SINGLE POINT POSITIONING USING LOW COST SINGLE FREQUENCY GPS RECEIVER

MONDALI

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science (Geomatic Engineering)

Faculty of Geoinformation Science and Engineering Universiti Technologi Malaysia

NOVEMBER 2005

DEDICATION

I dedicate this work of mine to :

My Beloved Wife and Daughter, Shirley Elizabeth Tambunan My Mother and Late Father My Amang and Inang My Brothers and My Brothers In Law My Sister In Law

> Whom I always remember for the help they have given me throughout my studies, not only financially, emotionally but also their prayers, supports, loves, understandings, and assistances.

And Especially I dedicate this work of mine to: My LORD, ALMIGHTY GOD NHOM continuously gives me strength, ideas, and encouragements for whole of my life

ACKNOWLEDGEMENTS

First and foremost I would like to acknowledge the helpful and abundant support of my supervisor, Assoc. Prof. Kamaludin Mohd. Omar. His criticisms are welcomed as they always benefites my work. He has been tirelessly understanding whilst I have struggled to do the best I can among my extra activities. He also provided funding for this research from his own research budget and I can assure him now that it has been money well appropriated. Beside my supervisor, I would like to acknowlede and thank his family especially his kindhearted wife, Ibu Azizah, and his boys: Amir, Naim, Azam, and Najmi. A lot of thanks for everything.

I would also like to acknowledge and thank my senior, Bapak Manurung for his help, encouragement, support, and recommendation.

I would also like to thank the academicians: Assoc. Prof. Dr. Mustafa Din Subari for his kindness, support and discussion; Assoc. Prof. Ghazali Desa and Prof. Rosdi, Prof. Dr. Abdul Madjid Abdul Kadir, Prof. Dr. Shahrum Ses and Dr. Abdullah Hisam Omar for their friendliness; Muhammad Nur JP Vella for his kindness.

I would also like to thank my friends and technical staffs: Asrul and Pak Soeb for their kindness, support and discussion; Zahlan Zaki for his motorcycle; En.Khairuddin, Kamarul, Muazam, Rhinda, Saiful, Pak Heri, Khairmen Suardi, Tang K.M., Tang Sze Chung, Bang Mazlan, En.Bakrie, and my Church Mates at Singapore HKBP Short Street. May GOD blesses us.

Last but not least, I would like to thank my tuition students and their families: Shiffa, Dede, Alief, Nazri, Azief, Azlea, and Naim. They have contributed in my completion of work.

ABSTRACT

Since the Selective Availability (SA) was set to zero, the point positioning becomes an interesting field of study. This study was to develop the single point position solution with accuracy better than 2 m using a low cost single frequency GPS receiver. The positioning algorithm was written in MatlabTM and it incorporates all the significant errors and bias. The significant errors and bias are satellite clock errors, receiver clock errors, tropospheric and ionospheric bias, relativistic effect, earth rotation effect, and satellite antenna phase center offset. Some simulations were performed to validate the result. The results of the study showed significant improvements in accuracy after the SA was set to zero and this fits to the statement of the White House USA that the accuracy will be ten times better than before. Using a low cost single frequency GPS receiver and self algorithm written in MatlabTM, it could be seen that most of the position accuracy could be better than 5 m for horizontal and 10 m for vertical. The 2 m accuracy level in some epochs could be reached. The findings suggest that it could be enhanced for better accuracy and integrated in a single built system of hardware and software for further and higher investigations as a low cost commercial GPS equipment.

ABSTRAK

Semenjak Selective Availability (SA) dimansuhkan, penentududukan mutlak menjadi satu kajian yang menarik. Kajian ini adalah untuk membangunkan perisian penentududukan mutlak dengan ketepatan lebih baik dari 2 m menggunakan suatu penerima GPS frekuensi tunggal yang berkos rendah. Algorithma penentududukan ditulis dalam bahasa MatlabTM dan ianya mengambil kira semua selisih yang bererti. Selisihselisih tersebut adalah selisih jam satelit, selisih jam penerima, selisih ionosfera dan troposfera, selisih akibat relativistic, selisih akibat putaran bumi, dan selisih offset pusat fasa antenna. Beberapa simulasi telah dilakukan untuk mengesahkan hasil kajian. Hasil kajian menunjukkan peningkatan ketepatan yang bererti setelah SA dimansuhkan dan ini sesuai dengan pernyataan White House USA bahawa ketepatan akan menjadi 10 kali lebih jitu daripada sebelum SA dimansuhkan. Dengan menggunakan satu penerima GPS frekuensi tunggal yang berkos rendah dan algorithma yang ditulis sendiri dalam MatlabTM, dapat dilihat bahawa kebanyakan dari ketepatan posisi lebih baik dari 5 m untuk horizontal dan 10 m untuk vertikal. Tingkat ketepatan 2 m dalam beberapa epok dapat dicapai. Penemuan ini mencadangkan bahawa kajian lain yang lebih terperinci dapat dilakukan untuk mendapatkan ketepatan yang lebih baik dan diintegrasikan menjadi satu sistem yang terdiri daripada perkakasan dan perisian sebagai suatu peralatan GPS komersial yang berkos rendah.

LIST OF CONTENT

CHAPTER

TITLE

PAGE

i
ii
iii
iv
v
vi
vii
xiii
xvi
xviii

1	INTRODUCTION		
	1.1	General Background	1
	1.2	Problem Statements	2
	1.3	Research Objectives	2
	1.4	Research Scopes	2
	1.5	Research Contributions	3
	1.6	Research Methodology	3
	1.7	Chapter Contents	4
2	ELE	MENTS OF SINGLE POINT	5

POSITIONING

2.1	Introduction	5
2.2	GPS System	6

2.3	GPS Satellite Signal	7
2.4	GPS Observation Data	9
	2.4.1 C/A Code Data	9
	2.4.2 Carrier Phase Data	10
	2.4.3 Navigation Message	10
2.5	Errors And Bias In Single	11
	Point Positioning	
	2.5.1 Satellite Clock and Orbit Errors	12
	2.5.2 Satellite Antenna Phase Center	14
	Offset and Satellite Orientation	
	2.5.3 Earth Rotation Effect	15
	2.5.4 Receiver Clock Error	16
	2.5.5 Atmospheric Delay	16
	2.5.5.1 Tropospheric Delay	17
	2.5.5.2 Ionospheric Delay	20
2.6	Reference Frames	21
	2.6.1 Time Reference	21
	2.6.1.1 Astronomic Time	22
	2.6.1.2 Atomic Time	23
	2.6.1.3 Time link to Earth	24
	Rotation	
	2.6.1.4 GPS Time and Julian Date	25
	2.6.2 Coordinate Reference	26
	2.6.2.1 WGS 84	27
	2.6.2.2 ITRF 2000	27
	2.6.3 Agreement between WGS 84	28
	and ITRF 2000	

3 ALGORITHM OF SINGLE POINT 29 POSITIONING USING LOW COST SINGLE FREQUENCY GPS RECEIVER

3.1	Introduction	29
3.2	Data Input	30

	3.2.1	Navigat	tion Message	30
	3.2.2	GPS Of	oservation Data	31
3.3	Data	Correction	n	32
	3.3.1	Basic E	quation of GPS C/A Code	32
		Observa	ation	
	3.3.2	Error ar	nd Bias Modelling In GPS	33
		Data		
		3.3.2.1	Satellite Clock and Orbit	34
			Errors	
		3.3.2.2	Satelline Antenna Phase	34
			Center Offset and	
			Satellite Orientation	
		3.3.2.3	Earth Rotation Correction	36
		3.3.2.4	Receiver Clock Error	36
		3.3.2.5	Tropospheric Delay	37
		3.3.2.6	Ionospheric Delay	38
3.4 C	omputa	tion of Sa	tellite Position	39
3.5 S	ingle Po	oint Positi	on Computation	43
3	.5.1 Lea	ast Square	e Adjustment of The GPS	43
	Ob	servation		
3	.5.2 Lea	ast Square	e Adjustment Model	44
3	.5.3 Alt	ernative S	Solution of Non Linear	46
	Eq	uation of	GPS Point Position Using	
	Ba	ncroft Me	thod	
3.6 C	oordina	tes Transf	Formation	48
3	.6.1 Ca	rtesian To	Geodetic Coordinates	48
	Tra	ansformat	ion	
3	.6.2 Ge	odetic To	Cartesian Coordinates	49
	Tra	ansformat	ion	
3.7 S	ummary	7		51

ANALYS	IS AND V	ALIDATION OF SINGLE	52
POINT P	OSITION	ING	
4.1 Introd	uction		52
4.2 Data P	Processing,	Results, and Analysis	53
4.2.1	Data Set I	: Static Mode, Long	53
	Occupatio	on, 1 Hz Epoch, One day For	
	Each Test	ed Point	
	4.2.1.1	Results and Analysis of	54
		G01 Data Set I	
	4.2.1.2	Results and Analysis of	58
		G05 Data Set I	
	4.2.1.3	Results and Analysis of	62
		G11 Data Set I	
	4.2.1.4	Summary of Data Set I	66
		Analysis	
4.2.2	Data Set I	I: Static Mode, Short	67
	Occupatio	on, 10 Hz epoch, One Day	
	For Each	Tested Point	
	4.2.2.1	Results and Analysis of	67
		G01 Data Set II	
	4.2.2.2	Results and Analysis of	71
		G05 Data Set II	
	4.2.2.3	Results and Analysis of	75
		G11 Data Set II	
	4.2.2.4	Summary of Data Set II	78
		Analysis	
4.2.3	Data Set I	II: Static Mode, Short	80
	Occupatio	on, 10 Hz Epoch, One	
	Afternoon	For All Tested Points	
	4.2.3.1	Results and Analysis of	80
		G01 Data Set III	
	4.2.3.2	Results and Analysis of	83
		G05 Data Set III	

4

		4.2.3.3	Results and Analysis of	86
			G11 Data Set III	
		4.2.3.4	Summary of Data Set III	89
			Analysis	
	4.2.4	Data Set	IV: Static Mode, Short	91
		Occupation	on, 10 Hz Epoch, One Noon	
		For Each	Tested Point	
		4.2.4.1	Results and Analysis of	91
			G01 Data Set IV	
		4.2.4.2	Results and Analysis of	94
			G05 Data Set IV	
		4.2.4.3	Results and Analysis of	97
			G11 Data Set IV	
		4.2.4.4	Summary of Data Set IV	100
			Analysis	
	4.2.5	Data Set	V: Dynamic Mode, Short and	101
		Continuo	us Occupation, 1 Hz Epoch	
		4.2.5.1	Results and Analysis of	101
			Dynamic 1: Helipad at	
			UTM	
		4.2.5.2	Results and Analysis of	104
			Dynamic 2: Road from	
			Helipad UTM to Lingkaran	
			Ilmu UTM	
		4.2.5.3	Results and Analysis of	106
			Dynamic 3: Road from	
			Jalan Pontian to Skudai	
			Highway	
		4.2.5.4	Summary of Data Set V	107
			Analysis	
4.3	Su	ımmary		109

5	CON	NCLUSION AND RECOMMENDATION	113
	5.1	Conclusion	113
	5.2	Recommendation	116
REFERENC	CES AND	BIBLIOGRAPHY	117
APPENDIX	ES		120

LIST OF FIGURES

FIGURE	TITLE	PAGES
NUMBER		
1.1	Research Methodology	3
2.1	GPS Satellite Signals	8
2.2	PRN Code Sample	9
2.3	GPS Navigation Data Format	10
2.4	SV Time (Atomic Time), GPS Time and UTC	26
3.1	Single Point Positioning Algorithm	29
3.2	Determination of Point Position From Four GPS	33
	Satellites	
3.3	Cartesian Coordinates	50
3.4	Geodetic Coordinates	50
4.1	Distribution of Point Positions Results on G01	54
	Data Set I	
4.2	Horizontal and Vertical Accuracy At G01 Data	55
	Set I	
4.3	Distribution of Point Positions Results on G05	58
	Data Set I	
4.4	Horizontal and Vertical Accuracy At G05 Data	59
	Set I	
4.5	Distribution of Point Positions Results on G11	62
	Data Set I	
4.6	Horizontal and Vertical Accuracy At G11 Data	63
	Set I	
4.7	Distribution of Point Positions Results on G01	67
	Data Set II	
4.8	Horizontal and Vertical Accuracy At G01 Data	68
	Set II	

4.9	Distribution of Point Positions Results on G05	71
	Data Set II	
4.10	Horizontal and Vertical Accuracy At G05 Data	72
	Set II	
4.11	Distribution of Point Positions Results on G11	75
	Data Set II	
4.12	Horizontal and Vertical Accuracy At G11 Data	76
	Set II	
4.13	Distribution of Point Positions Results on G01	80
	Data Set III	
4.14	Horizontal and Vertical Accuracy At G01 Data	81
	Set III	
4.15	Distribution of Point Positions Results on G05	83
	Data Set III	
4.16	Horizontal and Vertical Accuracy At G05 Data	84
	Set III	
4.17	Distribution of Point Positions Results on G11	86
	Data Set III	
4.18	Horizontal and Vertical Accuracy At G11 Data	87
	Set III	
4.19	Distribution of Point Positions Results on G01	91
	Data Set IV	
4.20	Horizontal and Vertical Accuracy At G01 Data	92
	Set IV	
4.21	Distribution of Point Positions Results on G05	94
	Data Set IV	
4.22	Horizontal and Vertical Accuracy At G05 Data	95
	Set IV	
4.23	Distribution of Point Positions Results on G11	97
	Data Set IV	
4.24	Horizontal and Vertical Accuracy At G11 Data	98
	Set IV	

4.25	Distribution of Point Positions Results on	102
	Dynamic 1	
4.26	Radius Accuracy On Dynamic 1	103
4.27	Results on Dynamic 2	105
4.28	Results on Dynamic 3	106
A.1	OEM GPS CMC Allstar Single Frequency	121

LIST OF TABLES

TABLE	TITLE	PAGES
NUMBER		
3.1	Ephemeris Algorithm	42
4.1	Observation Data Sets	52
4.2	Information of G01 Data Set I	55
4.3	Statistics of The Accuracy At G01 Data Set I	55
4.4	Percentage of The Accuracy Level At G01 Data	56
	Set I	
4.5	Information of G05 Data Set I	59
4.6	Statistics of The Accuracy At G05 Data Set I	59
4.7	Percentage of The Accuracy Level At G05 Data	60
	Set I	
4.8	Information of G11 Data Set 1	63
4.9	Statistics of The Accuracy At G11 Data Set I	63
4.10	Percentage of The Accuracy Level At G11 Data	64
	Set I	
4.11	Accuracy Statement For Data Set I	66
4.12	Statistics of The Accuracy At G01 Data Set II	68
4.13	Percentage of The Accuracy Level At G01 Data	69
	Set II	
4.14	Statistics of The Accuracy At G05 Data Set II	71
4.15	Percentage of The Accuracy Level At G05 Data	73
	Set II	
4.16	Statistics of The Accuracy At G11 Data Set II	75
4.17	Percentage of The Accuracy Level At G11 Data	77
	Set II	
4.18	Accuracy Statement For Data Set II	79
4.19	Statistics of The Accuracy At G01 Data Set III	81

4.20	Percentage of The Accuracy Level At G01 Data	82
	Set III	
4.21	Statistics of The Accuracy At G05 Data Set III	84
4.22	Percentage of The Accuracy Level At G05 Data	85
	Set III	
4.23	Statistics of The Accuracy At G11 Data Set III	87
4.24	Percentage of The Accuracy Level At G11 Data	88
	Set III	
4.25	Accuracy Statement For Data Set III	90
4.26	Statistics of The Accuracy At G01 Data Set IV	92
4.27	Percentage of The Accuracy Level At G01 Data	93
	Set IV	
4.28	Statistics of The Accuracy At G05 Data Set IV	95
4.29	Percentage of The Accuracy Level At G05 Data	96
	Set IV	
4.30	Statistics of The Accuracy At G11 Data Set IV	98
4.31	Percentage of The Accuracy Level At G11 Data	99
	Set IV	
4.32	Accuracy Statement For Data Set IV	100
4.33	Statistics of The Accuracy On Dynamic 1	102
4.34	Percentage of The Accuracy Level On Dynamic 1	103
4.35	Accuracy Statement For Data Set V	108
4.36	Data Set Description	109
4.37	Accuracy Statement For G01	109
4.38	Accuracy Statement For G05	110
4.39	Accuracy Statement For G11	110
4.40	Accuracy Statement For Dynamic Use	111

LIST OF APPENDIXES

APPENDIX	TITLE	PAGES
NUMBER		
А	OEM GPS CMC ALLSTAR SINGLE	120
	FREQUENCY	
В	DATA INPUT SAMPLE	122
С	DATA OUTPUT SAMPLE	125

CHAPTER 1

INTRODUCTION

1.1 General Background

The discontinuation of SA (Selective Availability) gives a great impact to the accuracy; ten times better than before and directly affects many application fields (Clinton, 2000). The accuracy of point positioning using C/A code is now better than 20 m (Witchayangkon,2000).

To take benefits from the discontinuation of SA and further study about the removal and reduction of the other significant errors (after removal of SA) to obtain a low cost real time precise single point positioning are very interesting and challenging researches. The price of the receiver could be cheaper due to the use of single frequency OEM GPS, self-designed algorithm and free software.

Reliance on low cost single frequency receiver makes the precise single point positioning become more challenging as the ionospheric bias has to be estimated. To be real time or near real time, instead of using the precise ephemeris, the broadcast ephemeris is sufficient for use.

1.2 Problem Statements

As some surveyors in some countries have the attention to investigate the single point positioning (SPP) due to the discontinuation of SA, it also attracts other geodesists in other countries to do breakthrough research to conduct the SPP method. Single Point Positioning Using Low Cost Single Frequency GPS Receiver is one of the possible methods to be developed.

1.3 Research Objectives

- a) To design Single Point Positioning (SPP) algorithms in Matlab Language using Matlab TM which models the errors and biases in GPS data.
- b) To study and investigate the reliability of single point positioning using single frequency OEM GPS due to the discontinuation of SA with accuracy better than 2 m.

1.4 Research Scopes

The research scopes are:

- a) Obtain raw C/A code data using Single Frequency OEM GPS.
- b) Removal, reduction, and modeling of the remaining bias and error especially satellite and receiver clock error, relativistic effect, earth rotation effect, satellite antenna phase center offset, tropospheric and ionospheric delay.
- c) Satellites' Position Computation.
- d) Single Point Position Computation using a special Least Square Method namely Bancroft Method.
- e) Analysis of the result in static mode single by single epoch (1 Hz and 10 Hz data) and dynamic mode every single epoch (1 Hz data).

1.5 Research Contributions

This research is expected to give contribution in knowledge to other researchers and it can contribute to geodesists in further investigating the low cost real time single point positioning using Single Frequency OEM GPS. At the end of this research, it has a potential to be used in utilities surveying, mapping, mining, GIS application and other fields, which is related with position on earth such as navigation, fishery, and recreation.

1.6 Research Methodology

In general, the research methodology can be presented through Figure 1.1.

Figure 1.1: Research Methodology

1.7 Chapter Contents

The thesis consists of five chapters. The first chapter discusses the research background, objectives, scopes, contributions and methodology. The second chapter describes the theory of single point positioning. Chapter three describes the bias and error removal algorithm, satellite's position and point position computation. Data collection, OEM GPS information, results and analysis are presented in chapter four. Finally, chapter five would touch on the conclusions and a few recommendations for future implementations. Important attachments are included in appendix section.

REFERENCES AND BIBLIOGRAPHY

- Abidin, H.Z. (2001). Geodesi Satelit. Jakarta, Indonesia : Pradnya Paramita.
- Abidin, H.Z. (2000). *Penentuan Posisi Dengan GPS dan Aplikasinya*. Jakarta, Indonesia:Pradnya Paramita.
- Abdullah, H.O. (2004). Peta Base Map Johor Bahru. Makmal LIS, Universiti Teknologi Malaysia.
- Alkan, R.H. (????). GPS-Single Point Positioning Without Selective Availability. Department of Geodesy and Photogrammetry Eng., Istanbul Technical University, Turkey.
- Bancroft, S. (1985). An Algebraic Solution of the GPS Equations. *IEEE Transactions* on Aerospace and Electronic Systems, Vol.AES-21, pp 56–59.
- Bao, J., Tsui, Y. (2000). Fundamentals of Global Positioning System Receivers, A Software Approach. USA: John Wiley & Sons, Inc.
- Bae Systems.(1998). Allstar Users Manual, Part Number:220-600944-0XX. CMC, Canada.
- Beutler, G., Bauersima, I., Botton, S., Gurtner, W., Rothacher, M., Schildknecht, T.(1989).Accuracy and Biases in the Geodetic Application of the Global Positioning System. *Manuscripta Geodetica*, Vol.14 No.1.
- Camarga, P.O., J.F.G. Monico and Matsuoka, M.T. (2002). Influence of the Ionosphere in the GPS Point Positioning : A Case Study in the Equatorial Region. *Department of Cartography, Sao Paulo State University, Brazil.*
- Cheah Kim Choong.(1998). Penggunaan Efemeris Siaran Dalam Penentududukan Julat Semu (Pembentukan Perisian Asas GPS). Projek Sarjana Muda Ukur Tanah, Universiti Teknologi Malaysia.
- Canadian Marconi Company.(1998). User's ALLSTAR CMC Manual. Canadian Marconi Company., Quebec, Canada.

- Clinton, Bill. (2000). *GPS SA Set to Zero*. White House Press Conference, Washington D.C.
- Dana, Peter H. (1994). *Global Positioning System Overview*. Department of Geography, University of Texas at Austin.
- Gurtner, W. (1998). Access to IGS Data. Switzerland, Astronomical Institute, University of Bern.
- Hofmann-Wellenhof, B. H., Litchtenegger and Collin, J. (1992). *GPS Theory and Practice*. USA: Springer-Verlag Wien.
- Hugentobler, U et al. (2001). Manual Of Bernesse GPS Software Version 4.2. Astronomical Institute, University of Bern.
- Jabatan Ukur dan Pemetaan Malaysia.(2003).*Geocentric Datum of Malaysia (GDM)* 2000. Kuala Lumpur, Malaysia.
- Kleusberg, A., Langley, R.B.(1990). The Limitations of GPS. GPS World, April/March.
- Klobuchar, J.A.(1991). Ionospheric Effects on GPS. GPS World, April.
- Leick, A. (1995). GPS Satellite Surveying. 2nd ed. Canada: John Wiley & Sons, Inc.
- Leick, A. (2004). GPS Satellite Surveying. 3rd ed. Canada: John Wiley & Sons, Inc.
- Martin, D.J. (2003). GPS Basics : Around and Around with Orbits. *Professional Surveyor Archives, GITC America, Inc.*
- Mikhail., Edward M. (1976). Observations and Least Squares. University Press Of America, USA.
- Othman Zainon.(2001).*Merekabentuk Jaringan Optimal Ukur Aras Jitu*. Tesis Sarjana, Fakulti Kejuruteraan dan Sains Geoinformasi, Universiti Teknologi Malaysia.
- Rizos, C. (1996). *Principles And Practice of GPS Surveying*. Course notes, Sydney, Australia: School of Geomatic Engineering, The University of New South Wales.
- Rothacher, Markus and Mervart, Leo's (1996). *Bernese GPS Software Version 4.0.* Switzerland: Astronomical Institute, University Of Berne.
- Strang, G. and K,Borre. (1997). *Linear Algebra, Geodesy, and GPS*. USA : Wellesley Cambridge Press.

- Satirapod, C., Rizos, C. and Han, S. (1999). GPS Single Point Positioning : An Attractive Alternative?. 4th Australasian Symp. On Satellite Navigation Technology & Applications, Brisbane, Australia, 20-23 July, paper 55, 9pp.
- Satirapod, C., Rizos, C. and Wang, J. (2001). GPS Single Point Positioning With SA Off: How Accurate Can We Get? *Survey Review*, 36(282),255-262.
- Seeber, G. (1993). Satellite Geodesy. Berlin New York, De Gruyter.
- Sjoberg, L.E. (1992). Systematic Tropospheric Errors In Geodetic Positioning With the Global Positioning System. *Manuscripta Geodetica, Vol.17 No.3*.
- Witchayangkoon, B. (2000). *Elements Of GPS Precise Point Positioning*. Ph.D Thesis, The University of Maine.
- Wanninger, L. (1993). Effects of The Equatorial Ionosphere On GPS. GPS World, July.