujuan

perbandingan bagi setiap kaedah, set data bagi kes bilangan pembolehubah tak bersandar

lebih kecil dari bilangan pemerhatian. Perbandingan keberkesanan bagi ketiga-tiga

kaedah tersebut menggunakan ralat min kuasa dua (MSE). Kaedah simulasi Monte Carlo

digunakan untuk menilai keberkesanan ketiga-tiga kaedah yang dibincangkan. Semua

simulasi dan pengiraan dilakukan dengan menggunakan pakej statistik S-PLUS 2000.
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CHAPTER 1

INTRODUCTION

1.1 Background

Regression analysis is one of the most widely use of all statistical tools that

utilizes the relation between two or more quantitative variables so that one variable can

be predicted from the others. The relationship of each predictor to the criterion is

measured by the slope of the regression line of the criterion Y on the predictor. The

regression coefficients are the values of these slopes.

The multiple linear regression model relates Y to pXXX ,...,, 21 and can be

expressed in terms of matrices as εβy X where y is the nx1 vector of observed

response values, X is the nxp matrix of p regressors, βis the px1 regression

coefficients and εis the nx1 vector of error terms. The objectives of regression analysis

are, (1) to find the estimates of unknown parameters β’s and test of k ,...,, 21 for the

significance of the associated predictors, (2) to use the regression equation to estimate Y

from pXXX ,...,, 21 and, (3) to measure the error involved in the estimation. The multiple
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linear regression model may be used to identify important regressor variables that can be

used to predict future values of the response variable.

The method of least squares is used to find the best line that on the average, is

closest to all points. In other words, to find the the best estimates of ’s with the least 

squares criterion which minimizes the sum of squared distances of all points from the

actual observation to the regression surface. The name least squares comes from

minimizing the squared residuals. From the Gauss-Markov theorem, least squares is

always the best linear unbiased estimator (BLUE) and if is assumed to be normally

distributed with mean 0 and variance 2 , then least squares is the uniformly minimum

variance unbiased estimator.

1.2 The Problem of Multicollinearity

In the applications of regression analysis, multicollinearity is a problem that

always occurs when two or more predictor variables are correlated with each other. This

problem can cause the value of the least squares estimated regression coefficients to be

conditional upon the correlated predictor variables in the model. As defined by

Bowerman and O’Connell (1990), multicollinearity is a problem in regression analysis 

when the independent variables in a regression model are intercorrelated or are dependent

on each other.

There are a variety of informal and formal methods that have been developed for

detecting the presence of serious multicollinearity. One of the most commonly used is the

variance inflation factor (VIF) that measures how much the variances of the estimated

regression coefficients are inflated compared to when the independent variables are not

linearly related (Neter, et. al., 1990). The problem of multicollinearity can be remedied
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using some method of estimation or some modifications of the method of least squares

for estimating the regression coefficients.

The problem of multicollinearity can occur in both simple linear regression and

multiple linear regression. Figure 1.1 illustrates the problem of multicollinearity that

occur in simple regression (Wannacott and Wannacott, 1981). The figure shows how the

estimate ̂ becomes unreliable if the Xi’s were closely bunched, that is, if the regressor X

had little variation. When the Xi’s are concentrated on one single value X , then ̂is not

determined at all. For each line, the sum of squared deviations is the same, since the

deviations are measured vertically from ),( YX . If XX i  , then all xi = 0, and the term

involving β̂is zero. Hence, the sum of squares does not depend on β̂at all. Therefore,

when the values of X show little or no variation, then the effect of X on Y can no longer

be sensibly investigated. The best fit for Y for data with multicollinearity was not a line,

but rather a point ),( YX . In explaining Y, multicollinearity makes the Xi’s lose one 

dimension.

Figure 1.1 : Multicollinearity in simple regression

X

0x x
X

Y

),( YX
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Figure 1.2 illustrates the problem of multicollinearity in multiple regression

(Wannacott and Wannacott, 1981). All the observed points in the scatter plot lie in the

vertical plane running up through L. In explaining Y, multicollinearity makes the Xi’s lose 

one dimension and the best fit for Y is not a plane but instead the line F.

Figure 1.2 : Multicollinearity in multiple regression

Several approaches for handling multicollinearity problem have been developed

such as Principal Component Regression, Partial Least Squares Regression and Ridge

Regression. Principal Components Regression (PCR) is a combination of principal

component regression analysis (PCA) and ordinary least squares regression (OLS).

Partial Least Squares Regression (PLSR) is an approach similar to PCR because one

needs to construct a component that can be used to reduce the number of variables. Ridge

Regression is the modified least squares method that allow biased estimators of the

regression coefficient.
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1.3 Statement of Problem

This study will explore the following question :

Which method among Principal Component Regression, Partial Least Squares

Regression and Ridge Regression performs best as a method for handling

multicollinearity problem in regression analysis ?

1.4 Research Objectives

1. To compare the use of Partial Least Squares Regression, Principal Component

Regression and Ridge Regression for handling multicollinearity problem.

2. To study the degree of efficiency among the three methods and hence rank them

in terms of their capabilities in overcoming the multicollinearity problem using

simulated data sets.

1.5 Scope of Research

For this research, the problem is focused on the analysis of multicollinearity

problems in regression analysis using simulated data sets.

In Principal Component Regression, features from Principal Component Analysis

(PCA) and multiple regression are combined to handle multicollinearity. The principal

components computed a linear combinations of the explanatory variables (regressors).

The Partial Least Squares Regression method is similar to Principal Component

Regression because it is also a two-step procedure. However, PLSR searches for a set of



6

components called latent vectors that performs a simultaneous decomposition of X and Y

with the constraint that those component explain as much as possible of the covariance

between X and Y. This step generalizes PCA and it is followed by a regression step where

the decomposition of X is used to predict Y.

The other method considered is the Ridge Regression. It is performed by adding a

small biased estimator to the elements on the diagonal of the matrix )( XX' to be

inverted, that is modifications of the least squares estimator.

1.6 Summary and Outline of Research

The goal of this research is to find the best procedure and method to handle

multicollinearity problems by comparing the performances of the three methods to

determine which method is superior than the others in terms of its practicality and

efficiency. Practicality means how effective or convenient a method is in actual use while

efficiency means how well the methods work in producing the best regression model and

measured by a specified test discussed in Chapter 4. Basically three different methods are

put forward, two of which are the methods with two-step procedures where it computes a

component(s) and then regressed it on the response variable. The third method is a

modification of the least squares method that allows biased estimators of the regression

coefficients. The algorithms for each method used in this study are shown in Chapter 3.

Chapter 2 reviews the relevent literature on published work done recently

concerning the problems of multicollinearity. Discussion on methods for handling

multicollinearity problems in regression analysis is presented in Chapter 3. Chapter 4

describes the simulation work and the analysis of the three methods. Chapter 5 discusses

the performances of the three methods and makes comparisons among them. Lastly,

Chapter 6 concludes the study and makes recommendations for further research.



149

variable. The advantages of PCR are that hypothesis testing can be performed, and that

complete optimisation is used in determining the PCs.

6.4 Future Research

The performance of the three methods can also be done by comparing the use of

all methods for high-dimensional regressors where p > n. It is known that the problem of

multicollinearity is present in the data set where the number of variables is high compared

to the number of observations.

These three methods can also be considered in the handling of multiple outliers

problem since according to Engelen et al. (2003), PLS and PCR are very sensitive to the

presence of outliers in data set. The robust version of PLS and PCR are known to resist

several types of contamination.
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