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ABSTRACT 

 

 

 

 Accurate process fault detection and diagnosis (FDD) at an early stage of a 

chemical process is very important to modern chemical plant in overcoming 

challenges such as strict requirements on product quality, low consumption of utility, 

environmentally friendly and safe operation.  The use of the Contribution Plots (CP) 

for fault diagnosis in previous methods in Multivariate Statistical Process Control 

(MSPC) is not suitable since it is ambiguous due to no confidence limit in the CP.  

This research is to formulate a FDD algorithm based on MSPC via correlation 

coefficients.  A fractionation column from a palm oil fractionation plant is chosen as 

the case study and the model of the case study is simulated in Matlab.  Data collected 

with a process sampling time, TMSPC, of 4.6 hours and following the normal 

distribution are used as Nominal Operation Condition (NOC) data.  Normal 

Correlation (NC), Principal Component Analysis (PCA) and Partial Correlation 

Analysis (PCorrA) are used to develop the correlation coefficients between the 

selected key process variables with the quality variables of interest in the process 

from the NOC data.  Faults considered in the research are sensor faults, valve faults 

and controller faults generated in the fault data (OC).  Shewhart Control Chart and 

Range Control Chart together with the developed correlation coefficients are used for 

fault detection and diagnosis.  Results show that the method based on PCorrA 

(overall FDD efficiency = 100%) is more superior than the method based on NC 

(overall FDD efficiency = 67.82%) and the two analysis methods based on PCA 

(overall FDD efficiency = 67.82%).   
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ABSTRAK 

 

 

 

 Pengesanan dan diagnosis kecacatan proses (FDD) yang tepat untuk suatu 

proses adalah penting bagi mengatasi cabaran-cabaran seperti kawalan kualiti produk 

yang ketat, pengunaan utiliti yang rendah, kesan kepada alam sekitar yang minima 

dan operasi yang mempunyai aspek keselamatan yang tinggi.  Pengunaan Carta 

Sumbangan (CP) bagi mendiagnosis punca kecacatan dalam kaedah yang lepas 

dengan Kawalan Proses Multipembolehubah Statistik (MSPC) adalah tidak sesuai.  

Ini kerana ketiadaan batas kawalan dalam CP yang menyebabkan keputusan 

diagnosis yang tidak menyakinkan.  Kajian ini ialah untuk membangunkan algoritma 

FDD berdasarkan MSPC melalui pekali korelasi.  Sebuah menara penyulingan 

daripada loji penyulingan kelapa sawit dipilih sebagai kes kajian dan model kes 

kajian ini disimulasi di dalam Matlab.  Data dikumpul dengan masa penyampelan, 

TMSPC, bersamaan 4.6 jam dan data yang mempunyai taburan normal yang dikenali 

sebagai data “Nominal Operation Condition” (NOC).  Korelasi Normal (NC), 

Analisa Komponen Prinsipal (PCA) dan Analisa Korelasi Separa (PCorrA) diguna 

untuk menerbitkan pekali-pekali korelasi di antara pembolehubah proses yang 

terpilih dengan pembolehubah kualiti yang dikaji daripada data NOC.  Kecacatan 

proses yang dikaji dalam kajian ini ialah kecacatan injap, kecacatan pengesan dan 

kecacatan pengawal yang dijanakan dalam data kecacatan (OC).  Carta Kawalan 

Shewhart dan Carta Kawalan Julat digunakan bersama dengan pekali-pekali korelasi 

yang telah diterbitkan untuk pengesanan dan diagnosis kecacatan proses.  Keputusan 

menunjukkan kaedah berdasarkan PCorrA (pekali keseluruhan FDD = 100%) adalah 

lebih baik prestasi persembahannya berbanding kaedah NC (pekali keseluruhan FDD 

= 67.82%) dan kedua – dua kaedah analisis PCA (pekali keseluruhan FDD = 

67.82%).  
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CHAPTER I 
 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 Chemical industries are facing a lot of challenges.  The industries have to 

keep sustainable production and within the quality specifications for the products. 

The whole production process has to operate at the minimum production of waste, 

minimum consumption of utilities, minimum cost of re-work and re-processing.  If 

the chemical industries are able to do so, the industries can achieve a better 

competitive position in the world market and gain great revenue.  In order to achieve 

these targets, modern chemical plants need to operate as fault free as possible 

because faults that present in a chemical process increase the operating cost due to 

the increase in waste generation and product having undesired specifications.  

Therefore, an efficient fault detection and diagnosis method need to be developed to 

detect faults that are present in a process and pinpoint the cause of the detected faults.  

Multivariate Statistical Process Control (MSPC) is a fault detection and diagnosis 

method which has gained wide applications in the chemical industries (Kourti et al., 

1996).  

 

 This research is aimed to formulate a fault detection and diagnosis algorithm 

based on MSPC. The functions of this algorithm are to ensure safe operation, better 

understanding of the process behavior and to prevent continuously producing off-

specification products.  The developed algorithm can be applied to any unit operation 
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in the chemical industry. A distillation column is chosen as the case study. 

  

 

 

1.2 Research Background    

 

Multivariate Statistical Process Control (MSPC) is an extension of univariate 

Statistical Process Control (SPC).  This extension enables MSPC to become 

applicable in chemical industries which are multivariable in nature.  MSPC 

monitoring method consists of collecting nominal operation condition process data, 

building process models by using multivariate projection methods and comparing the 

incoming process measurements against the developed process models.  

 

The present MSPC method has several weaknesses in detecting and 

diagnosing faults.  According to Yoon and MacGregor (2000), MSPC is a very 

powerful tool for fault detection but its main limitation lies in the ability to isolate or 

diagnose the actual causes of the detected fault.  Although contribution plots are use 

to diagnose the faults, they tend to be noisy and ambiguous.  The contribution plots 

also do not have confidence limit, making it difficult to determine whether a situation 

is normal or abnormal.    

 

From the previous paragraph, the major weakness of MSPC lies in its ability 

to diagnose the actual causes of the detected faults.  Therefore, this research is trying 

to solve this problem by introducing new elements into the fault detection and 

diagnosis method in MSPC.  The new elements are: 

 

a) A new fault detection procedure based on correlation coefficient between the 

quality variables of interest and the selected key process variables. 

b) Fault diagnosis using statistical control charts with control limits showing 

clearly the status of a situation. 

c) Formulation of the correlation coefficient based on Normal Correlation (NC), 

Partial Correlation Analysis (PCorrA) and Principal Component Analysis 

(PCA). 
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1.3 Objectives of the Research 

 

1) To formulate a new fault detection and diagnosis algorithm based on the 

correlation coefficient between quality variables of interest and the selected 

key process variables. 

 

2) To study the efficiency of the developed fault detection and diagnosis 

algorithm in detecting faults and diagnosis the causes of the detected faults. 

 

 

 

1.4 Scopes of Research 

 

Scopes of the research consist of: 

 

• A distillation column from plant simulated data (Appendix B) is used as the 

case study. The dynamic models for the column are developed. The 

distillation column models will be used to describe the column behavior. 

 

• A dynamic simulation algorithm is formulated based on the developed 

distillation column dynamics models. Later, the dynamic simulation 

algorithm is developed using Matlab software. 

 

• The performance of the developed dynamic simulation program is assessed. 

The Matlab simulation results are compared to the simulation results from the 

plant simulated data (Appendix B). 

 

• Controllers tuned and installed for stable operation of the column program.  

 

• Selection of quality variables of interest and key process variables 

 Linoleic Acid composition (x8) and Oleic Acid composition (x9) in the  

     bottom stream are chosen as the quality variables of interest. 
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 Key process variables selected are process variables that are highly 

correlated with the two selected quality variables of interest.  Process 

variables that have a Normal Correlation (NC) of 0.1 or more with the 

two quality variables of interest are selected as key process variables.  

The selected key process variables are feed flow rate (Lf), feed 

temperature (Tf), reflux flow rate (Re), pumparound flow rate (P), 

reboiler duty (Qr) and bottom temperature (Tbot).      

 

 Determination of Process Sampling Time, TMSPC  

 An autocorrelation test based on Wetherill and Brown (1991) was 

used to determine the suitable Process Sampling Time, TMSPC of the 

process.  The TMSPC is determined at a value of 4.6 hours.  In this 

research, TMSPC refers to the time used to sample a data from the 

process into the data set used for calculation of correlation 

coefficients.  

 

 Generation of Data 

 Data (values of the selected key process variables and quality 

variables of interest) are sampled from the process using the 

determined TMSPC.  The collected data are mean-centered and 

variance-scaled.  This data are checked of its average, standard 

deviation, kurtosis and skewness to establish its normal distribution 

properties.  Once the data follow the normal distribution, it is further 

checked to determine whether it is the desired Nominal Operation 

Condition Data (NOC).  

 Nominal Operation Condition (NOC) data are a set of data in which, 

the selected quality variables and key process variables have values 

within the statistical control limits of their statistical control charts.  

The statistical control charts used in this research are Shewhart 

Control Chart and Range Control Chart.  For NOC, the statistical 

control limits are ± 3σ for the quality variables and ± 3σ/Cik for 

selected key process variables (Cik is the correlation coefficients 

between the selected key process variables with the quality variables 

of interest).   



 5 

 Fault Data (OC) are a set of data in which, the selected quality 

variables and key process variables have values outside the statistical 

control limits of their statistical control charts in certain times.  Fault 

Data are also sampled from the process using the determined TMSPC.     

 

• Formulating fault detection and diagnosis (FDD) algorithm based on Normal 

Correlation (NC), Principal Component Analysis (PCA) and Partial 

Correlation Analysis (PCorrA).  The procedures in formulating the algorithm 

are shown as follow: 

 

a) Develop the correlation coefficients using NC, PCA and PCorrA. 

b) Develop the fault detection tools. 

c) Develop the fault diagnosis tools. 

 

 The developed FDD algorithm is used with Shewhart Control Charts (SCC) 

and Range Control Charts (RCC) for fault detection and diagnosis on the 

generated set of Fault Data. 

 

• The performance of the FDD algorithm is evaluated. The results for fault 

detection and diagnosis are discussed in depth. 

 

 

 

1.5 Contributions of the Research 

 

The contributions of this research can be summarized as follows: 

 

1) The introduction of the correlation coefficient between quality variables of 

interest and the selected key process variables in formulating the FDD 

algorithm. 

 

2) The derivation of the correlation coefficient based on Normal Correlation 

(NC), Principal Component Analysis (PCA) and Partial Correlation 

Analysis (PCorrA). 
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3) The application of Partial Correlation Analysis (PCorrA) as an important   

    analysis tool in MSPC. 

 

 

 

1.6 Layout of thesis  

 

This thesis contains six chapters: introduction, literature review, distillation 

column modeling and simulation, methodology, results and discussion and 

conclusions and recommendations.  The first chapter comprises of the introduction of 

the research, objectives of the research, research background and research’s scopes 

and contributions.  

 

Chapter II elaborates the literature review concept of Multivariate Statistical 

Process Control (MSPC), Principal Component Analysis (PCA), Partial Correlation 

Analysis (PCorrA) and the development of MSPC.   

 

Chapter III presents the dynamic modeling of a distillation column as the case 

study, formulation and establishment of the dynamic simulation program, the tuning 

of controllers in the column and the evaluation of the performance of the developed 

simulation program.  

 

 Chapter IV mainly consists of the procedures in formulating the fault 

detection and diagnosis (FDD) algorithm based on NC, PCA and PCorrA. The 

introduction of the correlation coefficient between the quality variables of interest 

and the selected key process variables were also presented in this chapter. 

 

Chapter V presents the results obtained from the developed FDD algorithm 

and the discussion of these results. 

 

Chapter VI gives the conclusions that can be made from the results obtained 

and also recommendations for future work. 
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robustness of the statistical control charts and the number of false alarms that 

happens on the number of rules to be used when using Shewhart Control Chart. 

 

Aside from Shewhart Control Chart and Range Control Chart, there are 

numerous other types of control charts that can be used with the proposed correlation 

coefficients in this research such as Exponentially-Weighted Moving Average 

Control Chart (EWMA), Cumulative-Sum Control Chart (CUSUM) and Moving 

Average Control Chart (MA) (Wachs and Lewin, 1999).  By applying the developed 

correlation coefficients on these control charts, the results of the FDD of the fault 

data set will certainly be different.  

 

In this research, three techniques of correlation analysis were used: NC, PCA 

and PCorrA.  For future work, techniques such as Partial Least Squares (PLS) and 

Independent Component Analysis (ICA) can be used to develop the correlation 

coefficients between the variables of the data matrix.  Chemical processes tend to 

change continuously and the correlation coefficients developed from history data 

may not truly represent the relationship between process variables.  Therefore, online 

updating of the data matrix used to develop the correlation coefficients can take 

account into process dynamics and give better FDD qualities of the developed FDD 

method based on correlation coefficients.     

 

Finally, the author hopes that this research work can be a platform for future 

studies on the field of fault detection and diagnosis using Multivariate Statistical 

Process Control (MSPC) via correlation coefficients.    
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