CRITERIA OF ACCEPTANCE FOR CONSTANT RATE OF STRAIN CONSOLIDATION TEST FOR COHESIVE SOIL

LAM CHEE SIANG

UNIVERSITI TEKNOOGI MALAYSIA

To my beloved mother, father and Boon Yaa

ACKNOWLEDGEMENT

In the whole process of preparing this thesis, I would like to express my sincere appreciation to my supervisor Assoc. Prof Dr. Khairul Anuar Kassim for his supervision, advice, guidance, and useful comments. Without his continued support and interest, this thesis would not have been the same as presented here. This research is funded by the Intensification Research of Priority Area (IRPA) Grant Coded 74110 lead by Assoc. Prof Dr. Khairul Anuar Kassim. Thanks also for the assistance of technicians in the Geotechnics Laboratory Faculty of Civil Engineering, Universiti Technologi Malaysia (UTM), Skudai.

Beside that, I would like to say thank you to my parents and my girlfriend for their support and encouragement. Their encouragements provide the energy for me to concentrate on my Master study.

Lastly I would like to say thank you also to those party I did not mention above that had help me direct or indirectly in my research works. Although their contributions are just little and simple work, but I am sure that I will meet a lot of difficulties without their contributions.

ABSTRACT

Constant rate of strain (CRS) consolidation test is a new method of consolidation testing in Malaysia. Although it had been widely used as an alternative for standard consolidation test in other countries such as Sweden and the USA, there is still no standard equipment for it. The selection of the suitable strain rate for the CRS test is still a major hurdle for the geotechnical engineers. The CRS consolidation test has some advantages over the standard consolidation test where the time needed for the test is reduced from two weeks to few hours and the ability to apply high effective pressure at larger sample size. Various guidelines and criteria of acceptance for the CRS consolidation test had been introduced by many researchers. The aim of this research is to establish new criteria of acceptance for the CRS consolidation test. A new developed CRS equipment has been designed and named Rapid Consolidation Equipment (RACE). The equipment was developed using the concept of continuous consolidation test procedure. The criteria of acceptance for the CRS test were based on the normalized strain rate, β introduced by Lee (1981) and the ratio of excess pore pressure to applied pressure, (u_a/σ_v) . It was also established that the maximum β to achieve acceptable data is 0.1. The research showed that the minimum value for the β and u_a/σ_v are 0.005 and 0.01 respectively. Another criterion of acceptance for the CRS test which takes into account the clay fraction (CF) effects was also introduced. The clay fraction is used to modify the normalized strain rate β , into β /CF. Results show that for soil with clay fraction more than 50%, the maximum β / CF is 0.001. The maximum β / CF for soil with CF lower than 50% is 0.008.

ABSTRAK

Ujian pengukuhan berketerikan malar (CRS) merupakan salah satu ujian pengukuhan yang baru di Malaysia. Walaupun ujian pengukuhan ini telah biasa digunakan sebagai ujian pengukuhan utama di luar negara seperti USA dan Sweden, namun masih tiada peralatan yang piawai. Pemilihan kadar terikan yang sesuai untuk ujian pengukuhan berterikan malar (CRS) merupakan salah satu masalah kepada jurutera geoteknik. Ujian CRS mempunyai beberapa kelebihan berbanding dengan ujian oedometer kerana dapat mengurangkan masa ujian pengukuhan daripada dua minggu kepada beberapa jam dan juga boleh dijalankan sehingga tegasan berkesan yang tinggi pada sampel tanah yang lebih besar. Terdapat beberapa kriteria penerimaan dan panduan untuk ujian CRS telah dikemukakan oleh para penyelidik. Tujuan utama bagi penyelidikan ini adalah mencadangkan kriteria penerimaam yang baru untuk ujian pengukuhan berketerikan malar. Satu alat ujikaji CRS yang baru telah direkabentuk dengan menggunakan konsep ujian pengukuhan berterusan yang dikenali sebagai Rapid Consolidation Equipment (RACE). Kriteria penerimaan bagi ujian pengukuhan CRS adalah merupakan kadar keterikan ternormal, β yang diperkenalkan oleh Lee (1981) dan nisbah tekanan air liang lebihan terhadap tekanan yang dikenakan, (u_a/σ_v) . Maksimum β yang memberikan data yang baik daripada ujian pengukuhan berterusan ialah 0.1. Penyelidikan ini menunjukan bahawa nilai minimum bagi kadar keterikan ternormal, β dan nisbah tekanan air liang lebihan dan tekanan yang dikenankan, (u_e/σ_v) adalah 0.005 and 0.01. Satu lagi kriteria penerimaan untuk ujian CRS telah dicadangkan dimana peratus melepasi lingkungan tanah liat (CF) telah diambil kira. Peratus lepasan lingkungan telah digunakan untuk menukarkan kadar keterikan ternormal kepada β / CF. Keputusan menunjukkan bahawa β / CF maksimum bagi tanah dengan peratus tanah liat melebihi 50% adalah 0.001. Tanah dengan peratus tanah liat kurang daripada 50% memberikan nilai β / CF maksimum sebanyak 0.008.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURE	xiv
LIST OF SYMBOLS	xix
LIST OF APPENDICES	xxii

1 **INTRODUCTION** 1 1.1 Introduction 1 1.2 Statement of the Problem 2 1.3 Objectives 4 1.4 Scope of the Study 4 1.5 Significant of Research 5

LI	TERATUI	RATURE REVIEW	
2.1	Conso	lidation Theory	6
	2.1.1	Principle of Consolidation	6

	2.1.2	Spring a	nd Piston Analogy	7
	2.1.3	Consolid	lation of the Soils	8
	2.1.4	Terzaghi	's theory of Consolidation	9
	2.1.5	Coefficie	ent of Rate of Consolidation	12
		2.1.5.1	Square-Root-Time Method	12
		2.1.5.2	Log-Time Method	13
	2.1.6	Coefficie	ents of Compressibility	14
		2.1.6.1	Coefficient of Compressibility (a_v)	14
		2.1.6.2	Coefficient of Volume	
			Compressibility (m_v)	15
		2.1.6.3	Compression Index (c_c)	16
	2.1.7	Permeab	ility	18
2.2	Standa	ard Conve	ntional Oedometer Test	19
2.3	Const	ant Rate of	f Strain Consolidation Test	20
	2.3.1	Smith an	d Wahls procedure (1969)	21
	2.3.2	Wissa m	ethod (1971)	23
	2.3.3	Umehard	a and Zen Method (1980)	26
	2.3.4	Lee meth	ood (1981)	27
2.4	Estim	ation of St	rain Rate	29
	2.4.1	Liquid L	imit	29
	2.4.2	Maximu	m Allowable Ratio of Excess and	
		Applied	Pore Pressure Pressure (u_a/σ_v)	30
	2.4.3	Dimensi	onless Normalized Strain Rate, β	31
2.5	Tabul	ation of C	RS Data	31
2.6	Criter	ia of accep	ptance of constant rate of strain	
	conso	lidation te	st	35

3	RES	EARCH	I METHODOLOGY	37
	3.1	Introc	luction	37
	3.2	Class	ification Tests	37
		3.2.1	Particle Size Distribution	38
		3.2.2	Atterberg Limits	38
		3.2.3	Specific Gravity	38

	3.2.4	Compac	ction Test	39
3.3	Prepar	ration of S	Soil Sample	39
3.4	Desig	n of CRS	Equipment	42
3.5	Settin	g Up for t	the CRS Test and Other	
	Additi	ional App	paratus	44
3.6	Syster	n Calibra	tion of CRS Equipment	49
	3.6.1	Calibrat	tion of the Measurement Instrument	50
		3.6.1.1	Linear Displacement Transducer	
			(LVDT) Calibration	50
		3.6.1.2	Load Cell Calibration	52
		3.6.1.3	Pressure Transducer Calibration	53
	3.6.2	System	Calibration of the Equipment	54
3.7	Satura	tion of th	e CRS Soil Specimen	56
3.8	Strain	Rate Est	imation	57

CO	NTROL	TEST RESULTS AND ANALYSIS	59
4.1	Introdu	ction	59
4.2	Classifi	cation Test	59
	4.2.1	Particle Size Distribution	59
	4.2.2	Atterberg Limits Test	61
	4.2.3	Specific Gravity Test	61
	4.2.4	Compaction Test	62
	4.2.5	Soil Classification	62
4.3	Conve	ntional Oedometer Tests	63
	4.3.1	Void Ratio versus Effective Stress	64
	4.3.2	Coefficient of Consolidation versus Effective	
		Stress	67

CONS	STANT	RATE OF STRAIN CONSOLIDATION	71
TEST	RESU	LT AND ANALYSIS	
5.1	Introd	uction	71
5.2	Void l	Ratio and the Normalized Void Ratio Curve	72
	5.2.1	100 kPa Remoulded Sample	72
	5.2.2	200 kPa Remoulded Sample	78
	5.2.3	300 kPa Remoulded Sample	85
5.3	Coeffi	icient of Consolidation, c_v	92
	5.3.1	100 kPa Remoulded Sample	92
	5.3.2	200 kPa Remoulded Sample	96
	5.3.3	300 kPa Remoulded Sample	101
5.4	Norm	alized strain rate (β)	106
	5.4.1	Air Papan Soil	106
	5.4.2	Gemas Soil	109
	5.4.3	Kaolin	111
	5.4.4	Kluang Soil	112
	5.4.5	Summarize of Normalized Strain Rate, β	
		and Modified Normalized Strain Rate, β / CF	115
	5.4.6	CRS Test Using Normalized Strain Rate On	
		Clay Friction, β / CF	116
5.5	Maxir	num Ratio of Excess Pore Pressure and	118
	Applie	ed Pressure (u_a/σ_v)	
	5.5.1	Air papan Soil	118
	5.5.2	Gemas Soil	120
	5.5.3	Kaolin	122
	5.5.4	KluangSoil	123
	5.5.5	Summary on the Maximum Ratio of	
		Excess Pore Pressure and the Applied	
		Pressure (u_a/σ_v)	125

CON	ICLUSI	ONS AND RECOMMENDATIONS	126
6.1	Concl	usions	126
	6.1.1	Comparison of Oedometer Test and CRS	
		Test Results	127
	6.1.2	Criteria of Acceptance for Constant Rate of	
		Strain Consolidation Test	128
6.2	Recor	nmendations for Future Development	129

REFERENCES	131
APPENDICES	134

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Time Factors for One-Dimensional Consolidation	11
2.2	Some Typical Values of Coefficient of Volume Compressibility	16
2.3	Classification of Soil according to Permeability	18
2.4	Suggested Rates of Strain for CRS Consolidation Test (ASTM D4186-82)	29
2.5	Maximum allowable ratio of excess pore pressure and applied pressure, (u_a/σ_v)	30
3.1	Remoulded Sample Prepared for Conventional Oedometer and CRS Test	41
3.2	Kaolin 100 kPa pre-consolidation Strain Rate Calculation	57
3.3	Maximum and Minimum Range of Strain Rate Estimation for All Specimens	58
4.1	Percentage of the Clay, Silt and Sand for Soil Sample	60
4.2	Liquid Limit, Plastic Limit and Plastic Index for the Soil Sample	61
4.3	Specific Gravity for the Soil Sample	61
4.4	Compaction Test Results	62
4.5	Soil Sample Classification	62

xiii

4.6	Compression Index (c_c) for Kaolin, Gemas, Air Papan and Kluang Soil	67
5.1	Summary of Compression Index for 100 kPa Pre-Consolidation Pressure CRS test	78
5.2	Summary of Compression Index for 200 kPa Pre-Consolidation Pressure CRS test	85
5.3	Summary of Compression Index for 300 kPa Pre-Consolidation Pressure CRS test	91
5.4	Acceptable β Tabulation Range for Air Papan Sample	108
5.5	Normalized Strain Rate, β / CF for Air Papan Sample	108
5.6	Acceptable β Tabulation Range for Gemas Sample	110
5.7	Modified Normalized Strain Rate, β / CF for Gemas Sample	110
5.8	Acceptable β Tabulation Range for Kaolin Sample	112
5.9	Modified Normalized Strain Rate, β / CF for Kaolin Sample	112
5.10	Acceptable β Tabulation Range for Kluang Sample	114
5.11	Modified Normalized Strain Rate, β / CF for Kluang Sample	114
5.12	Maximum and Minimum Modified Normalized Strain Rate, β / CF	115
5.13	Strain Rate Calculation by Modified Normalized Strain Rate	116
5.14	Maximum and Minimum Ratio of u_a/σ_v for Air Papan Sample	120
5.15	Maximum and Minimum Ratio of u_a/σ_v for Gemas Sample	121
5.16	Maximum and Minimum Ratio of u_a/σ_v for Kaolin Sample	123
5.17	Maximum and Minimum Ratio of u_a/σ_v for Kluang Sample	124

LIST OF FIGURE

FIGURE NO	. TITLE	PAGE
1.1	Conventional Oedometer	3
1.2	Study Area of the Research	5
2.1	Spring and Piston Analogy Illustrating the Principle of Consolidation	8
2.2	Analysis of Square-Root-Time/Settlement Curve	12
2.3	Analysis of Log -Time/Settlement Curve	13
2.4	Void Ratio versus Pressure Curve (e- σ ')	15
2.5	Void Ratio versus Pressure Curve (e- $\log \sigma$ ')	17
2.6	Example of Loading and Unloading Stage for Standard Oedometer Test	19
2.7	Representation of Loading Patterns for Constant Rate of Strain Consolidation Test	20
3.1	Schematic Diagram of Remoulded Sampler Preparation Equipment	39
3.2	Photo of Remoulded Sampler	40
3.3	Step Loading Procedures for Remoulded Sampler Preparation	n 42
3.4	Schematic Diagram of the Constant Rate of Strain Consolidation Test Equipment (Rapid Consolidation Cell Equipment, RACE)	43

FIGURE NO.

TITLE

PAGE

3.5	Photo of the Constant Rate of Strain Consolidation Test Equipment (Rapid Consolidation Cell Equipment, RACE)	44
3.6	Mechanical Loading Frame for the CRS test	45
3.7	50 mm Linear Variable Displacement Transducer (LVDT)	46
3.8	1500 kPa Pressure Transducer	46
3.9	907 kilogram S- Type Load Cell	47
3.10	MPX 3000 Data Acquisition Unit (ADU)	48
3.11	Main Page of the Winhost Programme for Collecting Data System	48
3.12	Schematic Arrangement of Control System for Constant Rate of Strain Consolidation Tests	49
3.13	Channel Configuration for the Compression and Pressure Calibrated with ADU and Winhost Programme	51
3.14	Channel Configuration Scaling for the Compression and Pressure	51
3.15	Linear Variable Displacement Transducer (LVDT) Calibration Process	52
3.16	Schematic Arrangement for the Load Cell Calibration on Loading Frame	53
3.17	Displacement Calibration Curve for the CRS Testing System	54
3.18	Loading Pressure Calibration Curve for the CRS Testing System	55
4.1	Particle Size Curve for All Soil Sample	60
4.2	Plasticity Chart for Soil Classification	63
4.3	Void Ratio versus Effective Pressure Curve for Kaolin Soil	65
4.4	Void Ratio versus Effective Pressure Curve for Gemas Soil	65
4.5	Void Ratio versus Effective Stress Curve for Air Papan Soil	66
4.6	Void Ratio versus Effective Pressure Curve for Kluang Soil	66

FIGURE NO.

TITLE

PAGE

4.7	Coefficient of Consolidation (c_v) for Kaolin Remoulded Soil	69
4.8	Coefficient of Consolidation (c_v) for Gemas Remoulded Soil	69
4.9	Coefficient of Consolidation (c_v) for Air Papan Remoulded Soil	70
4.10	Coefficient of Consolidation (c_v) for Kluang Remoulded Soil	70
5.1	Void Ratio Comparison Curve for Air Papan 100 kPa Sample	73
5.2	<i>e</i> / <i>e</i> ^{<i>i</i>} Comparison Curve for Air Papan 100 kPa Sample	73
5.3	Void Ratio Comparison Curve for Gemas 100 kPa Sample	74
5.4	e/e_i Comparison Curve for Gemas 100 kPa Sample	75
5.5	Void Ratio Comparison Curve for Kaolin 100 kPa Sample	75
5.6	e/e_i Comparison Curve for Kaolin 100 kPa Sample	76
5.7	Void Ratio Comparison Curve for Kluang 100 kPa Sample	77
5.8	e/e_i Comparison Curve for Kluang 100 kPa Sample	77
5.9	Void Ratio Comparison Curve for Air Papan 200 kPa Sample	79
5.10	e/e_i Comparison Curve for Air Papan 200 kPa Sample	80
5.11	Void Ratio Comparison Curve for Gemas 200 kPa Sample	81
5.12	e/e_i Comparison Curve for Gemas 200 kPa Sample	81
5.13	Void Ratio Comparison Curve for Kaolin 200 kPa Sample	82
5.14	e/e_i Comparison Curve for Kaolin 200 kPa Sample	83
5.15	Void Ratio Comparison Curve for Kluang 200 kPa Sample	83
5.16	e/e_i Comparison Curve for Kluang 200 kPa Sample	84
5.17	Void Ratio Comparison Curve for Air Papan 300 kPa Sample	86
5.18	e/e_i Comparison Curve for Air Papan 300 kPa Sample	86
5.19	Void Ratio Comparison Curve for Gemas 300 kPa Sample	87
5.20	e/e_i Comparison Curve for Gemas 300 kPa Sample	88

FIGURE NO.

TITLE

PAGE

5.21	Void Ratio Comparison Curve for Kaolin 300 kPa Sample	89
5.22	e/e_i Comparison Curve for Kaolin 300 kPa Sample	89
5.23	Void Ratio Comparison Curve for Kluang 300 kPa Sample	90
5.24	e/e_i Comparison Curve for Kluang 300 kPa Sample	91
5.25	c_v Comparison Curve for Air Papan 100 kPa Sample	93
5.26	Excess Pore Pressure for 0.0125 mm/min CRS test	93
5.27	c_v Comparison curve for Gemas 100 kPa Sample	94
5.28	Low Excess Pore Pressure for 0.03 mm/min CRS test	95
5.29	c_v Comparison Curve for Kaolin 100 kPa Sample	95
5.30	c_v Comparison Curve for Kluang 100 kPa Sample	96
5.31	c_v Comparison curve for Air Papan 200 kPa Sample	97
5.32	Excess Pore Pressure for 0.02125 and 0.0325 mm/min CRS Test	97
5.33	c_v Comparison Curve for Gemas 200 kPa Sample	98
5.34	c_v Comparison Curve for Kaolin 200 kPa Sample	99
5.35	Excess Pore Pressure for 0.094 mm/min CRS test.	99
5.36	c _v Comparison Curve for Kluang 200 kPa Sample	100
5.37	Excess Pore Pressure for 0.0216 and 0.01425 mm/min CRS Test	100
5.38	c_v Comparison Curve for Air Papan 300 kPa Sample	101
5.39	Excess Pore Pressure for 0.0325 and 0.015 mm/min CRS Test	102
5.40	c_v Comparison Curve for Gemas 300 kPa Sample	102
5.41	c_v Comparison Curve for Kaolin 300 kPa Sample	103
5.42	Excess Pore Pressure for 0.05 and 0.1 mm/min CRS test.	104

FIGURE NO	. TITLE	PAGE
5.43	c_{ν} Comparison Curve for Kluang 300 kPa Sample	105
5.44	Excess Pore Pressure for 0.0185 mm/min CRS test	105
5.45	Normalized strain rate, β tabulation for Air Papan Sample	107
5.46	Normalized strain rate, β tabulation for Gemas Sample	109
5.47	Normalized strain rate, β tabulation for Kaolin Sample	111
5.48	Normalized strain rate, β tabulation for Kluang Sample	113
5.49	Void ratio versus effective stress for UTM laterit soil	117
5.50	e/ei comparison graph for UTM laterit soil	117
5.51	c_v comparison curve for UTM laterit soil	118
5.52	Ratio of excess pore pressure and applied pressure (u_a/σ_v) for Air Papan Sample	119
5.53	Ratio of excess pore pressure and applied pressure (u_a/σ_v) for Gemas Sample	121
5.54	Ratio of excess pore pressure and applied pressure (u_a/σ_v) for Kaolin Sample	122
5.55	Ratio of excess pore pressure and applied pressure (u_a/σ_v) for Kluang Sample	124

LIST OF SYMBOLS

ADU	-	Data acquisition unit
a_v	-	coefficient of compressibility
C _c	-	compression index
CF	-	clay fraction
СН	-	clay of high plasticity soil
CI	-	clay of intermediate plasticity
CRS	-	constant rate of strain consolidation test
C_{V}	-	coefficient of consolidation
C_{vd}	-	drained coefficient of consolidation
$C_{V ud}$	-	undrained coefficient of consolidation
D	-	constrained modulus
e	-	void ratio
e_f	-	final void ratio
e_i	-	initial void ratio
eo	-	void ratio at start of test
e ₁	-	void ratio at starting effective stress
e ₂	-	void ratio at ending effective stress
ē	-	average void ratio
Gs	-	specific gravity

ho	-	height at starting test
Н	-	length of the maximum drainage path
H_{i}	-	initial height
k	-	coefficient of permeability
LL	-	liquid limit
LVDT	-	linear displacement transducer
М	-	tangent modulus
MI	-	silt of intermediate plasticity
m_f	-	final moisture content
mo	-	moisture content
m_{ν}	-	coefficient of volume compressibility
п	-	porosity
р	-	vertical load
p_b	-	back pressure
r	-	strain rate
RACE	-	Rapid Consolidation Equipment
t	-	time
T_{v}	-	time factor
t ₉₀	-	time corresponding to 90% of primary consolidation
<i>u</i> _a	-	excess pore pressure
u_b	-	initial back pressure
u_u	-	pore pressure
3	-	strain
Eave	-	average strain
σ	-	total stress

σ'	-	effective stress
σ'0	-	effective stress for starting range
σ'1	-	effective stress for ending range
σ_v	-	vertical applied pressure
σ'_v	-	vertical effective stress
σ'_{ave}	-	average effective stress
σ_v '(bottom)	-	bottom effective stress
$\sigma_{v'(top)}$	-	top effective stress
β	-	Normalized strain rate
eta_d	-	normalized strain rate at drained face
β_u	-	normalized strain rate at undrained face
β / CF	-	Normalized strain rate on clay friction
Δe	-	changes in void ratio
ΔH	-	Displacement
ρd	-	dry density
$ ho_w$	-	water density
бе	-	change in voids ratio
δp	-	increment pressure

LIST OF APPENDICES

APPENDIX	TITLE	PAGE

А	Measurement Instrument Calibration Report	134
В	Average c_v Value Calculation for Strain Rate Estimation	141
С	CRS Strain Rate Estimation	145
D	Liquid Limit and Plastic Limit	151
Е	Particle Size Distribution	159
F	Specific Gravity	167
G	Compaction Test	169
Н	Example Standard Oedometer Test for Kaolin Soil	177
Ι	Example Standard Oedometer Test for Gemas Soil	179
J	Example Standard Oedometer Test for Air Papan Soil	181
К	Example Standard Oedometer Test for Kluang Soil	183
L	Example CRS test results and analysis	185

CHAPTER 1

INTRODUCTION

1.1 Introduction

Since Terzaghi formulated his consolidation theory in 1923, many extensions had been made continuously to solve many of the unrealistic assumptions made in original theory. Today, consolidation theory had reached an advanced development that solutions are available for most practical problems. Some researcher refines Terzaghi's theory by solving a more generalized form of the differential equation of consolidation (Sheahan and Watters, 1997). Others established new governing consolidation equations based on realistic stress-strain-time models to yield compression-time and pore pressure-time relationships (Znidarcic and Schiffman, 1981). Numerous techniques to measure the compressibility of the soil were introduced after the conventional oedometer test is standardized. These new techniques include constant rate of strain consolidation test, constant rate of load consolidation test, constant pore pressure gradient, constant pressure ratio, restricted flow consolidation and back pressure control.

Constant rate of strain consolidation test is one of the new developments suggested by many researchers to suit the market nowadays. Constant rate of strain consolidation test can reduce the time needed for consolidation test using standard oedometer test from almost two weeks time to few hours. The constant rate of strain consolidation test also has been used as the standard consolidation test in Sweden, Norway, The United States and France.

The Criteria acceptance for the constant rate of strain consolidation test is the objective of the research because the CRS is not a standard consolidation test in Malaysia. The results of the constant rate of strain consolidation test (CRS) depends on the strain rate used in CRS test, so it is important to compare the results for the different strain rate of CRS test with the conventional oedometer test. The criteria of acceptance for the CRS test were developed for future improvements on consolidation test.

Previous researcher suggested few criteria to accept the CRS test result upon comparing the CRS test results with the conventional oedometer. These criteria of the acceptance for the CRS test were based on the comparison of void ratio curve (e against effective stress), coefficient of consolidation (c_v), normalized strain rate (β) and ratio of excess pore pressure to applied total stress (u/σ_v).

1.2 Statement of the Problem

Since 1950's, the standard compressibility test has been used to measure the soil compression characteristic is the one-dimensional Compression Test (Oedometer Test) based on Terzaghi theory. This one-dimensional oedometer test is one of the simplest forms of soil loading test which the soil sample is placed in a stiff metal cylinder so that radial strains equal to zero. Porous discs at the top and bottom to provide drainage of excess pore water (Figure 1.1).

Figure 1.1: Conventional Oedometer.

Conventional oedometer test based on Terzaghi's theory is a step loading tests which took around two weeks for one complete test with loading and unloading stages. The test is also limited to low to medium loading for a sample size of 75 mm diameter. Beside that, pore pressure at the bottom of the soil sample is not usually measured.

Many researchers have introduced other methods to measure the compressibility characteristics of the soil. One of the new developments is the CRS test. Through the CRS test, the testing time for a completed test can be reduced from around two weeks to few hours. The compression test can be conducted until a very high pressure.

The main problem of the CRS test is to determine the proper strain rate used in the test. The selection of the test rate is still a major hurdle in CRS test although many researchers had done various studies on this. Many recommendations had been offered by researchers (Lee, Choa, Lee and Quek, 1993) for the selection of test rate but these recommendations are empirical and vary with clay type.

This research is aimed at finding a criterion on the strain rate used in CRS test for various types of clay obtained in Johor. Modifications on the available strain rate selection method for CRS test is recommended.

1.3 Objectives

The following objectives are set forth to achieve the aim of the research:

- i. To develop consolidation equipment that could be used to run rapid consolidation using constant rate of strain consolidation method.
- ii. To compare the result of the compression characteristic of the soil, coefficient of consolidation (c_v) and compression index (c_c) obtained from CRS test to the results of conventional oedometer test.
- ii. To establish the new criteria of acceptance for Constant Rate of Strain consolidation test.

1.4 Scope of the Study

The soil samples for the study are remoulded from disturbed samples obtained from different sites in Malaysia. The interpretation of the research of the study is limited to:

- Disturbed samples are collected from Kluang, Gemas and Air Papan, Johor (Figure 1.2). Kaolin soil was used as the control sample for the study.
- ii. The specimens used for the study is remoulded sample. In the case all the disturbed soil samples were dried and grinded into powder and remoulded from slurry under 100, 200 and 300 kPa pre-consolidation pressure using self made remoulded sampler equipment.
- iii Conventional oedometer test and the Constant Rate of Strain consolidation test will be conducted to a maximum of 8.5 kN and 1100 kPa vertical pressure respectively.

Figure 1.2: Study Area of the Research

1.5 Significant of Research

The main purpose of this study is to give recommendations on the testing rate selection which is still a major hurdle in CRS test as well as to establish new criteria of acceptance. Comparisons on the compression characteristics of soil based on oedometer and CRS test were made to establish the criteria of acceptance. With the recommended new criteria on the strain rate selection, geotechnical engineers can easily run the consolidation test for all cohesive soil in a short time. It can reduce the time for construction to wait the results on the soil compressibility characteristics. Beside that, CRS test can achieve higher effective pressure which is the disadvantage of the standard oedometer test. Geotechnical engineers can use this test as the alternative of the on site load test.