CONDUCTIVITY MEASUREMENT 4 CELL

MADANAGOPAL VIJAYA KUMAR

A thesis submitted in fulfillment of the

requirements for the award of the degree of

Master of Engineering (Electrical - Electronics and Telecommunication)

Faculty of Electrical Engineering Universiti Teknologi Malaysia

NOVEMBER 2005

To my almighty Sri Sathya SaiBaba

ACKNOWLEDGEMENT

In preparing this thesis, In particular, I wish to express my sincere appreciation to my main thesis supervisor, Professor Dr.Ruzairi Bin Abdul Rahim, for encouragement, Guidance, critics and friendship. I am also very thankful to all colleagues in particular Mr.K.Muralideran R& D Engineer Eutech Instruments Singapore for his guidance, and support in preparation of electronics circuit design.

I would also wish to acknowledge my beloved wife Ms.V.Deepa for her continuous support throughout the course and preparation of this Thesis.

ABSTRACT

Conductivity measurement is one of the most important and widely used to measure the quality of water in all spread of industries, labs & institutions. The Conductivity or specifically electrolytic conductivity is defined as the ability of a substance to conduct electric current. AC current is passed through two plate and voltage are measured across the plates, the resistance is offered by the liquid is measured in terms of voltage using ohms law principle.

The conductivity measurement's heart is the cell, among them 2 cell is most commonly used but it has few problem such as polarization, field effects, less measurement range etc, answer to solve this problem is 4 cell, this cell has 4 cells it can be of different forms – rings, pins, rectangular and square shaped etc.

The 4 cell concept helps to totally remove the field effect, polarization problems, cell constant is the key factor, there are different types of cell constant K=0.01, K=0.1, K=1.0 and K=10.0. The cell constant is chosen based on the ranges, cell constant 0.01 is used of low conductance measurement such as ultra pure water. As the conductivity goes higher cell constant will also chosen higher. Frequency - lower the conductivity measurement lower is the frequency (32 Hz) as the measurement value goes up the frequency should also go up to get optimum results.

The electronics has oscillator which generate required frequency, then high impedance op-amp and frequency dividers are used to measure conductivity.

Application of conductivity measurement such as concentration, salinity, resistivity, Total dissolved solids (TDS). All most all industries need this instrument even the drinking water, swimming pool also need this measurement.

ABSTRAK

Pengukuran konduktiviti merupakan satu pengukuran yang amat penting dan digunakan dengan meluas untuk mengukur kualiti air dalam kebanayakan industri, makmal dan institusi. "Contucivity" ataupun secara khusus conduktiviti elektrolitik di definasikan sebagfai kebolehan sesuatu "substance" untuk mengkonduksikan arus elektrik. Arus ulang-alik dilalukan melalui 2 plat dan voltan diukur melintasi plat, cecair menyumbang kepada kerintangan dan diukur dalam voltan menggunakan prinsip Hukum Ohm. Cell merupakan elemen paling penting dalam pengukuran konduktiviti, 2 sel biasanya digunakan tetapi mempunyai masalah-masalah seperti polarisasi, field effect(kesan medan)kekurangan julat ukuran dan lain-lain, jawapan untuk menyelesaikan masalah ini adalah dengan menggunakan 4 cell, cell jenis ini mempunyai 4 cell bentuknya boleh beraneka-cincin, pin, segiempat tepat dan segiempat dan lain-lain. Konsep 4 cell ini boleh mengahpuskan kesan medan, masalah polarisasi, konstan cell merupakan factor utama, terdapat pelbagai jenis konstan untuk cell k=0.01, k=0.1, k=1.0 dan k = 10.0 konstan. Untuk cell dipilih berdasarkan julat konstan 0.01 digunakan untuk pengukuran konduksi rendah seperti air semulajadi ultra. Sekiranya konduktiviti bertambah tinggi konstan cell yang dipilih juga tinggi. Frekuensi – sekiranya pengukuran konduktiviti adalah rendah frekuensinya juga turut rendah (32Hz). Andainya nilai pengukuran bertambah frekuensi juga harus bertambah untuk memperolehi kesan optimum. Elektronik ini mempunyai oscillator (pengayun)yang menjana frekuensi seperti yang dikehendaki, op-amp berimpidan tinggi dan pembahagi frekuensi digunakan untuk mengukur konduktiviti. Pengukuran konduktiviti di aplikasikan dalam kepekatan. Kepadatan rintangan (TDS). Kebanyakan industri memerlukan peralatan ini memandangkan air yang diminum, air kolam mandi juga memerlukan penukuran ini.

TABLE OF CONTENTS

TITLE

PAGE

1.	INTROD	UCTION	1
2.	OBJECT	IVE	3
3.	SCOPE (OF PROJECT	4
4.	RESEAR	CH METHODOLOGY	5
5.	LITERA	TURE REVIEW AND THEORY OF	6
	ELECTR	ROLYTIC CONDUCTIVITY MEASUREMENT	
	5.1	Definition of Conductivity	6
	5.2	Design of the conductivity cell	9
	5.3	Effects of Polarization	10
	5.4	Platinization	10
	5.5	Temperature effects on conductivity measurement	11
		5.5.1 Conductivity Vs PPM	13
		5.5.2 Conductivity Vs Resistivity Spectrum	14
		5.5.3 Conductivity Vs Concentration	15
	5.6	Conductance	16
	5.7	Conductivity	17
	5.8	Resistivity	17
	5.9	Calibration	17
	5.10	Standard Solution	18
	5.11	Reference Temperature	18
	5.12	Automatic Temperature correction	18

	5.13	Cable Correcti	on	19
	5.14	Total Dissolve	d Solids (TDS)	19
	5.15	TDS Factor		19
	5.16	Salinity		20
6.	SENSOR	DESIGN		21
	6.1	Cell Constant	ring type formula	23
	6.2	Cell Calculation	ons	23
	6.3	Cell Constants		25
	6.4	Cell Construct	tion	27
7.	BLOCK D	DIAGRAM OF '	ΓHE 4 CELL	29
	MEASUR	EMENT CIRC	CUIT	
	7.1	Oscillator Cir	cuit	32
		7.1.1	Waveforms	34
		7.1.2	Voltage and Current Circuit	37
		7.1.3	Operational Amplifier	39
		7.1.4	Multiplexer MC74HC4051	40
8.	SIMULATION RESULTS			43
	8.1	Final Simula Results	ation of Sensor with electronic	47
9.	BILL OF	MATERIAL	MATERIAL	
10.	APPLICA	TIONS		51
	10.1	Conductivity	y Measurements	52
	10.2	Resistivity N	Measurements	52
	10.3	TDS Measu	rements	53
	10.4	Salinity Measurements		55
	10.5	Concentratio	on Measurements	56
11.	ANALYS	SIS		57
	11.1	Temperatur	e Co-efficient	57
	11.2	Polarization	IS	58

11.3	Geometry	59
11.4	Frequency	59
11.5	Cable resistance and capacitance	60
11.6	Practical Consideration for conductivity/	60
	TDS Measurements	
11.7	Conductivities of metals can be used for	61
	Cell	
11.8	4 cell conductivity probe eliminate	62
	Polarization and contact coating effetcs	
11.9	Comparison between two cells and 4 cells	63
RESULT	۲S	64
CONCL	USIONS	65
13.1	Sensor	65
13.2	Circuit	65
FUTUR	E WORK	67

12.

13.

14.

REFERENCE	68
APPENDICES	69

LIST OF TABLES

5 5 7
5 7
7
_
1
2
3
4
5
6
8
1
6
1
3

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
5.1	Solution Conducts electricity depends on	7
5.2	Conductivity Vs PPM concentration chart	13
5.3	Conductivity/Resistivity Spectrum	14
6.1	Sensor construction	22
6.2	Physical picture of the 4 cell sensor	28
7.1	Block diagram of the 4 cell measurement circuit	29
7.2	Oscillator Circuit	31
7.3	The logic diagram of 74HC4040	32
7.4	The pin diagram of 74HC4040	33
7.5	Logic diagram of 74HC4040	33
7.6	Simulation of Oscillator signal 128Hz	34
7.7	Simulation of Oscillator signal 512Hz	35
7.8	Simulation of Oscillator signal 1.025KHz	35
7.9	Simulation of Oscillator signal 2049Hz	36
7.10	Voltage and Current circuit	37
7.11	Conductivity measurement circuit for 4 cell	38
7.12	Connection Diagram of AD822 Op Amp	39
7.13	Pin diagram of MC74HC4051[14]	41
7.14	Logic diagram of MC74HC4051[14]	41
8.1	Range 0 – 20 micro siemens	44
8.2	Range 0 – 200 micro siemens	45

8.3	Range 0 – 2000 micro siemens	46
8.4	Range 0 – 200 milli siemens	47
8.5	Final simulation of sensor with circuit	49
11.1	Field effects	59

LIST OF SYMBOLS

A, a	-	Area
AC	-	Alternating current
С	-	Conductivity
D.d	-	Distance
E	-	Volts
G	-	Conductance
HCL	-	Hydrochloric acid
H^+	-	Hydrogen ions
Ι	-	Current
Κ	-	Cell constant
KCL	-	Potassium chloride
mV	-	Milli volts
mg	-	Milligram
NACL	-	Sodium Chloride
NAOH	-	Sodium Hydroxide
ppm	-	Parts per million
ppt	-	Parts per thousand
R0	-	Reverse Osmosis
S	-	Siemens
SS	-	Stainless Steel
Т	-	Temperature
T_r	-	Reference Temperature
TDS	-	Total dissolved solids
μS	-	Micro Siemens
α	-	Temperature Co-efficient

LIST OF APPENDICES

APPENDIX NO.	TITLE	PAGE
Α	12 – Stage Binary Ripple Counter	69
	- MC54/74HC4040A	
В	Hex Schmitt – Trigger Inverter	77
	– MC74HC14A	
С	Dual D Flip – Flop with Set and Reset	86
	– MC74HC74A	
D	Analog Multiplexer Demultiplexer	94
	– MC74HC4051A	

CHAPTER 1

INTRODUCTION

Conductivity measurement is one of the most important and widely used to measure the quality of water/solutions in all spread of industries, labs & institutions; for examples drinking water quality in RO plant, feed water for boilers from Demineralization plants.

The possibility of using conductance to locate end points in titrations was also recognized early in the development of instrumental methods. Changes in slope of conductance versus titrant volume occur because ionic mobility's vary and also because of the formation of insoluble or non-ionized materials, accordingly conductometric titration was developed in recent years, high frequencies conductometric titration was developed in recent years. High frequency measurements permit the determination of changes in conductance or dielectric constant with out the introduction of electrodes into direct contact with the solution.[4]

Materials in which current is conducted by ions rather than electrons (as in metal conductors) are called electrolytes. These are divided into two groups strong and weak electrolytes according to their dissociation behavior, i.e. the property of the chemical compounds dissolved in a liquid to totally or partially split into separate

groups of ions. The group of strong electrolytes includes all strong acids and bases (e.g., HCL, NaOH). Water is an example of a weak electrolyte. The following applies to conduction in electrolytes: In solutions current is conducted by ions. All ions take part in this process but weak electrolytes only dissociate into ions.

In this project we are addressing 4 cell concepts of design, measurement and applications. The 2 cell in general has problems of polarization, geometry, field-effects etc, some this major problem can be overcome with the 4 cell concept.

and available easily, micro controller can be used to generate the frequency.

- This circuit uses high impedance op amp to prevent loss in the signals, The AD822 is a dual precision, low power FET input op amp
- that can operate from a single supply of 3.0 V to 36 V or dual
- supplies of ± 1.5 V to ± 18 V.
- For a multiplexer used
 - i. Fast Switching and Propagation Speeds
 - ii. Low Crosstalk Between Switches
 - iii. Diode Protection on All Inputs/Outputs
 - iv. Analog Power Supply Range (VCC VEE) = 2.0 to 12.0 V
 - v. Digital (Control) Power Supply Range (VCC GND) = 2.0 to
 6.0 V
 - vi. Improved Linearity and Lower ON Resistance Than Metal-Gate

CHAPTER 14

FUTURE WORK

- Micro controller shall be used for oscillator, auto ranging and also table store based of Temperature co-efficient auto correction can be done automatic.
- (ii) Different cell constant design.
- (iii) Different materials like platinum, silver, copper and other material can be used and tried for better results.
- (iv) ADC signal can further designed for Transmission purpose for 4-20mA for on-line applications.
- (v) The sensor can be practical check with different applications.

REFERENCES

- 1. Conductivity Theory and Practice Radio meter Analytical
- 2. Endresss + Hauser user manual
- 3. Eutech Instruments Web site
- 4. Instrumental Methods of Analysis Willard Merritt & Dean Settle
- 5. Transducers in mechanical and electronic design Harry L. Trietley
- 6. On-Line conductivity measurement -www.WTW.com
- 7. <u>http://www.wonhitech.co.kr/product04_11.asp</u>
- Manual of Electrochemical Analysis, Part 3, electric conductivity Sartorius
- 9. Application20% -from Internet
- 10. Sensorex technical education web site
- 11. Salinity Dissolved Salts, Measuring Salinity -<u>http://www.windows.ucar.edu/</u> at the University Corporation for Atmospheric Research (UCAR). ©1995-1999, 2000
- 12. Frequency Management www.fmi-inc.com
- 13. Analog devices -AD822 data sheet www.analog.com
- 14. MC74HC4051 data sheet on semiconductor http://onsemi.com
- 15. conductivities of materials, Microwave Engineering David M.Pozar 1998.