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Abstract 

 

Ultra-high strength of steel wire for offshore mooring lines can be achieved by increasing carbon content, 
addition of alloying elements and increasing cold work. The influence of carbon content and zinc coating 

on the tensile strength and torsion deformation have been investigated for drawn and hot dip galvanized 

steel wires at various drawing strain. In this work, experiments were conducted to increase the tensile 
strength of hyper-eutectoid steel wires by increasing carbon content from 0.87%wt to 0.98%wt. The 

samples with various diameter was drawn to their final diameter, then hot dip galvanized at 460ᵒC in a zinc 

bath to improve the anti-corrosion property. Torsion deformation has been investigated by twisting the 
drawn steel wires to different number of revolutions. Fractured samples after torsion test were analysed by 

optical and Field Emision Scaning Electron Microscope. The results showed that by increasing carbon 

content up to 0.98%wt (sample D) at drawing strain of 1.97 greatly increased the tensile strength up to 2338 
MPa. However, delamination occurred at the zinc coating layer at strength exceeding 2250 MPa and the 

maximum limit of tensile strength of 0.92% C (sample D) is 2026 MPa without delamination. The effect of 

zinc coating layer on torsion degradation also revealed that the zinc alloy layer had a significant effect on 
delamination in the hot dip coating which associated with the higher carbon and silicon content (sample B) 

in the steel wires. 
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Abstrak 

 

Wayar keluli berkekuatan ultra tinggi untuk kegunaan tali tambatan di kawasan lepas pantai boleh 

diperolehi dengan peningkatan kandungan karbon, penambahan unsur pengaloian dan penambahan kerja 
sejuk. Pengaruh kandungan karbon dan lapisan zink kepada kekuatan tegangan dan ubah bentuk kilasan 

dikaji ke atas wayar keluli yang telah diubah bentuk dan dicelup panas galvani pada terikan tarikan yang 

berbeza. Dalam kajian ini, ujikaji dijalankan untuk meningkatkan kekuatan tegangan wayar keluli hiper-
eutektoid bagi kandungan karbon dari 0.87%wt kepada 0,98%wt. Sampel yang mempunyai diameter 

pelbagai telah diubah bentuk sehingga ke diameter akhir, kemudian dicelup panas galvani pada suhu 460ᵒC 

dalam larutan zink untuk memperbaiki sifat kakisan. Ubah bentuk kilasan telah dikaji dengan mengilas 
wayar keluli tergalvani sehingga beberapa putaran. Sampel yag patah selepas ujian kilasan dianalisis 

dengan mikroskop optik dan mikroskop imbasan electron pancaran medan (FESEM). Keputusan 

menunjukkan dengan peningkatan kandungan karbon sehingga 0.98% berat (sampel D) pada terikan tarikan 
1.97 akan meningkatkan kekuatan tegangan sehingga 2338 MPa. Walau bagaimanapun, delaminasi berlaku 

pada lapisan zink apabila kekuatan mencapai 2250 MPa dan limit maksimum kekuatan tegangan pada 2026 

MPa bagi sampel B tanpa delaminasi. Kesan lapisan zink kepada penurunan kilasan juga menunjukkan 
lapisan aloi zink mempunyai pengaruh kepada delaminasi pada lapisan tergalvani yang mana dipengaruhi 

oleh kandungan karbon dan silikon yang tinggi (sampel B) pada wayar keluli. 

 
Kata kunci: Kekuatan tegangan; kilasan; delaminasi; wayar keluli tergalvani 

 

© 2014 Penerbit UTM Press. All rights reserved. 

 

 
 
 
 
 
1.0  INTRODUCTION 

 

The global offshore oil industry is expected to continue to grow in 

the coming years, driven by the depleting onshore reserves and the 

discovery of new large offshore reserves. With the positive outlook 

and the continuing trend for the offshore industry the global 

offshore crude oil production is expected to continue to increase.   

As shallow water resources decrease, deep and ultra-deep sub-salt 
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areas will probably play an increasingly significant role in the 

offshore oil and gas production. Another major factor pushing for 

increased activity in deep and ultra-deep waters has been the 

advancement in new technologies. Going beyond a depth of 1500 

meters, wire rope and chain start to present a number of challenges, 

many of which stem from the sheer weight of the mooring system 

[1]. In addition to needing a rather large unit to offset the weight 

and increasingly negative impact on variable deck load, the 

restoring force in the system may prove to be inadequate to provide 

a tight watch circle over the wellhead, which may result in 

operational problems [1]. In other words, as water depth increases, 

conventional all-steel spread mooring systems show a number of 

limitations both in operation and on the environment [2]. Such 

limitation include a lower restoring efficiency, high proportion of 

tether strength is consume by the vertical components of line 

tension, reduced pay-load of the vessel, and large mooring radius 

and sea-floor footprint [2]. The weight penalty of steel wire also 

increases rapidly with water depth and has become a significant 

cost driver for water depth beyond 2000 meters [3]. 

  Nevertheless, the use of steel wires in mooring line 

components with increasing water depth is still possible with 

enhanced improvements in strength to weight ratio, which will 

support the extension to useful depth range and provide a more cost 

effective solution. To meet this trend, the strengthening of steel 

wire must be increased so that the rope can be made smaller, which 

can be achieved by increasing carbon content, addition of alloying 

elements and increasing cold work. A considerable amount of work 

has been carried out on micro-alloyed steel in the past years, 

particularly involving chromium, manganese and molybdenum 

additions [4-9]. The use of carbon content up to 0.92% C has also 

been shown as having potential for increasing the strength of steel 

rods for roping applications [10-11]. However in steel containing 

over 0.92% C little work has been done towards the improvement 

of the strength and corrosion resistance of the ropes for offshore 

industry. One of the fundamental problems is that there is a limit to 

increase the steel wire strength since strength of the patented wire 

is increase but the drawing amount is reduced with increasing 

carbon content. Another challenge is the difficulty to meet fatigue 

characteristics due to the embrittlement originating from cementite 

dissolution [12-14]. Furthermore, the mechanism of embrittlement 

is still not clear because there has been no consensus on the 

mechanism of cementite dissolution itself [15]. 

  Strength of 4GPa and greater have been achieved by severe 

drawing of fully pearlitic hypereutectoid steel into fine wires [16] 

which is almost ten times of tensile strength of annealed mild steel. 

A deepwater mooring line can be a complex assembly of wire rope, 

chain and fibre ropes depending upon the properties required from 

the system [17].  

  In this work, the effects of chemical composition and work 

hardening on the tensile strength and torsion properties of hyper-

eutectoid steel wires were investigated. The delamination and 

effect of Zn coating phases has been investigated which is related 

to the microstructure and mechanical properties. 

 

 

2.0  MATERIALS AND METHODS 

 

Four different high carbon steel (0.87-0.98 %wt C) were used in 

the present work with the chemical composition as shown in Table 

1. The steel rods with different initial diameter, do (11.5-13.0 mm) 

were first lead-patented (LP) or direct in line patented (DLP) to 

produce fine pearlitic microstructures. The drawing strain (ε) of 

steel wire was evaluated by Equation (1). 

Drawing strain,ε = 2 ln df/d0                               (1) 

 

  Where df is the final diameter of wire and d0 is the initial 

diameter of wire. All four steels (Sample A – 4) were then 

deformed by cold drawing to their final diameter, df (drawing strain 

of 1.65 to 2.15) with drawing speed of 2.5 m/sec then hot dip 

galvanized at 460ᵒC in a zinc bath. The torsion ductility of the steel 

wires was measured by using a torsion-torque tester (ASTM A938) 

of rotational speed of 30 rpm. Both torque and angle of twist were 

recorded in real time. The tests were stopped when a sudden drop 

in torque was detected. For each carbon contents, 30 specimens 

were used to get an average of torsion value (no. of twists). Tensile 

tests were carried out at room temperature (29ᵒC) using Instron 

Universal Testing Machine and a cross head speed of 2 mm/min 

with loading 0.1 to 100 kN. Delamination of the Zn-coated layer 

was used to assess the torsion degradation of cold drawn hyper-

eutectoid steel wires. The effect of zinc (Zn) layer phases coating 

of the hot dip galvanizing process during cold drawing and 

delamination after torsion testing were also investigated. The 

microstructures of drawn steel were examined using Field 

Emission Scanning Microscopy (FESEM), Karl Zeiss Supra 55 on 

polished samples. The fracture surfaces of specimens subjected to 

torsion testing were also examined under FESEM and optical 

microscope. 

 
Table 1  Chemical composition of the steel samples 

 

 
 

 

3.0  RESULTS AND DISCUSSION 

 

3.1  Influence of Increasing Carbon Content on the Mechanical 

Properties Steel Wires. 

 

Figure 1 shows the variation of tensile strength as a function of 

drawing strain, ε (2 ln df/d0) for different carbon content of the 

hyper- eutectoid steel wires. Tensile strength increases with 

increasing of drawing strain for all samples (sample A-D) and steel 

contain the highest amount of carbon, 0.98%wt (sample D) exhibit 

higher drawing amount compare with the other steel. This 

attributed to the fact that sample A steel wire have finer lamellar 

microstructure compared to sample D steel wire as shown in Figure 

2. The result shown in Figure 2 is in good agreement with other 

researchers that increase in strength is caused by changing in 

lamellar microstructure [18]. The highest tensile strength (2338 

MPa) was found to be associated with the highest carbon content 

(0.98%wt) and finest lamellar microstructure which is for sample 

D. 
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Figure 1  Tensile strength of drawn steels wires as function of drawing strain for different carbon content (sample A-D) 

 

 
 

 
 

Figure 2  FESEM microstructure (polished and etched) of all samples (A) – (D) 
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Torsion degradation can be referred to a decrease in the torsions 

value before failure and also the torsion surface that is no longer 

has smooth and flat appearance. Torsion fracture surface are 

divided into three types, ranging from completely flat to very 

irregular [19]. Figure 3 shows the graph of torsion value versus 

drawing strain for all samples. It is quite clear from Figure 3, that 

torsion values (number of twist) for sample B, is higher than the 

other samples and increasing with increasing drawing amount 

until reaches its peak at drawing strain of 1.82 (17 turns) and then 

decreases due to delamination. However for sample C and sample 

D shows the delamination occurs at a lower torsion values and 

drawing strain. From the result shown in Figure 1 and Figure 3, 

there is clear evidence that higher tensile strength can be obtained 

by increasing the drawing amount and carbon content, but their 

torsion property will be affected. Therefore further analysis of 

selected sample at various drawing amount will be discussed to 

show the occurrence of delamination.  

  To investigate how the drawing limit can be increased, the 

mechanism of delamination was examined by using an optical 

and FESEM to observe the fractured surfaces and microstructural 

changes in the wires after torsion. Delamination is characterized 

by a longitudinal splitting at the wire surface during the early 

stages of plastic torsion deformation as shown in Figure 4. Figure 

4 shows the microstructure of fractured surfaces after torsion 

testing for selected samples (sample B) at various drawing strain.     

Fracture surface of sample B at lower drawing strain (ε = 1.65 

and ε = 1.82) without delamination exhibit flat fracture surface 

which deformed uniformly during torsion. In contrast, sample B 

at highest drawing strain (ε = 1.98) with delamination showing 

torsion cracks and unstable deformation pattern, and as a result, 

crack moved through the entire wire and result in breakage 

(Figure 4(c)). On measuring the torque-elapse time curve, this 

splitting is characterized by a sharp drop in the torque when 

delamination occurs as shown in Figure 5. The phenomenon of 

delamination has been discussed by other researcher [20] and 

seems to be attributable to the carbon content in the steel wires. 

Increasing carbon content in ferrite may result in matrix 

embrittlement. With carbon content of 0.87%wt (sample A), 

cementite decomposition will occur easily during drawing, which 

results in lower drawing limit. In order to achieve ultra-high 

tensile strength by increasing carbon content over 0.92%wt 

(sample B) without delamination, the analysis of zinc coating is 

required and will be discussed in section 3.2. Therefore, we will 

show the result for selected sample B to study the interface of 

zinc alloy coating. 

3.2  Analysis on the Zinc Coating of the Steel Wire 

  

Upon immersion of the steel wire into the molten zinc a series of 

iron-zinc intermetallic component (Zn alloy layer) are formed on 

the surface of the wire. The morphology of zinc coating on 

sample B at lower drawing strain of 1.65 is shown in Figure 6. 

From Figure 6 it is observed that the coating layer is uniform and 

no sign of detachment from the steel. It is clear from the results 

of scan analysis and EDS analysis in Figure 6 that Zn alloy layer 

formed at the interface of steel and zinc coating. The chemical 

analysis of EDS spectrum 1 (first coating layer) reveals the 

presence of Zn and O, spectrum 2 (second coating layer) reveals 

the presence of Zn and Fe and spectrum 3 (steel wire rod) are 

mainly Fe. This indicates that the coating layer is Fe-Zn alloy 

layer. At higher drawing strain, the delamination occurred and 

FESEM was used to observe the interaction of microstructure 

with cracks in sample B at drawing strain of 1.99. As shown in 

Figure 7, micro-cracks occur at the interface of steel-zinc coating 

and these micro-cracks are easily initiated during cold drawing 

process.   Such micro-crack propagated in the direction of torsion 

deformation resulting in delamination (Figure 4 (c)).    

 

 
Figure 3  Torsion values versus drawing strain for sample A-D 
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Figure 4  Fracture surface of drawn wire for sample B at various drawing strain, ε (a) ε =1.65 (b) ε =1.82 (c) ε =1.99 

 

 
 

Figure 5  Torque versus elapse time for sample sample B at various drawing strain,ε (a) ε =1.65 (b) ε =1.82 (c) ε =1.99 
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Figure 6  (a) FESEM micrograph , line scan and EDS spectra of zinc layer phase for sample B at drawing strain of 1.65 (no delamination) 

 

 

 
 

Figure 7  FESEM micrograph of sample B at drawing strain of 1.99 (with delamination) 
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4.0  CONCLUSIONS 

 

In the present study, the influence of carbon content and zinc 

coating on the tensile strength and torsion deformation have been 

investigated for drawn and hot dip galvanized steel wires. The 

highest tensile strength (2338 MPa) at drawing strain of 1.97 can 

be achieved by increasing carbon content to 0.98%wt (sample D). 

The maximum limit of tensile strength for steel wire of 0.92%c 

(sample B) is 2026 MPa (drawing strain of 1.82) due to the 

occurance of delamination at higher drawing strain. Zn alloy 

layer has a significant influence on delamination as microcracks 

are easily initiated at the interface of zinc and steel during 

drawing. These microcracks propagate in the direction of torsion 

deformation resulting in delamination during torsion testing.  

Sample with high amount of carbon and silicon in the steel wires 

(sample B) has a negative influence on delamination as it shows 

the crack at the interface of steel and zinc coating at higher 

drawing strain. 
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