
DEVELOPMENT OF MPLS TEST-BED FOR NETWORK TRAFFIC 
ENGINEERING

MOHD TAUFIK BIN JUSOH @ TAJUDIN 

A thesis submitted in fulfilment of the requirements for the award of the Degree of 

Master of Engineering (Electrical-Electronic & Telecommunication) 

Faculty of Electrical Engineering 

Universiti Teknologi Malaysia 

30 NOVEMBER 2005 



iii

To

My  beloved  Parents,  Sisters  and  Brothers 

for  Their 

 Love,  Sacrifices  and  Best  Wished 



iv

ACKNOWLEDGEMENT

In the name of ALLAH S.W.T, the Most Beneficent and the Merciful,

praise be to ALLAH S.W.T for the incredible gift endowed upon me and for the 

health and strength given to me in order to finish the project and to prepare this 

thesis.

First of all, I would like to thank my supervisor, Prof. Dr. Norsheila Binti

Fisal for her keen effort, interest, advice, consistent guidance and insightful

comments throughout the period of this study. I also would like to take this opportunity

to thank Mr. Adel and all masters student at Telekom Lab, Faculty of Electrical

Engineering and also not to forget a lot of thanks to all technicians at Switching Lab 

and Acoustic Lab. Without their helps, this project could not be done.

Special words of gratitude are dedicated to my classmate batch 04/05 especially 

to Miss Anis Shahida Niza Binti Mohktar and Mr. Kamaru for their help and advice. A 

lot of thank to my best buddy, Mr. Ismail Ibrahim and Mr. Jack for his moral support on 

me. To my entire clique, I deeply appreciate all your helps in finishing this project.

Finally, extraordinary thanks and love to my beloved parents, siblings and 

relatives for their full support, encouragement and love throughout my studies in UTM. 

With them, this life is very meaningful.



v

ABSTRACT

Providing Quality of Service (QoS) and Traffic Engineering (TE) capabilities in 

the Internet is essential, especially in supporting the requirement of real-time traffic, as

well as mission critical applications. For that reason, the current Internet must be 

enhanced with new technology that enables it to offer capabilities for controlling its 

behaviour as needed. Multiprotocol Label Switching (MPLS) is an emerging technology

that provides QoS and traffic engineering features in IP network. This study is mainly

concerned on how to develop MPLS test-bed in order to assess MPLS functionalities.

The goal is to develop MPLS test-bed using Linux operating system with kernel version 

2.6.5 as the platform. In this work the MPLS test-bed consists of four MPLS routers and 

two host terminals. MPLS software package version 1.946 has been used to build up 

routers similar to existing routers in MPLS domain called as Label Switched Router 

(LSR). Once the routers are well configured, the connection between two routers is 

established to create Label Switched Path (LSP). This LSP connection is also used to 

create new LSP from ingress router to egress router. IP packets are sent from ingress 

router to host terminals to validate the test-bed. These packets were encapsulated with 

MPLS header and they are examined by using ‘tcpdump’ command in Linux terminal

which shows that the test-bed is successfully developed. In order to enhance test-bed 

functionalities, packet generator can be added to the test-bed so that UDP and TCP 

throughput measurement can be done. Besides, RSVP and Diffserv can be integrated 

into the test-bed for future study. 



vi

ABSTRAK

Menyediakan keupayaan Kualiti Perkhidmatan (QoS) dan Kejuruteraan Trafik 

(TE) dalam Internet amatlah penting, lebih-lebih lagi bagi menyokong keperluan 

aplikasi masa nyata seperti aplikasi-aplikasi yang lebih kritikal. Oleh itu, teknologi 

Internet masa kini perlulah diperluaskan dengan teknologi terbaru untuk membolehkan

ia menyediakan keupayaan yang diperlukan bagi mengawal tingkahlakunya sendiri 

seperti yang diinginkan. Pensuisan Label Pelbagai Protokol (MPLS) adalah satu 

teknologi yang sedang berkembang dimana ia menyediakan ciri-ciri QoS dan TE dalam 

rangkaian Protokol Internet (IP). Kajian tesis ini tertumpu bagaimana membangunkan

rangkaian-uji MPLS (MPLS test-bed) bagi menilai fungsi-fungsinya. Dengan objektif 

membangunkan rangkaian-uji MPLS, sistem operasi Linux dengan kernel versi 2.6.5 

diperlukan sebagai asas pembangunan. Dalam kajian ini  pakej perisian MPLS versi 

1.946 telah digunakan untuk membangunkan router yang berfungsi sama seperti router

yang terdapat dalam domain MPLS dan ia dipanggil sebagai Router Pensuisan Label 

(LSR). Setelah router siap dibina, penyambungan antara dua router dilakukan untuk 

menyediakan Laluan Label Tersuis (LSP). Penyambung LSP ini juga turut digunakan 

untuk membina satu LSP baru yang menghubungkan ingress router dan egress router.

Paket-paket IP dihantar dari ingress router ke terminal host bagi mengesahkan

rangkaian-uji MPLS. Paket-paket IP yang telah digabungkan dengan kepala MPLS ini 

akan diuji menggunakan arahan ‘tcpdump’ yang terdapat dalam terminal Linux untuk 

menunjukkan bahawa rangkaian-uji ini telah siap dibangunkan. Sebagai langkah untuk 

memperluaskan fungsi rangkaian-uji ini, penjana paket boleh diganding bersama.

Dengan itu, kualiti penghantaran TCP dan UDP boleh ditentukan. Selain itu, RSVP dan 

Diffserv boleh juga digabungkan bersama untuk kajian dimasa akan datang. 



vii

TABLE OF CONTENTS 

CHAPTER TITLE         PAGE 

TITLE OF PROJECT i

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xiv

LIST OF APPENDICES xvi

CHAPTER I INTRODUCTION

1.1 Overview of Internet Challenges 1

1.2 Project Background    3 

1.3 Objectives of Research 4

1.4 Research Scopes    4 

  1.5 Thesis Outline     5 

  1.6 Project Flow Chart    6 



viii

CHAPTER II LITERATURE REVIEW

2.1 Introduction     8 

2.2 MPLS Basics     9 

2.2.1 MPLS Architecture   11 

2.3 MPLS Applications    15 

2.3.1 Virtual Private Network (VPN) 16

  2.3.2 IP and ATM Integration  16 

2.4 Traffic Engineering with MPLS 17

2.5 MPLS QoS     20 

2.6 MPLS Future Technology 22

2.7 Linux as the Operating System (OS) 25

2.7.1 Linux Differences 26

2.8 Details of MPLS Forwarding Basics

Implemented in Linux OS 27

2.8.1 MPLS Label    28 

2.8.2 MPLS Label Stacking 29

2.8.3 MPLS Data Structures 30

2.8.3.1 Incoming Label Map (ILM) 30

2.8.3.2 The Next Hop Label

Forwarding Entry (NHLFE) 31

2.8.3.3 FEC-to-NHLFE Map (FTN) 31

2.9 MPLS Details     32 

2.9.1 MPLS ILM Details 34

2.9.2 MPLS Receive Processing 35

2.9.3 MPLS FTN Details 36

2.9.4 MPLS NHLFE Details 37

2.9.5 MPLS Transmit Processing 37

2.9.10  MPLS Commands in Linux OS 38



ix

CHAPTER III DESIGN AND PROCEDURE 

3.1 Introduction     40 

   3.2 Kernel Recompilation    40 

3.2.1 Non-RPM System 41

3.2.2 RPM System    47 

3.3 Kernel IP Forwarding    48 

3.4 Ethernet Card Drivers    49 

3.5 Assigning Ethernet Device with IP Address 50

3.5.1 ifconfig    51 

3.5.2 ip route    51 

3.5.3 Assigning IP Address in the

Test-bed    52

3.6 Enabling MPLS    54 

3.7 Label Switching Path Set Up 55

3.7.1 LSP R-4 to R-1 57

3.7.2 LSP R-1 to R-4 59

3.7.3 LSP R-1 to R-2 60

3.7.4 LSP R-2 to R-1 62

3.7.5 LSP R-1 to R-3 62

3.7.6 LSP R-3 to R-1 64

3.7.7 LSP R-2 to R-3 64

3.7.8 LSP R-3 to R-2 66

3.8 Label Switched Path 1 68

3.9 Label Switched Path 2 69

CHAPTER IV RESULT AND ANALYSIS

4.1 Introduction     71 

4.2 Result of LSP Set Up Between Two Routers 71

4.2.1 LSP between R-4 to R-1 73



x

4.2.2 LSP between R-1 and R-2 74

4.2.3 LSP between R-1 and R-3 75

4.2.4 LSP between R-2 and R-3 76

4.3 Result of LSP 1 77

4.4 Result of LSP 2 81

4.5 Round Trip Time (RTT) 86

CHAPTER V CONCLUSIONS AND FUTURE WORKS 

5.1 Conclusions     89 

5.2 Proposed Future Works 90

REFERENCES 92

APPENDIX A 94

APPENDIX B 96

APPENDIX C 99

APPENDIX D 101



xi

LIST OF FIGURES 

FIGURE NO  TITLE PAGE

2.1   MPLS in OSI Model      12 

2.2   MPLS Architecture      13 

2.3   The format of LDP messages     14 

2.4   Shim Label       14 

2.5   MPLS Domain      19 

2.6   MPLS main structure      33 

2.7   ILM structure       34 

2.8   FTN structure       36 

2.9   NHLFE structure      37 

2.10   MPLS commands in Linux terminal    39 

3.1 Kernel option before compilation; no MPLS option 43

3.2 Kernel option after compilation; MPLS is selected 44

3.3 Kernel options before kernel compilation; no Special 

Next Hop option      45 

3.4 Kernel option after compilation; Special Next Hop is 

selected       46

3.5   Test-bed       52 

3.6 The connection between R-4 and R-1 57

3.7 Label 36 is assigned for network 10.0.5.0/24 58



xii

3.8 Label 56 is assigned for network 10.0.6.0/24 58

3.9 The connection between R-1 and R-2 61

3.10 The connection between R-1 and R-3 63

3.11 The connection between R-2 and R-3 65

3.12 Label 21 is assigned for network 10.0.1.0/24 67

3.13 Label 27 is assigned for network 10.0.1.0/24 67

3.14   Label Switched Path 1     68 

3.15   Label Switched Path 2     69 

4.1   LSP between R-4 and R-1     73 

4.2   LSP between R-1 and R-2     74 

4.3   LSP between R-1 and R-3     75 

4.4   LSP between R-2 and R-3     76 

4.5 Pinging 10.0.5.2 (sending IP packets into the MPLS

domain)       77

4.6 Packets addressed to 10.0.5.2 are attached with label

36 at Ingress LSR      78 

4.7 Packets labeled with 36 are received by eth0 at R-1 78

4.8 Packets labeled with 36 are swapped with label 26 at 

R-1        79

4.9 Packets labeled with 26 are received by eth2 at R-3 79

4.10 Label 26 is removed at R-3, IP packets are

forwarded to destination     80 

4.11 IP packets are received at destination without MPLS

header        80

4.12 Pinging 10.0.6.2 (sending IP packets into the MPLS

domain)       81

4.13 Packets addressed to 10.0.6.2 are attached with label 

56 at Ingress LSR      82 

4.14 Packets with label 56 are received by eth0 at R-1 82

4.15 Label 56 is swapped with label 18 at R-1 83

4.16 Packets with label 18 are received by eth0 at R-2 84



xiii

4.17 Packets with label 18 are swapped with label 20 at R-2 84

4.18 Packets labeled with 20 are received by eth0 at R-3 85

4.19 Label 20 is removed at R-3, IP packets are

forwarded to destination     85 

4.20   IP packets are received at destination without MPLS

header        86

4.21   RTT for LSP 1      87 

4.22   RTT for LSP 2      87 

4.23 Comparison of RTT between LSP2 and LSP1 88



xiv

LIST OF ABBREVIATIONS 

ATM   -  Asynchronous Transfer Mode

CoS   -  Class of Service

CR-LDP - Constraint-based Routing Label Distribution

Protocol

DLCI   -  Data Link Connection Identifier

DWDM  -  Dense Wavelength Division Multiplexing

FEC   -  Forwarding Equivalent Class

FSF   -  Free Software Foundation

GMPLS - Generalized Multiprotocol Label Switching

GPL   -  General Public License

IETF - Internet Engineering Task Force

IGP   -  Interior Gateway Protocol

IntServ  -  Integrated Services

IP   -  Internet Protocol

IS-IS   -  Intermediate System-Intermediate System

LDP   -  Label Distribution Protocol

LER   -  Label Edge Router

L-LSP - Label inferred Label Switched Path

LMP   -  Link Management Protocol

LSR   -  Label Switching Router

LSP   -  Label Switched Path

MEM   -  Micro-Electric Mechanical Systems



xv

MPLS   -  Multiprotocol Label Switching

MP S   -  Multiprotocol Lambda Switching

OADM - Optical Add-Drop Multiplexer

OS   -  Operating System

OSI   -  Open System Interconnection

OSPF   -  Open Shortest Path First

OXC   -  Optical Cross-Connects

PXC   -  Photonic Cross-Connect

PVC   -  Permanent Virtual Circuits

PC   -  Personal Computer

QoS   -  Quality of Service

RSVP   -  Resource Reservation Protocol

RSVP-TE - Reservation Protocol with Traffic Engineering

RTT   -  Round Trip Time

SONET  -  Synchronous Optical Network

TDM   -  Time Division Multiplexing

TE   -  Traffic Engineering

TLV   -  Type Length Value

TTL   -  Time to Live

VCI   -  Virtual Circuit Identifier

VoIP   -  Voice over IP

VPI   -  Virtual Path Identifier

VPN   -  Virtual Private Network

WAN   -  Wide Area Network

WWW     World Wide Web



xvi

LIST OF APPENDICES

APPENDIX  TITLE PAGE

A Kernel Script for R-4     94 

B Kernel Script for R-1     96

C Kernel Script for R-2 99

D Kernel Script for R-3 101



CHAPTER I 

1.1 Overview of Internet Challenges 

The overwhelming growth of the Internet and the growing popularity of real-time 

applications set new challenges to the Internet community. Big Internet service 

providers are growing ever larger and supporting increasingly a variety of services, with 

different requirements both from different applications and their customers. Service 

providers need for a commercially viable and scalable tools to make the most of their 

networks in order to increase their revenues by supporting the needs of time or and 

mission critical applications [24]. This is because different applications have varying 

needs for delay, delay variation (jitters), bandwidth, and packet loss.

For example, real-time applications such as Voice over IP (VoIP) and video 

conferencing are extremely latency-dependent. Here, the timeliness of data delivery is an 

issue of utmost importance. But in the Internet, where there is no predictable traffic 

control, these applications do not run effectively. Service differentiation for traffic flows 

and performance optimization of the operational networks are very critical for the 

Internet to remain as successful as before. However, the Internet, particularly its core 

protocol IP (Internet Protocol) was never designed with Quality of Service (QoS) in 

mind. Instead it was originally designed as a research and educational resource, and thus 

the underlying technology that forms the backbone of today's Internet is largely based on 



2

that philosophy [24]. But times have changed a lot since, and service differentiation 

using QoS mechanisms while optimizing the operational network has become quite an 

important issue in the Internet for these applications to run effectively and efficiently.

On the other hand, as the Internet is required to support different types of 

services, effective and efficient bandwidth management tools in IP networks becomes

increasingly important, especially when dealing with how to allocate the available

network resources in order to optimize the overall performance of the networks. And 

yet, when the network has to sustain heavy traffic load, and has limited resources, the 

situation of having some congested links, while others remain underutilized is almost an 

inevitable phenomenon [24]. One of the main reasons to cause such congestion events in 

IP networks is that of the destination based forwarding paradigm.

In IP networks, the Interior Gateway Protocols (IGPs), such as Open Shortest 

Path First (OSPF), and Intermediate System-Intermediate System (IS-IS) routing 

protocols use destination-based forwarding algorithm, without considering other 

network parameters, such as the available bandwidth. In effect, all traffic between any 

two nodes traverses across the IGP shortest path. Hence, it is obvious that such situation 

can create hot spots on the shortest distance between two points, while other alternative 

routes may still be underutilized. As a result, degradation of throughput, and long delay, 

and packet losses can be noticed. In such situation, minimizing the effects of congestion 

by optimizing the performance of the operational networks becomes more critical.

Traffic Engineering (TE) is very important in this regard [11], and plays a key 

role in that it offers service providers a means for performance optimization and 

bandwidth provisioning. In fact, without TE, it is also difficult to support QoS on a large 

scale and at reasonable cost [12]. Therefore, the key to address the problem of traffic 

engineering is to have the ability to place the traffic onto the network as flexibly as 



3

needed, so that the congestion in the network can be minimized before it leads to poor 

network performance. Because minimizing congestion by optimizing the distribution of 

traffic on a given network is the central goal of TE [13]. 

 In order to address the QoS issue, however, the ability to introduce connection-

oriented forwarding techniques to connectionless IP networks becomes necessary. In 

effect, this allows IP networks to reserve resources, such as bandwidth over 

predetermined paths for service differentiation in order to provide QoS guarantees.

1.2 Project Background

Multiprotocol Label Switching (MPLS) is an emerging technology, which plays 

a key role in IP networks by delivering QoS, as well as traffic engineering features. 

MPLS has been developed and standardized by the Internet Engineering Task Force 

(IETF) to address these issues, in a more scalable and cost effective way.

A lot of research has been done on MPLS performance study, and MLPS does 

provide QoS and TE. In University Teknologi Malaysia, MPLS test-bed not yet been 

developed and used. Hence, this project is prominent since it would be a pioneer in 

MPLS study in our university. 



4

1.3 Objectives of Research

Internet nowadays is facing a lot of challenges due to the gigantic numbers of 

users and fast growing of Internet applications. One way to overcome this problem is to 

provide QoS. However QoS cannot be achieved without having TE along. Due to these 

challenges, this project aim is to develop MPLS test-bed for network traffic engineering 

and to preserve QoS through explicit routing in Internet using MPLS. 

1.4  Research Scopes 

In order to develop MPLS test-bed, the components in MPLS domain itself need 

to be set up previously. For this project, four routers are needed to provide alternative 

routes between routers in MPLS network. Routers in MPLS test-bed which are able to

forward IP packets in MPLS domain are called Label Switching Router (LSR). The 

routers basically based on Linux operating system since this operating system is open-

source system, and the software to turn ordinary Linux PC into LSR  are freely available 

in the Internet. Other scopes of this project are to enable the connection between routers 

and to create Label Switched Path (LSP). Finally IP packets passing through routers 

using LSP are validated using Linux command. 



5

1.5 Thesis Outline 

The contents of the project are further subdivided into chapters that described in 

details. Chapter I discussed about the overviews of current challenges in Internet 

technology. The factors why core network must provide new technology and must be 

improved are also specified in details. This chapter also introduced project background, 

objective of the research and scopes that are involved in order to finish the project. The 

overall project’s process flow chart also shown.

The Chapter II discussed literature studies and related works. The basic 

fundamentals and architecture of MPLS are explained in details. Other MPLS 

applications such as Virtual Private Network (VPN) and Asynchronous Transfer Mode 

(ATM) with IP integration also discussed. How MPLS provides Traffic Engineering 

(TE), Quality of service (QoS) and Class of Service (CoS) are elaborated in this chapter.

Moreover, operating system used in this project is explained briefly. Finally the 

implementations of MPLS in Linux are explained in details such as its data structures 

and the processes happened when Linux machines run MPLS.

Chapter III explained about design and procedures done for this project. The 

steps to configure Linux machine into MPLS router are also explained. Label Switched 

Path (LSP) establishment between routers are described step by step for easy 

understanding.

In Chapter IV, results are shown and discussed. This chapter covers the results of 

LSP set up between two routers and the results of LSP between ingress and ingress 

router. Finally in this chapter, the results of Round Trip Time (RTT) for the test-bed are 

shown.



6

Lastly in Chapter V, the conclusions of this project are described. Some future 
works that can be done in order to enhance are explained.

1.6 Project Flow Chart 

Literature reviews on MPLS

Upgrade knowledge in using LINUX

Progress of this study can be summarized into flow chart shown above. First of 

all, literature reviews on MPLS need to be done to acquire basic knowledge about 

MPLS.  Journals and papers were referred to enhance the understanding and to get the 

overview of the project. Since this project requires Linux operating system as the 

MPLS software

Recompile Kernel

Install Binary Files

Enable Kernel IP Forwarding

Build Ethernet Driver

Assign IP Address

Develop Test-bed 

Turn On MPLS

LSP set up between 2 PCs

Create LSP1 & LSP 2

Test-bed Testing



7

platform, the knowledge using Linux must be enhanced. The understanding of Linux 

critical scripts that exists in Linux kernel is also very important. MPLS software is taken 

from Sourceforge homepage. This software package is still under development thus 

MPLS package version 1.946 is chosen since it is the latest up date package. Before 

Linux PC can be change into MPLS router, the kernel need to be compiled. The 

appropriate binary files are installed in order to make MPLS router to function.

Furthermore, kernel IP forwarding in Linux machine has to be change into 

enable state since it is disabled by default. Linux machines are connected together with 

appropriate IP addresses. But this can only be done when the ethernet card’s driver is 

installed in every Linux machine. Before LSP between two routers can be established, 

each router must be MPLS enabled by turning on MPLS. The connection between two

routers is used again to create new LSP but now it connects ingress router to egress 

router.

In this study, two LSP that are LSP 1 and LSP 2 which connects ingress to egress 

are created. LSP 2 connects four routers while LSP 1 connects only three routers. The 

test-bed is tested by sending IP packet into it. When the packets captured were 

encapsulated with MPLS header it shown that the MPLS test-bed was well developed.



91

time. Since MPLS test-bed is already developed it can be used to study about traffic 

performance such as TCP and UDP throughput measurement. Furthermore packet 

generator can be added with this test-bed to provide real traffic environment. Finally 

other QoS such as RSVP and DiffServ also can be integrated into this test-bed for

further study. 



92

REFERENCES

1. Steve Maxwell (2000). RedHat Linux Network Management Tools. N.Y.: Mc 

Graw Hill. 105-171.

2. Bryan Pfaffenberger (2001). Linux Networking Clearly Explained. University

of Virginia.: Morgan Kaufmann. 93-114.

3. Christopher Negus (2003). Red Hat® Linux®  9 Bible. Canada.: Wiley. 1-16, 

123-155.

4. Naba Barbakati (2004). Red Hat® Fedora™ Linux®  2 All-In-One Desk 

Referencefor Dummies®. N.J.: Wiley. 319-325. 

5. Eric Foster-Johnson (2003). Red Hat® RPM Guide. IN.: Wiley. 33-58.

6. Terry Collings and Kurt Wall (2004). Red Hat® Linux® Networking and System 

Administration 2nd Edition. IN.: Wiley. 206-211. 

7. Richard Petersen (2004). Red Hat®: The Complete Reference Enterprise Linux 

& Fedora™ Eedition. N.Y.: Mc Graw Hill. 774-776. 

8. Stephen A.Thomas (2002). IP Switching and Routing Essentials. N.Y.: Wiley.

46-57.

9. David E. McDysan and Dave Paw (2002). ATM & MPLS Theory & 

Application: Foundations of Multi-Service Networking. N.Y.: Mc Graw Hill. 

387-413, 505-506,520-522, 697. 

10. Ilyas Mohammad and T. Hussein Mouftah (2003). Handbook of Optical 

Communication Networks. N.Y.: CRC PRESS. Chapter 5: Multiprotocol Label 

Switching (Matthew N.O. Sadiku). 

11. G. Swallow. MPLS Advantages for Traffic Engineering. IEEE Communication. 

December 1999. 



93

12. Zheng Wang. Internet QoS: Architectures and Mechanism for Quality of 

Service. Morgan Kufmann 2001. 

13. D. Awduche. MPLS and Traffic Engineering in IP Networks. IEEE 

Communication. December 1999.

14. D. Awduche et al. Overview and Principles of Internet Traffic Engineering.

IETF RFC 3722. May 2002. 

15. B. Jamoussi et al. Constraint-Based LSP Setup using LDP. Draft-ietf-mpls-cr-

ldp-0.5.txt. Febuary 2001.

16. D. Awduche et al.  RSVP-TE: Extensions to RSVP for LSP Tunnels. Draft-ietf-

mpls-rsvp-lsp-tunnel-0.8.txt. Febuary 2001. 

17. R. Braden, D. Clark and S. Shenkar. Intergrated Services in the Internet

Architecture. RFC 1633. July 1994. 

18. Braden et al. Resource ReSerVation Protocol (RSVP) - Version 1 Functional 

Specification. RFC 2205 September 1997. 

19. S. Blake et al. An architecture for Differentiated Services. IETF RFC 2475. 

December 1998. 

20. Le Faucheur et al. MPLS Support of Differentiated Services. Draft-ietf-mpls-

diff-ext-08.txt. February 2001. 

21. E. Rosen et al. Multiprotocol Label Switching Architecture. IETF RFC 3031. 

January 2001. 

22. D. Awduche et al. Requirements for Traffic Engineering Over MPLS.  IETF 

RFC 2702. September 1999. 

23. R. Callon, et al. A Framework for Multiprotocol Label Switching. IETF 

Internet draft. Febuary 1999. 

24. T. Byle, R. Aibara and K. Mishimura. Performance Measurements of MPLS 

Traffic Engineering and QoS. Proceeding of the 11th annual Internet Society 

Conference, INET 2001, Stockholm, Sweden, June 2001. 

25. MPLS for Linux Home Page (SourceForge) 

http://sourceforge.net/projects/mpls-linux



94

APPENDIX A 

Kernel Script for R-4 

#!/bin/sh

#

# This script will be executed *after* all the other init scripts. 

# You can put your own initialization stuff in here if you don't 

# want to do the full Sys V style init stuff. 

touch /var/lock/subsys/local 

echo "1" > /proc/sys/net/ipv4/ip_forward 

echo "1" > /proc/sys/net/ipv4/ip_dynaddr 

#iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE 

#Kernel IP table 6.9.2005 

route add 10.0.1.1 dev eth0 

# Assign ethernet device 

mpls labelspace add dev eth0 labelspace 0 

# Create "incoming label map" 

mpls ilm add label gen 17 labelspace 0 

mpls ilm add label gen 37 labelspace 0 

mpls ilm add label gen 57 labelspace 0 



95

# LSP between 0.1(R-4) to 0.2(R-1) 

mpls nhlfe add key 0 

mpls nhlfe change key 0x2 instructions push gen 16 nexthop eth0 

ipv4 10.0.1.2 

ip route add 10.0.1.2/32 via 10.0.1.2 spec_nh 0x8847 0x2 

# Bind label 36 for network 10.0.5.0/24 (FEC) 

mpls nhlfe add key 0 

mpls nhlfe change key 0x3 instructions push gen 36 nexthop eth0 

ipv4 10.0.1.2 

ip route add 10.0.5.0/24 via 10.0.1.2 spec_nh 0x8847 0x3 

# Bind label 56 for network 10.0.6.0/24 (FEC) 

mpls nhlfe add key 0 

mpls nhlfe change key 0x4 instructions push gen 56 nexthop eth0 

ipv4 10.0.1.2 

ip route add 10.0.6.0/24 via 10.0.1.2 spec_nh 0x8847 0x4 



96

APPENDIX B 

Kernel Script for R-1 

#!/bin/sh

#

# This script will be executed *after* all the other init scripts. 

# You can put your own initialization stuff in here if you don't 

# want to do the full Sys V style init stuff. 

touch /var/lock/subsys/local 

echo "1" > /proc/sys/net/ipv4/ip_forward 

echo "1" > /proc/sys/net/ipv4/ip_dynaddr 

#iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE 

# Kernel IP routing table 6.9.2005 

route add 10.0.1.2 dev eth0 

route add 10.0.3.1 dev eth1 

route add 10.0.2.1 dev eth2 

# Assign ethernet device 

mpls labelspace add dev eth0 labelspace 0

mpls labelspace add dev eth1 labelspace 1

mpls labelspace add dev eth2 labelspace 2



97

# Create "incoming label map" 

mpls ilm add label gen 16 labelspace 0 

mpls ilm add label gen 36 labelspace 0 

mpls ilm add label gen 56 labelspace 0 

mpls ilm add label gen 27 labelspace 1 

mpls ilm add label gen 19 labelspace 2 

# LSP set up R-1 to R-4

mpls nhlfe add key 0 

mpls nhlfe change key 0x2 instructions push gen 17 nexthop eth0 

ipv4 10.0.1.1 

ip route add 10.0.1.1/32 via 10.0.1.1 spec_nh 0x8847 0x2 

# Enable returned packet 

mpls xc add ilm_label gen 19 ilm_labelspace 2 nhlfe_key 0x2 

mpls xc add ilm_label gen 27 ilm_labelspace 1 nhlfe_key 0x2 

# LSP set up R-1 to R-2 

mpls nhlfe add key 0 

mpls nhlfe change key 0x3 instructions push gen 18 nexthop eth2 

ipv4 10.0.2.2 

ip route add 10.0.2.2/32 via 10.0.2.2 spec_nh 0x8847 0x3 

# Swap incoming label 56 to outgoing label 18 

mpls xc add ilm_label gen 56 ilm_labelspace 0 nhlfe_key 0x3 

# LSP set up R-1 to R-3 

mpls nhlfe add key 0 

mpls nhlfe change key 0x4 instructions push gen 26 nexthop eth1 

ipv4 10.0.3.2 

ip route add 10.0.3.2/32 via 10.0.3.2 spec_nh 0x8847 0x4 



98

# Swap incoming label 36 to outgoing label 26 

mpls xc add ilm_label gen 36 ilm_labelspace 0 nhlfe_key 0x4 




