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The vector evaluated particle swarm optimisation (VEPSO) algorithm was previously improved by incorporating nondominated
solutions for solving multiobjective optimisation problems. However, the obtained solutions did not converge close to the Pareto
front and also did not distribute evenly over the Pareto front. Therefore, in this study, the concept of multiple nondominated leaders
is incorporated to further improve the VEPSO algorithm. Hence, multiple nondominated solutions that are best at a respective
objective function are used to guide particles in finding optimal solutions. The improved VEPSO is measured by the number of
nondominated solutions found, generational distance, spread, and hypervolume. The results from the conducted experiments show

that the proposed VEPSO significantly improved the existing VEPSO algorithms.

1. Introduction

Multiobjective optimisation (MOO) problems involve the
simultaneous minimisation/maximisation of multiple objec-
tive functions, which usually conflict with each other. Due
to the conflict between objective functions, a single solu-
tion could not satisfy all objective functions. Hence, MOO
problem usually results in a set of tradeoffs or nondominated
solutions. The vector evaluated particle swarm optimisation

(VEPSO) [1] algorithm has been widely used to solve MOO
problems [2-7]. As an example, VEPSO algorithm has been
implemented in solving DNA sequence problem by min-
imising four objective functions, namely, H,,re» Similarity,
continuity, and hairpin, and two constraints, namely, melting
temperature and GC_,or [7]. Compared to DNA sequence
design using binary particle swarm optimization which
produces single set of DNA sequences [8], VEPSO is able to
generate several sets of good DNA sequences which fulfil the
four objective functions and two constraints.

The VEPSO algorithm is adapted from the vector eval-
uated genetic algorithm (VEGA) [9], in which each swarm

optimises one objective function by using the best solution
from another swarm as a guidance. However, the VEPSO suf-
fers from performance drawback. Therefore, it is improved by
redefining the selection of the guidance from nondominated
solution, known as VEPSOnds [10]. Although VEPSOnds
has shown better performance than conventional VEPSO,
the VEPSOnds suffers from weak performance in terms of
lacking solution distributions and convergence to the true
Pareto front.

Other than VEPSOnds, there are various MOO algo-
rithms which used nondominated solution to guide parti-
cle in finding the optimum solutions for MOO problem.
For example, in Multiobjective particle swarm optimisation
(MOPSO) algorithm [11, 12], all nondominated solutions
are separated into groups according to their location in the
objective space. A guiding solution for each particle is then
randomly selected from the group containing the fewest
solutions. Besides, in nondominated sorting PSO (NSPSO)
algorithm [13], which uses the main mechanism of the
nondominated sorting fenetic algorithm-II [14], each particle
is guided by a nondominated solution that is randomly



selected using the niche count and the nearest neighbour
density estimator. A nondominated solution is selected based
on binary tournament selection for the purpose of guiding
the other particles in the optimised MOPSO (OMOPSO)
algorithm [15]. Additionally, Abido [16] introduces the use of
two nondominated solutions, which are called the local set
and the global set. The guide is selected based on the nearest
distance in objective space between each particle and each
member of the nondominated solution of both sets.

Noticeably, most particle swarm optimisation- (PSO-)
based MOO algorithms, including conventional VEPSO and
VEPSOnds, only use one solution as the particle guide.
In particular, in VEPSOnds, particles from a swarm will
be guided by the nondominated solution which has the
best fitness at one objective function. Thus, the particles
may guide the searching with limited information about the
other objective functions during the optimisation process.
Therefore, VEPSOnds can be further improved by using more
than one nondominated solution as particle guide. In this
context, this improved VEPSO algorithm will use the best
solution from all swarms as guidance during the optimisation
process.

The next section of this paper explains the particle
swarm optimisation (PSO), the conventional VEPSO, VEP-
SOnds algorithm, and the proposed VEPSO algorithms. The
following section presents the experimental work and the
description of the benchmark test problems and performance
measures and the discussion of the results. The final section
concludes the proposed technique and discusses few possible
future works.

2. Multiobjective Optimization
For explanation, consider a minimization problem

minimize fitness function,

FR) ={f(®.,i=12,...,M} "
g;(®)<0, j=1,2,...,p

bject to =
subject to {hk(f)=0) k=1,2,...,q)

where X = {x;,x,,...,x,} is the decision variable vector
which represents the possible solution, M is the number of
objectives, and f; € R" — R is the objective function.
{g;pm} € R" — R are the inequality and equality con-
straint function, respectively. The Pareto optimality concept
is defined as follows.

— _)b —
Definition 1. Given {F*,F’} € R™ as two vectors, F*

— — —
dominates F* (denote as F* < F’) if and only if f* < f7

1
fori =1,2,...,mand f{ < fib for at least once. Dominance

- _)b - —
relation of F* < F” and F* < F° can be illustrated as the
labelled circles in Figure 1 for a two-objective problem.

-
Definition 2. A decision variable vector x* is a nondominated
—

-
solution when there is no other solution x’ such that F(x%) <
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FIGURE 1: Dominance relation for two-objective problem.

N
F(x?). Nondominated solution is also known as Pareto
optimal solution.

Definition 3. The set of nondominated solutions of a MOO
problem is known as Pareto optimal set, P.

Definition 4. 'The set of objective vectors with respect to & is
known as the Pareto front, PF = (F(X) e R™ | % € P} PF
for a two-objective problem is illustrated as the black circles
in Figure 1.

The motivation of MOO is to find as many nondominated
solutions as possible according to the objective functions
and constraints. However, it is possible to have different
solutions which map to the same fitness value in objective
space. Therefore, it will be more challenging to find more
nondominated solutions.

3. Particle Swarm Optimisation

3.1. Original Particle Swarm Optimisation Algorithm. Particle
swarm optimisation (PSO) is a population-based stochastic
optimisation algorithm introduced by Kennedy and Eberhart
[17]. This algorithm finds an optimal solution using a method
inspired by the social behaviour of birds flocking and fish
schooling. In the PSO algorithm, an individual is known as a
particle, and it holds the possible solution to the optimisation
problem, given its position. A particle explores the search
space, looking for a better solution with respect to the
objective functions defined by the optimisation problem. The
search process requires the particle to compare its current
position with the best positions that it and the whole swarm
have found, so that all particles collaborate with each other.
The PSO algorithm is shown in Algorithm 1. Consider a
minimisation problem in which a swarm of I particles are
flying around in an N-dimensional search space, each with
a position p; (i=12....,n=1,2,...,N) representing
the possible solution. At initialization stage, all particles
are randomly positioned in the search space with random
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begin

i++;
end
end

Initialise position & velocity;

Evaluate objective;

Initialise pBest;

Initialise gBest (2);

while i <i_ .
Update velocity (3);
Update position (4);
Evaluate objective;
Update pBest;
Update gBest (2);

do

ALGorITHM 1: The PSO algorithm.

N
velocity, v/ (). Subsequently, the objective fitness F'(t) of each
particle is evaluated based on the objective function for p'(t).
After that, the particle’s best position, pBest'(t), is set to
its initial position. Additionally, the swarm’s best position,
gBest(t), is the best pBesti(t) among all particles, as in (2),
where S is the swarm of particles

gBest = {pBesti eS| f (pBesti) = min f (VpBesti € S)}
)

In the search process, the algorithm will iterate until
the maximum number of iterations is reached. Within an
iteration, the velocity and position of each particle are
updated using (3) and (4), respectively,

v; t+1)=yx [wvil ) +¢qry (pBest; - p; (t))
‘ 3)
+ o1,y (gBestn - P, (t))] ,

pLE+1)=pl(t)+ v (t+1), (4)

where y is the constriction factor and w is the inertia weight.
The r; and r, are both random numbers ranging from zero
to one. The ¢, and ¢, are the cognitive and social constants,
respectively, which control the attraction of the pBest'(t)
and gBest(t). Then, the ﬁi(t) for each particle is evaluated
again. After updating the fitness, the new position of particle
i is compared with pBest'(t), and the more optimal of the
two is saved as pBesti(t). Next, the gBest(t) is updated as
well with the best among all pBest'(t), as in (2). When the
search process ended, the gBest(t) will then represent the best
solution found for the problem by this algorithm.

3.2. Vector Evaluated Particle Swarm Optimisation Algorithm.
The VEPSO algorithm, introduced by Parsopoéulos and Vra-
hatis [1], uses the multiswarms concept from the VEGA
algorithm [9]. Each swarm optimises one objective function
using the gBest(t) from another swarm. In the VEPSO
algorithm, the pBest'(t) which has the best fitness with

respect to the mth objective is the gBest(t) for the mth swarm,
asin (5)

gBest™ = {pBesti €S| fon (pBesti)
(5)
= min f,, (VpBesti € Sm)}.

The flow of the VEPSO algorithm is given as in
Algorithm 2. For problem with M objective functions,
VEPSO algorithm is similar to that of the PSO but some
processes are repeated for all M-swarm and nondominated
solutions are recorded in an archive. However, the velocity
update is reformulated and it is given in (6). Note that the
particles in the mth swarm will fly using gBest*(t) where k
is defined by (7). The sharing of gBest(t) between swarms is
illustrated in Figure 2:

vii(t+1) =y [wv;"i () +qrn (pBest;”i - p;”i (t))

k mi (6)
61, (gBestn -p (t))]
M m=1
k= ’ 7
<lm —1, otherwise. @

The nondominated solutions are recorded in an archive
after the objective functions are evaluated. In the recording

N
process, the fitness F'(t) of each particle is compared to all
others, before it is compared to the nondominated solutions
in the archive, using the Pareto optimality criterion, so that the
archive only contains nondominated solutions. At the end of
the computation, all nondominated solutions are the possible
solutions to the problem.

3.3. The Improved VEPSO Algorithm by Incorporating Non-
dominated Solutions. In the search process of conventional
VEPSO, as in Figure 3(a), particles from a swarm are opti-
mised using the gBest™(¢) from another swarm that has
the best fitness at the objective function optimised by the
other swarm. However, based on the velocity update of
conventional VEPSO in (5), the gBest”(f) is not updated
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begin
Initialise archive;
do

while i <i_

Update archive;

i++;
end
end

Initilise position & velocity for all M-swarm;
Evaluate objective for all M-swarm;

Initialise pBest for all M-swarm;
Initialise gBest (5) for all M-swarm;

Update velocity (6) & (7) for all M-swarm;
Update position (4) for all M-swarm;
Evaluate objective for all M-swarm;

Update pBest for all M-swarm;
Update gBest (5) for all M-swarm;

AvrGoriTHM 2: The VEPSO algorithm.

FIGURE 2: The best position found by the swarms, shared between
all swarms.

unless there is a pBestmi(t) that has better fitness than that
at the m-objective. Consequently, in a two-objective MOO
problem, the gBest'(t) of the first swarm is not updated
when particle in the first swarm has found a solution with
equal fitness at the first objective and better fitness at the
second objective. Thus, particles from the second swarm will
be guided toward the gBest'(t).

Due to this limitation, Lim et al. [10] have introduced an
improved VEPSO algorithm by incorporating nondominated
solutions (VEPSOnds). In VEPSOnds, as specified by (8), the
gBest™(¢) is still the solution with best fitness at m-objective
function but is selected from the set of nondominated
solutions and not from all pBest™ (¢) of the m-swarm

gBest” ={X € 2| f,,(X) =min f,, (VX € )}, (8)

where X is a nondominated solution and & is the set of
nondominated solutions in the archive.

This improvement is illustrated in Figure 3(b) where
the gBest™(¢) is always the best solution with respect to
m-objective function because the other objective functions
are considered as well. Hence, particles from the second
swarm can converge faster towards the gBest'(t), which
is a nondominated solution. As a result, better quality of
Pareto front is obtained. From an algorithm perspective, the
VEPSOnds is similar to the conventional VEPSO except that
(5) in Algorithm 2 is replaced with (8).

3.4. The Improved VEPSO Using Multiple nondominated
Leader. Based on the results of VEPSOnds [10], this

algorithm suffers weak performance in obtaining solutions
that has a weak diversity performance where the solution
distributions along the Pareto front are not well distributed.
Besides, in comparison to other state-of-the-art MOO algo-
rithm, the VEPSOnds also has a problem in convergence
where the obtained solution is far distant from the Pareto
front. This weak performance could possibly be caused by the
fact that particles in each swarm are guided by one gBest™(t)
only so the obtained solutions do not well diverse to the other
objective functions.

Thus, the use of nondominated solutions to enhance the
VEPSO algorithm can be further improved by the use of
multileader concept in this work. According to (6), which is
the velocity equation of the VEPSO, the particles of a swarm
are guided by its pBest(f) and another swarm’s gBest(t).
For example, as shown in Figure 4(a), the particles from the
second swarm optimise the second objective function using
gBest'(t) only, which may not be the solution that has the
best fitness with respect to the second objective function.
Thus, this original mechanism of VEPSO may limit the
convergence rate of the algorithm. Therefore, an improved
VEPSO algorithm is proposed by including gBest*(t) as
additional guidance to optimise both objective functions, as
shown in Figure 4(b).

Hence, the general velocity equation of this improved
VEPSO is formulated as in (9)

V1) = x |V (1) + or (pBest;"i -p (t))

M

+ZC§1’§ (gBestZ - p;"i (t)) ,
gq=1

where for each g, ¢!, and ] are independent constant
and random values, respectively. In addition, from (9), as
compared to the improved VEPSO at previous section, the
particles will search toward the nondominated solutions
which located at different end of the Pareto front. Therefore,
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FIGURE 3: (a) Particles guided by the best solution from the other swarm (b) Particles guided by a nondominated solution with respect to

another swarm.
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FIGURE 4: (a) A particle is guided based on gBest'(t). (b) A particle is guided based on gBest' () and gBest*(t).

the diversity performance of the algorithm is expected to be
better as the search area is wider, rather than a single point.
Because the improved VEPSO algorithm uses multiple
nondominated solutions as particle guides, or leaders, this
algorithm is called VEPSO using multiple nondominated
leaders (VEPSOml). Also, a polynomial mutation mecha-
nism from NSGA-II [14] is used to modify particle positions

at some probability. By mutating the position of some
particles out of the locally optimal solution, this mechanism
broadens the search for a globally optimal solution. In this
study, the position of one out of every fifteen particles is
mutated in the algorithm. Therefore, the complete VEPSO
algorithm using multiple nondominated leaders is shown in
Algorithm 3.
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begin

Initialise archive;

while i <i_ . do

i++;
end
end

Initialise position & velocity for all M-swarm;
Evaluate objective for all M-swarm;

Initialise pBest for all M-swarm;
Initialise gBest (8) for all M-swarm;

Update velocity (9) for all M-swarm;
Update position (4) for all M-swarm;
Mutate position for all M-swarm;
Evaluate objective for all M-swarm;
Update archive;

Update pBest for all M-swarm;
Update gBest (8) for all M-swarm;

ArLGorITHM 3: The VEPSO algorithm using multinondominated leaders.

4. Experiment

4.1. Performance Measure. MOOQ algorithms face difficulty in
converging to and distributing the nondominated solutions
over the true Pareto front, %,. Hence, the algorithm per-
formance is measured by the quality of the obtained Pareto
front, PF,. Several performance measures are used for
comparison to highlight any improvement in the proposed
algorithm.

The number of solutions (NS) measured will calculate
the total number of nondominated solutions found by an
algorithm. The best algorithm, by this measure, gives the
most nondominated solutions. A more advanced measure
uses the generalized distance (GD) [18], which is a popular
measure of convergence [14]. This performance measure first
evaluates the average distance between the true Pareto front
and the one obtained by the algorithm. Equation (10) is
used to compute the average distance, with a smaller value
corresponding to a better performance. Then, the minimum
distance of a nondominated solution from the true Pareto
front is calculated using (11)

- 1M
(leg’d’oll dg/l)

GD = 247! (10)
|2F,|
M 2
d,= min (27 -2Fr ). @)
R EYE A i o 1 g

In addition, SP [14] is a commonly used measure of the
diversity performance, or the distribution of nondominated
solutions [14] is used. Equations (12), (13), and (14) evaluate
the diversity performance, as measured by SP. The d; and d;
are the Euclidean distances between the boundary solution
and the nondominated solutions returned by the algorithm
and the true Pareto front, respectively. The Euclidean distance
between two solutions can be calculated using (13). Thus, SP
actually measures the average distance of one solution and
of the next solution to all nondominated solutions returned

by the algorithm as well as two boundary solutions in the
true Pareto front. Hence, it is desirable that the Pareto front
returned by the algorithm produces a small SP:

19F,ol-1 3
dp+dp+ 2,77 d, - d| )
dp+di+d (|97, -1)

Spread =

d, = \/ (73, - 271.,\) + (972 - 272, ), 1)

og+1
19F,1-1
7= M (14)
|25,/ -1

Additionally, the hypervolume (HV) [19] measures the
area (in a two-objective problem) or the volume between
a reference point, R and the Pareto front with respect to
the nondominated solutions obtained by the algorithm, as
illustrated in Figure 5. Thus, it is desirable that the Pareto
front returned by the algorithm produces a large HV.

4.2. Test Problems. Because different features in MOO prob-
lems are responsible for decreasing the likelihood of obtain-
ing Pareto front with good convergence and diversity, the
standard test functions with well-defined true Pareto fronts
are important for testing optimisation algorithms. Five test
functions from Zitzler et al. [20] (ZDT) are used here for
this reason. The ZDT test problems have two objectives and
are formulated with one feature in each problem. ZDT5
is not used because it is binary coded, whereas this work
focuses on real-value problems. During testing, the GD, SP,
and HV measure require the true Pareto front for the ZDT
test problems, the standard database generated by jMetal
(http://jmetal.sourceforge.net/problems.html) is used for this
purpose. Additionally, all test problems used here are set up
as recommended by [20].

4.3. Evaluation of VEPSO Algorithms. The performance
comparison between conventional VEPSO, VEPSOnds, and
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FIGURE 5: Hypervolume measure with area covered by nondominated solutions and reference point.

TaBLE 1: Algorithm parameters.

Value
25000 (based on paper [14])

Parameter

Function evaluation

(i) Number of swarm 2

(ii) Particle for each swarm 50

(iii) Iterations for each run 250

¢ and ¢, Random [L.5, 2.5]

w Linearly degrade from 1.0 to 0.4

VEPSOml is conducted without the use of polynomial
mutation as to clarify that the polynomial mutation is not
the sole reason for any performance improvement. Thus,
this experiment compares the conventional VEPSO and the
VEPSOnds without mutation against two different variations
of VEPSOml: VEPSOmlI is the VEPSOmI without mutation
and VEPSOmI2 is the VEPSOml with mutation, respectively.

All improved VEPSO algorithms are compared to the
conventional VEPSO algorithm. Hence, similar parameters
are used for all experimented algorithms which are listed in
Table 1. In addition, the archive size is set to 100 solutions
and is controlled by removing the nondominated solutions
with the smallest crowding distance [14]. Each test problem is
simulated for 100 runs on each algorithm to obtain statistical
results for a fair comparison because the convergence and
diversity performance varies in each run.

Table 2 lists the performance of each algorithm on the
ZDTI test problem. In the NS measure, the number of non-
dominated solutions significantly increases in all improved
algorithms. Under the GD measure, VEPSOnds performs
approximately 10 times better than conventional VEPSO.
However, under the same measure, VEPSOmlI shows a more

dramatic improvement, performing approximately 100 times
better than VEPSO, as the concept of multiple nondominated
leaders shows its benefit in finding more accurate solutions.
Additionally, when the polynomial mutation is included, as
in VEPSOmI2, the GD performance improved much better
at about 600% as compared to the conventional VEPSO.
Under the SP measure, VEPSOnds also gives a significant
improvement in performance. Meanwhile, the VEPSOmll
and VEPSOmI2 show significant improvement in diversity
performance as compared to the VEPSOnds. This shows the
significance of using more than one nondominated solution
which diversify the search toward the nondominated solu-
tions at different end. The above mentioned improvements
are supported by the higher HV measures when compared
to the conventional VEPSO, which indicates that they return
better Pareto fronts.

Figure 6 shows plots of the nondominated solutions with
the best GD measure returned by each algorithm tested on
ZDT1. From the first plot, it is clear that the nondominated
solutions obtained by VEPSO are far away from the true
Pareto front, which explains the poor performance of this
algorithm for this test problem. In addition, the nondomi-
nated solutions are distributed unevenly, and so VEPSO has
a larger SP value. Meanwhile for all the improved VEPSO
algorithms, their nondominated solutions fall very close
to the true Pareto front. However, VEPSOnds produces a
distribution of nondominated solutions that contain empty
spaces along the true Pareto front, which results in higher SP
value as compared to the other improved VEPSO algorithms.

Table 3 lists the performance of the algorithms on the
ZDT?2 test problem. The average number of nondominated
solutions found by VEPSOndsl slightly improves over the
number found by VEPSO, but VEPSOnds2, VEPSOml],
and VEPSOmI2 greatly improve over VEPSO by this same
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FIGURE 6: Plot of nondominated solutions returned by each algorithm for the ZDT1 test problem.

measure. Similarly, by the GD measure, VEPSOndsl shows
a small improvement, whereas VEPSOnds2 and VEPSOmll
show a larger improvement over the performance of VEPSO.
In the same measure, VEPSOmI2 shows a more significant
improvement over the VEPSO and all other improved algo-
rithms. Additionally, by the SP measure, VEPSOndsl shows

negligible improvement, whereas VEPSOnds2 shows a signif-
icant improvement over the performance of VEPSO. Besides,
with the use of multileader, VEPSOml shows much better
diversity performance than both the VEPSOnds. Finally,
by the HV measure, VEPSO was unable to produce any
hypervolume because its nondominated solutions are worse
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FIGURE 7: Plot of nondominated solutions returned by each algorithm for the ZDT?2 test problem.

than the reference point, R. On the other hand, all improved
algorithms are able to create a hypervolume, especially the
VEPSOmI2 which produce the largest hypervolume.

Figure 7 displays the nondominated solutions, plotted for
each the best GD measure obtained for each algorithm using

the ZDT2 test problem. The first plot shows that VEPSO
returns nondominated solutions that are far from the true
Pareto font and poorly distributed. Although VEPSOnds
and VEPSOmlI return a low GD measure, the number of
nondominated solutions is found to have low value, which
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FIGURE 8: Plot of nondominated solutions returned by each algorithm for the ZDT3 test problem.

is clearly displayed in the second and third plots, respectively,
of Figure 6. In fact, there is only one nondominated solution
found by both algorithms which falls exactly on the true
Pareto front and yields a GD value of zero. On the other
hand, the fourth plot of Figure 6 shows that VEPSOmI2
returns the nondominated solutions that converge nicely and
are well distributed over the true Pareto front. Besides, the
nondominated solutions found by VEPSOmI2 distributed
evenly which yield a good SP value.

Table 4 lists the performance of the algorithms on the
ZDT3 test problem. All improved VEPSO algorithms are able
to find more nondominated solutions than the conventional
VEPSO algorithm. In addition, the performances of the
improved VEPSO algorithms, with respect to convergence,
improve on conventional VEPSO, while VEPSOmI2 shows
the greater improvement. However, by the SP measure, the
VEPSOnds algorithm performs worse than the conventional
VEPSO algorithm. However, although the SP value of the
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TABLE 2: Algorithm performance tested on ZDT1 problem.
Measure VEPSO VEPSOnds VEPSOmll VEPSOmI2
Ave. 30.220000 100.000000 99.490000 98.820000
NS SD 5.697031 0.000000 3.942760 6.979595
Min. 16.000000 100.000000 63.000000 47.000000
Max. 44.000000 100.000000 100.000000 100.000000
Ave. 0.295865 0.022637 0.002730 0.000497
GD SD 0.051645 0.014201 0.006219 0.002213
Min. 0.139491 0.000283 0.000045 0.000047
Max. 0.432478 0.073477 0.031891 0.015598
Ave. 0.834481 0.729350 0.212479 0.182157
Sp SD 0.039111 0.160298 0.149696 0.113453
Min. 0.705367 0.322322 0.106082 0.109998
Max. 0.917087 1.219625 0.738619 0.779572
Ave. 0.001886 0.428153 0.628841 0.657830
HV SD 0.010058 0.113432 0.078273 0.023359
Min. — 0.185313 0.283932 0.456556
Max 0.087426 0.659603 0.662065 0.662022
TABLE 3: Algorithm performance tested on ZDT?2 problem.
Measure VEPSO VEPSOnds VEPSOmll VEPSOmI2
Ave. 8.070000 38.120000 91.090000 99.620000
NS SD 6.356822 25.747131 28.474726 3.800000
Min. 1.000000 1.000000 1.000000 62.000000
Max. 24.000000 100.000000 100.000000 100.000000
Ave. 0.766956 0.039653 0.005109 0.000152
GD SD 0.324444 0.063791 0.010867 0.001009
Min. 0.240509 0.000000 0.000000 0.000043
Max. 1.679803 0.310345 0.028380 0.010144
Ave. 0.944524 0.947356 0.267797 0.098572
Sp SD 0.065266 0.111963 0.315008 0.065826
Min. 0.797757 0.695715 0.059578 0.064648
Max. 1.080351 1.278655 1.000004 0.721104
Ave. — 0.137784 0.250495 0.328291
HY SD — 0.117596 0.127625 0.004182
Min. — — 0.000000 0.286901
Max. — 0.311075 0.328807 0.328816

conventional VEPSO algorithm is better, the superior conver-
gence of the VEPSOnds algorithm maintains its performance
advantage. In contrast, both improved VEPSO algorithm
using multiple nondominated leaders show better SP mea-
sure than the conventional VEPSO, which strengthen the
hypothesis that using multiple nondominated leaders will
improve diversity performance. In addition, the HV value
of the conventional VEPSO algorithm is smaller than of
all improved algorithms which suggest that the improved
algorithms have better performance.

Figure 8 displays the nondominated solutions, plotted for
the best GD measure obtained for each algorithm using the
ZDT3 test problem. The nondominated solutions returned by
the conventional VEPSO algorithm were distributed equally
but not well converged with respect to the true Pareto front.

On the other hand, the nondominated solutions from all
improved VEPSO algorithms are well converged with respect
to the true Pareto front. However, the nondominated solu-
tions returned by the VEPSOnds algorithm are denser at the
upper left of the Pareto front, which causes the increase in its
SP value. In contrast, the nondominated solutions obtained
by both VEPSOml algorithms are equally distributed over the
Pareto front and yield better SP value.

Table 5 lists the performance of the algorithms on the
ZDT4 test problem. The average number of nondominated
solutions obtained by VEPSO is relatively low, while all
improved VEPSO algorithms found most of the solutions.
In this test, the conventional VEPSO algorithm produced
a very large GD value due to the multimodality feature in
the test problem, and so the improved VEPSO algorithms
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TABLE 4: Algorithm performance tested on ZDT3 problem.
Measure VEPSO VEPSOnds VEPSOmll VEPSOmI2

Ave. 35.150000 99.600000 95.710000 96.500000

NS SD 6.853997 3.405284 11.528003 11.372037
Min. 21.000000 66.000000 46.000000 49.000000
Max 53.000000 100.000000 100.000000 100.000000
Ave. 0.173060 0.009607 0.002586 0.001456

GD SD 0.031253 0.008293 0.003904 0.002533
Min. 0.079595 0.000433 0.000153 0.000159
Max. 0.276801 0.039481 0.017547 0.007328
Ave. 0.871146 1.109448 0.761061 0.752151

Sp SD 0.043319 0.086041 0.056129 0.050459
Min. 0.701884 0.902861 0.701924 0.703181
Max. 1.001428 1.322024 0.934796 0.981492
Ave. 0.004722 0.373133 0.476679 0.493073

HV SD 0.021699 0.083015 0.060626 0.045211
Min. — 0.112859 0.289513 0.391275
Max 0.167359 0.506222 0.515919 0.515941

TABLE 5: Algorithm performance tested on ZDT4 problem.
Measure VEPSO VEPSOnds VEPSOmll VEPSOmI2

Ave. 6.610000 95.250000 82.730000 51.470000

NS SD 3.920665 16.518967 30.304800 35.623864
Min. 1.000000 15.000000 6.000000 4.000000
Max. 21.000000 100.000000 100.000000 100.000000
Ave. 5.062543 0.383646 0.231380 0.449095

GD SD 3.167428 0.478535 0.841726 1.060986
Min. 0.000000 0.000155 0.000062 0.000146
Max. 13.350278 2.049212 7.013747 6.835452
Ave. 0.858655 1.035510 0.572461 0.735715

Sp SD 0.147255 0.347336 0.286004 0.201246
Min. 0.483073 0.077112 0.135264 0.269484
Max 1.236461 1.419225 1.139773 1.088971
Ave. 0.228824 0.399914 0.357553 0.307568

HY SD 0.188151 0.159971 0.281263 0.272435
Min. — — — —
Max 0.573978 0.661941 0.661917 0.660309

clearly performed better in this respect. However, the diver-
sity performance of nondominated solutions returned by
conventional VEPSO is small compared to the VEPSOnds
algorithm. Once again, the use of multiple nondominated
leaders in VEPSO algorithms could diversify the search
and result in better diversity performance. Additionally, all
algorithms produce a hypervolume from the reference point,
and all improved algorithms return larger HV values than the
conventional algorithm.

Figure 9 displays the nondominated solutions, plotted
for the best GD measure obtained for each algorithm using
the ZDT4 test problem. The first plot shows that VEPSO
converges to the Pareto front but only manages to obtain a
single nondominated solution. The VEPSOnds algorithm not

only converges to the Pareto front but also returns a diverse
set of nondominated solutions. On the other hands, both
VEPSOml also returned the nondominated solutions with
good convergence but they are not well distributed as com-
pared to the VEPSOndes, in this case. Thus, the VEPSOnds
shows better HV value as compared to the VEPSOml.

Table 6 lists the performance of the algorithms on the
ZDT6 test problem. All algorithms find a similar number of
nondominated solutions. In the GD measure, all algorithms
are capable of returning the nondominated solutions that
converge well to the Pareto front. On the other hand,
both VEPSOmll and VEPSOmI2 algorithms outperform
the conventional VEPSO and VEPSOnds algorithm in the
GD measure. In addition, the SP and HV values for each
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TABLE 6: Algorithm performance tested on ZDT6 problem.
Measure VEPSO VEPSOnds VEPSOmll VEPSOmI2
Ave. 76.590000 78.040000 86.920000 88.590000
NS SD 32.884891 26.684055 23.586368 23.600674
Min. 11.000000 22.000000 25.000000 16.000000
Max. 100.000000 100.000000 100.000000 100.000000
Ave. 0.338537 0.260666 0.217503 0.217929
GD SD 0.370336 0.158592 0.214344 0.263966
Min. 0.001746 0.044137 0.031135 0.000482
Max 1.552521 0.709692 1.184075 1.316312
Ave. 1.201796 1.276529 1.301493 1.273612
Sp SD 0.146782 0.083293 0.085611 0.186562
Min. 0.492064 0.987981 0.931549 0.082405
Max. 1.435395 1.437289 1.430321 1.439400
Ave. 0.304584 0.303381 0.303676 0.315964
HY SD 0.134813 0.102216 0.123985 0.121842
Min. 0.000000 0.038143 0.000779 0.000001
Max 0.400964 0.400780 0.401403 0.401483

algorithm are similar. However, the VEPSOmI2 algorithm
shows superiority in getting the minimum SP value and
average HV value.

As can be predicted from the similar quantitative per-
formance of the algorithms on ZDT6, the plot of non-
dominated solutions returned by each algorithm is very
similar, especially in convergence performance, as shown in
Figure 10. The plots do show that VEPSO has slightly less
diversity compared to VEPSOnds and VEPSOmI2 because
of some small gaps in coverage along the middle of the
Pareto front. On the other hand, the VEPSOmlI shows weak
distribution of nondominated solutions over the Pareto front.
In contrast, the nondominated solutions found by VEPSOnds
and VEPSOmI2 completely cover the true Pareto front and
are spaced out equally.

As seen from the results of all the test problems, the
VEPSO algorithms using multiple nondominated leaders
shows more improvement in terms of convergence and
diversity of the nondominated solutions found than the VEP-
SOnds. The additional leader, specifically the nondominated
solution with respect to the objective function optimised by a
swarm, not only guides the particles to optimise the objective
function with respect to the swarm. It also increased the
search area because all leaders used to guide the particles are
located at the different end of the Pareto front.

4.4. Analysis of the Number of Particles. This experiment
analysed the performance of the VEPSOmI2 algorithm with
various numbers of particles. Similar parameters from the
previous experiment were used except for the total number
of particles as it is equally divided into two swarms; the total
number of particles was varied to be 10, 30, 50, 100, 300, 500,
and 1000. Figure 11 shows plots of the performance measures
for each benchmark problem against the total number of
particles.

The VEPSOmI2 algorithm performance improved as
the number of particles increased. The performance of the
VEPSOmI2 algorithm was sufficient when there were 100
particles computed for 250 iterations, which corresponds to
25000 function evaluations. However, the performance of the
VEPSOmI2 algorithm exhibited better results when the total
number of particles was increased. Unfortunately, when the
number of particles is increased, the algorithm requires more
computational effort to solve the problem.

4.5. Analysis of the Number of Iterations. This experiment
investigated the performance of VEPSOmI2 for various
numbers of iterations. The number of iterations was fixed to
be 10, 30, 50, 100, 300, 500, 1000, 3000, 5000, and 10 000.
Meanwhile, the other parameters were kept the same as in
the previous experiment except that the number of particles,
which were divided equally among swarms, was fixed to
100 divided equally between all swarms. Figure 12 plots the
performance measures for each benchmark problem against
the number of iterations.

As expected, the performance of VEPSOmI2 is improved
when the number of iterations was increased. When 100
particles were used, the VEPSOmI2 algorithm started to yield
acceptable results when there were 500 iterations, which
is equivalent to 50000 function evaluations. However, if
computational cost is not critical, the VEPSOmI2 algorithm
could use 3000 iterations because the performance saturated
after this value.

4.6. Benchmarking with the State-of-the-Art Multiobjec-
tive Optimisation Algorithms. For benchmarking, the VEP-
SOml2 algorithm was compared to four other state-of-
the-art MOO algorithms: nondominated sorting genetic
algorithm-II (NSGA-II) [14], strength Pareto evolutionary
algorithm 2 (SPEA2) [21], archive-based hybrid scatter search
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FIGURE 9: Plot of nondominated solutions returned by each algorithm for the ZDT4 test problem.

(AbYSS) [22], and the speed-constrained multiobjective PSO
(SMPSO) algorithm [23]. All algorithms only computed
25000 function evaluations, and the archive size was set to
100 for fair comparison. The population size for NSGA-II was
set to 100 for optimisation. The Simulated Binary Crossover

(SBX) operator was used with crossover probability p, = 0.9.
The polynomial mutation [24] operator was also used with
mutation probability p,, = 1/N. Meanwhile, the distribution
indices for both operators were set to y, = u,, = 20. The
parameters in SPEA2 were set the same as in NSGA-IIL. The
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Hypervolume.

population size for AbYSS was set to 20 and the pairwise
combination parameters RefSet, and RefSet, were both set
to 10. In addition, the polynomial mutation parameters in
AbYSS were also set similarly as in NSGA-II and SPEA2.
Finally, SMPSO was set to have a population size of 100
particles and a total number of iterations of 250. Moreover,
the r, = r, = random[0.1,0.5], and the terms ¢, = ¢, =

random[1.5, 2.0]. The polynomial mutation [25] operator was
also used in SMPSO with p,, = 1/N and g, = 20.

The performance measures for the ZDT1 problem for
all algorithms are listed in Table 7. The average number of
solutions obtained by the VEPSOmI2 was very similar to the
other algorithms. Although VEPSOmI2 algorithm had a GD
measure approximately twice as large as those of the other
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algorithms, its minimum GD was still the smallest among
them. However, the SP was, on average, better than NSGA-
II. Interestingly, the HV measure of VEPSOmI2 was as good
as those of the other algorithms.

Table 8 presents the performance measure of the algo-
rithms for the ZDT2 problem. The VEPSOmI2 was suf-
ficiently competitive at obtaining a reasonable number of
solutions. In the GD measure, on average, the VEPSOmI2
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TABLE 7: Performance comparison based on ZDT1 test problem.
Measure ADbYSS NSGA-IT SPEA2 SMPSO VEPSOmI2
Ave. 100.000000 100.000000 100.000000 100.000000 98.820000
NS SD 0.000000 0.000000 0.000000 0.000000 6.979595
Min. 100.000000 100.000000 100.000000 100.000000 47.000000
Max. 100.000000 100.000000 100.000000 100.000000 100.000000
Ave. 0.000185 0.000223 0.000220 0.000117 0.000497
GD SD 0.000035 0.000038 0.000028 0.000031 0.002213
Min. 0.000125 0.000146 0.000154 0.000053 0.000047
Max. 0.000343 0.000374 0.000400 0.000172 0.015598
Ave. 0.105387 0.379129 0.148572 0.076608 0.182157
p SD 0.012509 0.028973 0.012461 0.009200 0.113453
Min. 0.080690 0.282485 0.116765 0.056009 0.109998
Max. 0.136747 0.441002 0.174986 0.099653 0.779572
Ave. 0.661366 0.659333 0.659999 0.661801 0.657830
HY SD 0.000269 0.000301 0.000301 0.000100 0.023359
Min. 0.660267 0.658486 0.659347 0.661372 0.456556
Max. 0.661724 0.659909 0.660629 0.661991 0.662022
TABLE 8: Performance comparison based on ZDT2 test problem.
Measure AbYSS NSGA-II SPEA2 SMPSO VEPSOmI2
Ave. 100.000000 100.000000 100.000000 100.000000 99.620000
NS SD 0.000000 0.000000 0.000000 0.000000 3.800000
Min. 100.000000 100.000000 100.000000 100.000000 62.000000
Max. 100.000000 100.000000 100.000000 100.000000 100.000000
Ave. 0.000131 0.000176 0.000182 0.000051 0.000152
GD SD 0.000067 0.000066 0.000039 0.000003 0.000152
Min. 0.000056 0.000093 0.000090 0.000044 0.000043
Max. 0.000433 0.000707 0.000304 0.000060 0.010144
Ave. 0.130425 0.378029 0.158187 0.071698 0.098572
Sp SD 0.090712 0.028949 0.027529 0.013981 0.065826
Min. 0.080831 0.311225 0.118114 0.035786 0.064648
Max. 0.833933 0.430516 0.365650 0.106749 0.721104
Ave. 0.325483 0.326117 0.326252 0.328576 0.328291
HV SD 0.023209 0.000297 0.000908 0.000077 0.004182
Min. 0.096409 0.325278 0.318785 0.328349 0.286901
Max. 0.328505 0.326696 0.327559 0.328736 0.328816

algorithm was as good as the other algorithms, but SMPSO
had greater performance. Surprisingly, the VEPSOmI?2 algo-
rithm was able to obtain a better minimum GD measure
than the SMPSO algorithm. Additionally, the SP measure of
the VEPSOmI2 algorithm was better than those of the other
algorithms except SMPSO. All algorithms had similar HV
values, but VEPSOmI2 yielded the best HV performance.
The performance measures for the ZDT3 problem for all
algorithms are listed in Table 9. Both SMPSO and VEPSOmI2
were unable to obtain the maximum number of solutions
consistently for all 100 runs but still yielded solutions within
a reasonable range. Noticeably, the average GD measure for
VEPSOmI2 was the largest among all algorithms. However,

the diversity for VEPSOmI2 was similar to that of the others.
Moreover, although the HV value of VEPSOmI2 was the
smallest, it still yielded a very large HV.

Table 10 presents the performance measures for the
algorithms for the ZDT4 problem. VEPSOmI2 faced great
challenges from the multiple local optima featured in this
problem, where it cause the algorithm to obtain a very
small number of solutions. Additionally, the convergence and
diversity of VEPSOmI2 were bad, as indicated by the very
large GD and SP values. As expected, the HV performance
was also very poor because the multiple local optima feature
is one of the natural weaknesses of PSO-based algorithms
[26, 27].
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TABLE 9: Performance comparison based on ZDT3 test problem.
Measure AbYSS NSGA-IT SPEA2 SMPSO VEPSOmI2

Ave. 100.000000 100.000000 100.000000 99.900000 96.500000

NS SD 0.000000 0.000000 0.000000 0.904534 11.372037
Min. 100.000000 100.000000 100.000000 91.000000 49.000000
Max. 100.000000 100.000000 100.000000 100.00000 100.000000
Ave. 0.000193 0.000211 0.000230 0.000203 0.001456

GD SD 0.000019 0.000013 0.000019 0.000061 0.002533
Min. 0.000144 0.000180 0.000184 0.000155 0.000159
Max. 0.000264 0.000268 0.000327 0.000717 0.007328
Ave. 0.707651 0.747853 0.711165 0.717493 0.752151

Sp SD 0.013739 0.015736 0.008840 0.032822 0.050459
Min. 0.696859 0.715199 0.698590 0.697943 0.703181
Max. 0.796404 0.793183 0.775317 0.950901 0.981492
Ave. 0.512386 0.514813 0.513996 0.514996 0.493073

HY SD 0.011314 0.000159 0.000675 0.001737 0.045211
Min. 0.463776 0.514449 0.510764 0.500484 0.391275
Max. 0.515960 0.515185 0.514668 0.515818 0.515941

TABLE 10: Performance comparison based on ZDT4 test problem.
Measure AbYSS NSGA-II SPEA2 SMPSO VEPSOmI2

Ave. 99.680000 100.000000 100.000000 100.000000 51.470000

NS SD 3.100603 0.000000 0.000000 0.000000 35.623864
Min. 69.000000 100.000000 100.000000 100.000000 4.000000
Max. 100.000000 100.000000 100.000000 100.000000 100.000000
Ave. 0.001231 0.000486 0.000923 0.0001347 0.449095

GD SD 0.002632 0.000235 0.001428 0.000027 1.060986
Min. 0.000148 0.000163 0.000176 0.000070 0.000146
Max. 0.014472 0.001374 0.012292 0.000187 6.835452
Ave. 0.159842 0.392885 0.298269 0.092281 0.735715

Sp SD 0.120180 0.037083 0.125809 0.011777 0.201246
Min. 0.078244 0.324860 0.137934 0.067379 0.269484
Max. 1.073669 0.473358 0.884091 0.124253 1.088971
Ave. 0.646058 0.654655 0.645336 0.661401 0.307568

HV SD 0.034449 0.003406 0.018773 0.000162 0.272435
Min. 0.472299 0.642177 0.505799 0.660934 —
Max. 0.661594 0.659710 0.658784 0.661726 0.660309

Finally, the performance measures for the ZDT6 problem
for all algorithms are listed in Table 11. VEPSOmI2 algorithm
was inconsistent in obtaining the maximum number of
solutions. Moreover, the convergence and diversity measures
for VEPSOmI2 were significantly larger than those for the
other algorithms. However, the VEPSOmI2 algorithm was
able to obtain the minimum GD value. Additionally, the
HV performance for VEPSOmI2 was relatively weak, on
average, but its maximum HYV value was the largest of all the
algorithms.

An overall performance comparison for state-of-the-
art algorithms against VEPSOmI2 was investigated in this

experiment. In some cases, the VEPSOmI2 algorithm yielded
better results than some of the other algorithms.

5. Conclusions

Most PSO-based MOO algorithms, including conventional
VEPSO and VEPSOnds, only use one solution as the particle
guide. Thus VEPSOml is proposed in this study where the
particles are guided by multiple nondominated solutions
while retaining the unique information shared between
swarms that are inherent in conventional VEPSO.
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TABLE 11: Performance comparison based on ZDT6 test problem.
Measure ADbYSS NSGA-IT SPEA2 SMPSO VEPSOmI2
Ave. 100.000000 100.000000 100.000000 100.000000 88.590000
NS SD 0.000000 0.000000 0.000000 0.000000 23.600674
Min. 100.000000 100.000000 100.000000 100.000000 16.000000
Max. 100.000000 100.000000 100.000000 100.000000 100.000000
Ave. 0.000549 0.001034 0.001761 0.012853 0.217929
GD SD 0.000015 0.000102 0.000192 0.024813 0.263966
Min. 0.000510 0.000804 0.001267 0.000502 0.000482
Max. 0.000596 0.001360 0.002207 0.092434 1.316312
Ave. 0.097740 0.357160 0.226433 0.390481 1.273612
p SD 0.013129 0.031711 0.020658 0.497140 0.186562
Min. 0.070455 0.282201 0.179482 0.042666 0.082405
Max. 0.130389 0.441311 0.292897 1.377582 1.439400
Ave. 0.400346 0.388304 0.378377 0.401280 0.315964
HY SD 0.000172 0.001604 0.002714 0.000076 0.121842
Min. 0.399821 0.383637 0.371907 0.401081 0.000001
Max. 0.400842 0.392123 0.385626 0.401402 0.401483

Five ZDT test problems were used to investigate the
performance of the improved VEPSO algorithm based on the
measures of the number of nondominated solutions found,
the generational distance, the spread, and the hypervolume.
The proposed VEPSOml algorithm obtained a higher-quality
Pareto front as compared to conventional VEPSO and VEP-
SOnds. The VEPSOmI2 algorithm that included polynomial
mutation has exhibited further improvement for most of the
performance measures.

Using more nondominated solutions as particle guides
yielded faster convergence performance improvements, espe-
cially for the ZDTI1, ZDT2, and ZDT3 test problems. The
use of more than one leader reduced the risk of trapping
at local Pareto front. In future, the success of using two
leaders motivates the investigation of the use of more than
two leaders during the optimisation process.
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