APPLICATION OF VIRTUAL INSTRUMENTATION IN POSITION CONTROL SYSTEM USING DIRECT DIGITAL CONTROL VIA PID AND FUZZY LOGIC CONTROLLER

MARIAM BINTI MD GHAZALY

UNVERSITI TEKNOLOGI MALAYSIA

APPLICATION OF VIRTUAL INSTRUMENTATION IN POSITION CONTROL SYSTEM USING DIRECT DIGITAL CONTROL VIA PID AND FUZZY LOGIC CONTROLLER

MARIAM BINTI MD GHAZALY

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Electrical - Mechatronic & Automatic Control)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > APRIL 2005

To my beloved mother and father

ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with many people, researchers, academicians, and practitioners. They have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my main thesis supervisor, Assoc. Prof. Dr. Mohd Fua'ad Haji Rahmat for encouragement, guidance, critics and friendship. Without their continued support and interest, this thesis would not have been the same as presented here.

My fellow postgraduate students should also be recognized for their support. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful to my father and mother for their guidance, advices and motivation.

ABSTRACT

The objective is to design and developed a GUI software using Microsoft Visual Basic 6.0 to ease students in performing position control system experiment, expose students on position control system theoretically and practically and to developed controller using software for position control system. The scope of the project is to apply direct digital control (DDC) in position control system. PID controller and a fuzzy logic controller will be use to control the output response. An interactive software will be developed to help the student to visualize and analyze the system. This project can be divided into two parts namely hardware and software. Hardware parts involve more in interfacing MS150 Modular servo System and Data Acquisition System with a personal computer. While the software part include programming real-time software using Microsoft Visual Basic 6.0. In the earlier stage, literature review and experiment are performed manually to understand the concept of the controller. An interactive software will be designed using Microsoft Visual Basic 6.0. The software will be equipped with a set of graphic instructions to ease any mistake when performing experiment. Finally, the software will be integrated with hardware to produce a GUI position control system.

ABSTRAK

Satu perisian komputer akan di reka dengan menggunakan Microsoft Visual Basic 6.0. Tujuan perisian ini di reka adalah untuk pembelajaran dan pemahaman pelajar semasa menjalankan ujikaji mengawal kedudukan sistem motor servo. Selain itu, tujuan perisian ini adalah untuk mereka sistem kawalan menggunakan Visual Basic 6.0 yang dapat mengawal kedudukan motor servo. Skop projek ini adalah untuk mengadaptasikan modul kawalan terus digital dalam mengawal kedudukan motor servo. Pengawal PID dan pengawal "fuzzy logic" akan digunakan bagi mengawal keluaran motor servo. Satu perisian yang interaktif akan di reka agar dapat membantu pelajar menganalisis sistem motor servo tersebut. Projek ini terbahagi kepada dua bahagian iaitu perkakasan dan perisian. Perkakasan terdiri daripada membuat hubungan antaramuka antara modal MS150 Modular servo sistem dengan DAQ cad dan computer peribadi. Manakala, perisian adalah lebih kepada mereka bentuk perisian yakni mereka bentuk pengawal PID dan pengawal "fuzzy logic" menggunakan Microsoft Visual Basic 6.0 bagi mengawal sistem motor servo.

TABLE OF CONTENTS

CHAPTER	TITI	LE	PAGE
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGMENT	iv
	ABS'	TRACT	v
	ABS'	TRAK	vi
	TAB	LE OF CONTENTS	vii
	LIST	T OF TABLES	xi
	LIST	OF FIGURES	xii
	LIST	T OF SYMBOLS	xiv
	LIST	T OF APPENDICES	xvii
1	INTI	RODUCTION	1
	1.1	Virtual instrumentation	1
	1.2	Virtual Instruments	3
	1.3	Project Objectives	5
	1.4	Project Scope	7

2	LITI	ERATU	RE REVIEW	8
	2.1	Introd	luction.	8
	2.2	Previous Research.		9
		2.2.1	"Motor Drive Control System For	10
			Education and Research".	
		2.1.2	"Development of a Distant Laboratory	10
			using Labview".	
		2.1.3	"Real-Time Position Control of	11
			Free-Electron Laser Beams: Theory	
			and Experiments".	
		2.1.4	"Closed-loop Position Control	11
			System using Labview".	
	2.3	Virtua	al Instrumentation in Position	12
		Contro	ol System.	
3	RES	EARCH	I METHODOLOGY	13
	3.1	Projec	et Overview	13
	3.2	Position	on Control System	15
		3.2.1	General Servomotor System Model	20
		3.2.2	Direct Digital Control (DDC)	24
		3.2.3	PID controller	25
			3.2.3.1 Analog PID controller	27
			3.2.3.2 Digital PID controller	30
		3.2.4	Fuzzy Logic Controller	33
			3.2.4.1 Fuzzification	36
			3.2.4.2 Knowledge Base	38
			3.2.4.3 Inferencing	40
			3.2.4.4 Defuzzification	41

3.3	Software Review		42
	3.3.1	Virtual Instrumentation - Graphical User	42
		Interface (GUI)	
		3.3.1.1 General GUI Design Considerations.	43
		3.3.1.2 Visual Presentation	45
		3.3.1.3 VI Diagram Considerations	46
		3.3.1.4 Additional GUI Object Considerations	46
	3.3.2	Microsoft Visual Basic	47
3.4	Hardy	vare Review	48
	3.4.1	Data Acquisition System (DAS)	48
		3.4.1.1 DAQ Hardware	50
		3.4.1.2 Analog Input system	53
		3.4.1.3 Analog Output System	54
		3.4.1.4 D/A Converter	55
	3.4.2	MS150 Modular Servo System	55
		3.4.2.1 Pre-amplifier Unit – PA150C	56
		3.4.2.2 Operational Amplifier Unit -OA150A	56
		3.4.2.3 Input Potentiometer – IP150H &	57
		Output Potentiometer -OP150K	
		3.4.2.4 Attenuator Unit – AU150B	58
		3.4.2.5 DC Motor –DCM150F	58
		3.4.2.6 Reduction Gear Tacho Unit – GT150X	59
		3.4.2.6 Servo Amplifier Unit – SA150D	59
		3.4.2.7 Power Supply Unit – PS150E	60
	3.4.3	Hardware Connection	61
	3.4.4	Classical Control System Experiment	62

4	RES	ULTS &	ANALYSIS	63
	4.1	4.1 Direct Digital Control		64
		4.1.1	PID controller GUI	65
		4.1.2	Fuzzy Logic Controller GUI	67
	4.2	Prelim	ninary Result Analysis	69
		4.2.1	Closed Loop Position Control System	70
		4.2.2	Effect of Gain Changes on Deadband	73
		4.2.3	Unit Step Response to Gain Changes	74
		4.2.4	Velocity Feedback	77
	4.3	Result	Statement	82
		4.3.1	PID Controller Result Analysis	83
		4.3.2	Fuzzy Logic Controller Result Analysis	85
	4.4	Compa	arison between PID and Fuzzy Logic	86
	4.5	Discus	ssion	87
5	CON	ICLUSI(ON	89
	5.1	Sugge	stion for future work	91
	REF	ERENC	ES	92
	Appe	Appendices A-D		

LIST OF TABLES

NO.	TITLE	PAGE
3.1	Effect of each PID Controller	30
4.1	Output result of the experiment unit step response to	75
	gain changes.	
4.2	Output result of the experiment velocity feedback	78
4.3	Output result of the PID controller	84
4.4	The comparison output between response using the	87
	PID and Fuzzy logic.	

LIST OF FIGURES

NO.	TITLE	PAGE
1.1	Structure of a measuring device.	2
1.2	Hardware architecture of virtual instruments.	4
3.1	General form of the block diagram for closed loop position	15
	control system.	
3.2	Standard measurements on Step Response of a Control System	17
3.3	Single position loop diagram can be modified to include	17
	velocity feedback.	
3.4	Simple Error Channel	18
3.5	DC-Motor (a) Wiring Diagram (b) Sketch (c) Schematic	20
3.6	Direct Digital Control Schematic.	24
3.7	General Feedback Architecture	26
3.8	Block diagram for PID Controller	28
3.9	Flow chart for the PID controller system.	32
3.10	Flowchart of Simulator	34
3.11	FLC Design Methodology	35
3.12	The input and output variable.	36
3.13	The error input variable	37
3.14	The rate input variable	37
3.15	The motor output variable	38
3.16	The fuzzy logic rules	39

3.17	The firing strength for the rule base using max-min inference.	41
3.18	Computerized data acquisition and control system.	49
3.19	A picture of AX5412H Data Acquisition Card	50
3.20	AX750 screw terminal panel	52
3.21	Many input signals come into the A/D system	53
3.22	General View of MS150 Modular Servo System.	55
3.23	PA150C- Pre-amplifier Unit	56
3.24	OA150A – Operational Amplifier Unit	57
3.25	Input Potentiometer and Output Potentiometer (IP150H, OP150K)	57
3.26	AU150B – Attenuator Unit	58
3.27	DCM150F – DC Motor with Tachogenarator	59
3.28	SA150D – Servo Amplifier Unit	60
3.29	PS150E – Power Supply Unit	60
3.30	Connection between PC and MS150 through AX750 Screw	61
	Terminal Panel	
4.1	Splash screen	64
4.2	Circuit diagram for direct digital control.	65
4.3	PID controller GUI	66
4.4	Fuzzy Logic Controller GUI	68
4.5	Fuzzy Logic Controller data capture form	68
4.6	The output result of closed loop position control system experiment.	72
4.7	The output result of gain changes on deadband	74
4.8	PID results which was capture within the GUI	83
4.9	The fuzzy logic result which was capture within the GUI.	85

LIST OF SYMBOLS

VI - Virtual Instrument

PC - Personal Computer

DAQ - Data Acquisition

DSP - Digital Signal Processing

GUI - Graphical User Interface

DDC - Direct Digital Control

ITL - Interactive Teaching and Learning

PID - Proportional Integral Derivative Controller

I&C - Instrumentation and Control

DC - Direct Current

ADC - Analogue to Digital Converter

DAC - Digital to Analogue Converter

FCE - Final Control Element

 $\theta_i(t)$ - Input shaft angle

 $\theta_o(t)$ - Output shaft angle

 R_a - Armature resistance

L_a - Armature inductance

I(t) - Armature current

F - Magnetic field force

1 - Length of conductor

 β - Magnetic field strength

v(t) - Velocity of conductor normal to the magnetic force

 $v_b(t)$ - Back electromotive force

*K*_b - Motor dependant constant

 $\tau(t)$ - Torque

J - Total moment inertia

B - Total viscous friction

 K_T - Motor torque constant

e(t) - Error signal

 K_g - Gain

 ζ - Damping ratio

 w_n - Natural frequency

 T_p - Peak time

 T_r - Rise time

%OS - Percent overshoot

 M_p - Peak value of time response

 f_v - Final value

 T_s - Settling time

CV - Control variable

SP - Set point

y(t) - Output position signal

r(t) - Reference signal

V(t) - Controller output

 K_p - Proportional gain

 K_i - Integral gain

 K_d - Derivative gain

DMA - direct Memory Access

I/O - Input / output

RTDs - Resistance temperature detectors

IC - Integrated circuit

AI - Analogue input

AO - Analogue output

DI - Digital input
DO - Digital output

Hz - Hertz

LSB - Least significant bit

TTL - Transistor-transistor logic

PA150C - Preamplifier unit

OA150A - Operational amplifier unit

IP150H - Input potentiometer

OP150K - Output potentiometer

AU150B - Attenuator unit

DCMl50F - DC motor

GT150X - Reduction gear tacho unit

PS150E - Power supply

 Ω - Ohm

RAD - Rapid Application Development

HTML - Hypertext Markup Language

VB6 - Visual Basic Version 6.0

COM - Component Object Model

IIS - Internet Information Server

ASP - Active Server Pages

DLL - Dynamic. Link Libraries

API - Application Programming Interface

IDE - Integrated Development Environment

OLE DB - Object Link Embedded Database

MTS - Microsoft Transaction Server

Ne - negative error

Pe - positive error

Ze - zero error

Nde - negative de

Pde - positive de

Zde - zero de

No - negative output

Po - positive output

Zo - zero output

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	PID results	94
В	Software snapshot	102
C	Slide presentation	106
D	Software source code	134

CHAPTER 1

INTRODUCTION

1.1 Virtual instrumentation

Virtual instrument have become the catchword in measurement technology. Virtual instrumentation easily can be connected with the term "test engineer". When attempting to interpret the meaning of "test engineer", almost everyone ties a different idea or concept to this catchword. For many, it represents a control instrument based on standard personal computers to store, evaluate, and represent test data. According to this notion, data is acquired through special measuring devices attached to a personal computer over a serial or parallel cable. Some thinks that it means a computer equipped with application and driver software and a built in transmitter as sort of low-cost alternative to relatively expensive standard alone measuring devices. Both ideas are correct, but only up to a certain point. They cover only part of this concept. Before discussing the exact definition, we will describe the principle types of computer-assisted test data acquisition [13].

Test data can be acquired in a computer in a different ways. It is important to understand the underlying architecture of a measuring device. A traditional measuring device always consists of three components, shown in figure 1.1, which perform the following tasks [13]:

- Acquire the measurement parameters (data acquisition)
- Adapt and process the measured signal (analysis)
- Output the measured value (presentation)

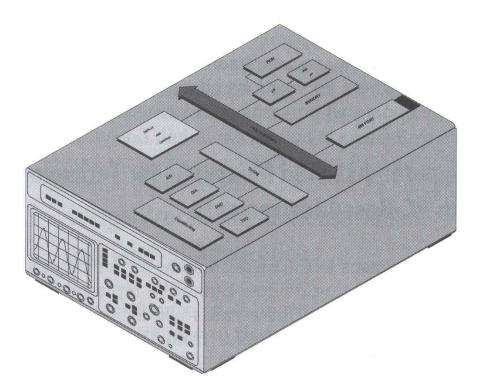


Figure 1.1: Structure of a measuring device.

Such measuring devices generally have fixed functions defined by the manufacturer, and they are characterized by a manufacturer-specific architecture and an inflexible user interface. Consequently, they cannot be adapted easily to changing needs.

Both the operation and the documentation are entirely manual. To add long measuring sequences that require constant changes of settings, a large amount of time is used to set the measuring devices and to document the measured values.

1.2 Virtual Instruments

Based on this background information, we are now able to define the term "virtual instrument" in a more accurate way. We speak about a virtual instrument when we create measuring systems composed of a standard personal computer, suitable software, and appropriate measuring hardware tailored to the measuring task, which is normally available only in specifically designed stand-alone measuring devices. Virtual instruments represent a visualization and centralization of complex measurement systems on a standard personal computer in the form of a virtual user interface [13]. The user sees a uniform, comprehensive single system, i.e., a complete application, consisting of many individual measuring components. This fundamental concept is the quantum leap from the conventional measuring device over computer-assisted measurement technologies to adaptable virtual measuring systems. This represents a shift from manufacturer-defined measuring devices to user-defined measuring systems. The main benefits of this concept are:

A virtual instrument can contain any combination of industry standard hardware to acquire or output data: IEEE-488.2, RS-232 devices, VXI/MXI systems, field buses (CAN, Interbus-S, Profibus, Foundation Fieldbus, Axiom etc.), multifunction plug-in cards, DAQ instruments, image processing components, external black-box systems, or motion control. figure 1.2 illustrates the hardware architecture.

- The capabilities to analyze and represent measured data reach far beyond the boundaries of conventional measurement technology.
- A powerful software development environment and a set of hardware components allow creation of a number of virtual instruments to cover a wide range of test functions and applications.

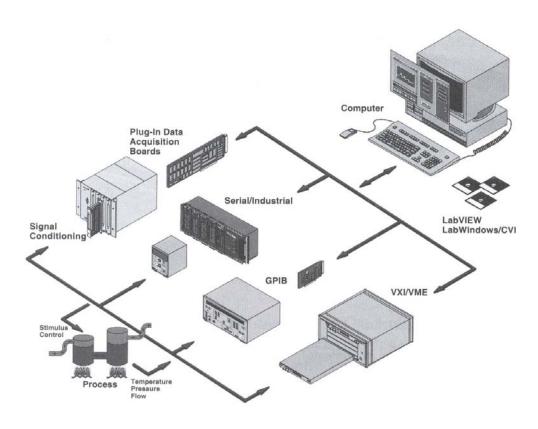


Figure 1.2: Hardware architecture of virtual instruments.

The spectrum of virtual instruments used in practice includes classical laboratory automation, process visualization and control, automotive and aviation industries, medical applications, manufacturing industry, and research and science.

1.3 Project Objectives

The main objective of this project is to develop software with Graphical User Interface (GUI) capabilities using Microsoft Visual Basic version 6.0 in performing their position control system experiment. The GUI will be developed with the following goals:

- 1) To developed controller using software for position control system.
- 2) To ease students in performing position control system experiment.
- 3) Expose students on position control system theoretically and practically.
- 4) Enable students to understand more on application that is based on position control.
- 5) Teaching electrical engineering students real-world data acquisition and analysis.
- 6) Allowing students manipulate the information with their graphics and word processing packages to generate professional quality lab reports.
- 7) Empowering students to acquire experimental data in this laboratory experiment directly from the software.
- 8) Permits students to meaningfully experiment with physical relationship in a readily interpretable, graphics format.

Besides that, the objectives of each experiment that have to be performed by student are basically divided into 4 classical control experiments listed as below:

(i) Experiment 1 – Closed-loop Position Control System.
 Objective: To demonstrate a simple motor-driven closed-loop position control system.

(ii) Experiment 2 – Effect of Gain Changes On Deadband.

Objective: To study on the deadband of a position control system and

the effect of gain changes upon the Deadband.

(iii) Experiment 3 – Unit Step Response To Gain Changes.

Objective: Visual study of step response to gain changes upon

position control system.

(iv) Experiment 4 – Velocity Feedback.

Objective: Study on the effect of velocity feedback in a position

control system.

Besides these experiments, an additional experiment using Direct Digital Control (DDC) techniques will be implementing in this software to allow student to observe system response behaviour upon changes on the proportional gain, integral gain and derivative gain. The objective of these experiments is to enable student to differentiate between Direct Digital Control and Classical Control. Hence, this will allow student to control the position of the control system in real-time with a PC-based system and aware them of the important role, played by personal computers in engineering nowadays.

Based on the above experiment, it also allow student to differentiate between Supervisory Control and Direct Digital Control where in Supervisory Control, computers are used for monitoring purpose only but in Direct Digital Control, control loop is replaced by computers to interface with process measurement and control some of the physical process parameters.

1.4 Project Scope

The scope of the project is listed below:

- i. To apply direct digital control (DDC) in position control system.
- ii. To develop a PID and a fuzzy logic controller which will be use to control the output response.
- iii. To make comparison of the performance between PID controller and fuzzy logic controller.
- iv. To developed Graphical User Interface to help the student to visualize and analyze the system. Besides, it also covers the method on enhancing the original experiment for student so that they can finish their experiment on time and in the mean time, they can grab more understanding through visual presentation.