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ABSTRACT 

 

 

 

A rectenna is used to receive transmitted power through space for wireless 

power transmission (WPT).  This thesis presents the development of an S-band front-

end microwave rectenna prototype elements operating at 2.45 GHz of industrial, 

scientific and medical (ISM) band.  The microstrip front-end rectenna consists of an 

antenna and a low-pass filter (LPF).  Both prototype elements were simulated.  

Optimized designs were fabricated and tested.  For the antenna, two designs were 

investigated, i.e. corner-truncated square patch (CTSP) and slitted CTSP (SCTSP) 

fed by electromagnetic coupling.  Size reduction of 37 % has been achieved through 

simulations for the SCTSP, compared to CTSP design at the operating frequency of 

2.45 GHz.  Measurement results showed that the antenna exhibits well matched 

impedance at the corresponding frequency of operation but with a slight shift of 123 

MHz higher frequency as well as 2.5 dB higher axial ratio.  SCTSP is proposed for 

the antenna candidate front-end rectenna.  LPF was designed with elliptic function 

characteristic.  Three designs were investigated for single element structure of 3rd 

order.  These were stepped-impedance hairpin (SIH), meandered-gap hairpin (MGH) 

and over-coupled end meandered-gap hairpin (OCEMGH).  Through simulations, 

size reduction of 28.6 % has been achieved for the MGH, compared to SIH.  Both 

exhibit the same cutoff frequency.  It was also found that higher cutoff frequency 

corresponds to lower insertion loss at 2.45 GHz.  An impressive reduction in size of 

60 % has been achieved for the OCEMGH, compared to SIH.  The OCEMGH also 

exhibited better insertion loss at 2.45 GHz and rejection at 4.9 GHz and hence is 

proposed as the filter candidate for the front-end rectenna.  Elliptic function LPF of 

5th order was also designed.  Two designs were proposed, i.e. unidentical cascaded 

hairpin (UCH) and identical cascaded hairpin (ICH).  Simulated results showed that 

both filter have sharper cutoff frequencies compared to that of SIH.  Measurement 

results showed that the five LPFs agree well with the simulated results. 
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ABSTRAK 

 

 

 Rektena digunakan untuk menerima kuasa yang dihantar melalui ruang bagi 

penghantaran kuasa tanpa wayar (WPT).  Tesis ini membentangkan pembangunan 

elemen prototaip rektena gelombang mikro hujung-hadapan jalur-S yang beroperasi 

pada 2.45 GHz; jalur perindustrian, saintifik dan perubatan (ISM).  Rektena 

mikrojalur hujung-hadapan terdiri daripada antena dan penapis lulus rendah.  Kedua-

dua elemen prototaip telah disimulasi.  Rekabentuk optimum telah dibina dan diuji.  

Bagi antena, dua rekabentuk diselidiki, iaitu tampalan segi empat sama terpotong-

sudut (CTSP) dan tampalan segi empat sama terpotong sudut terkelar (SCTSP).  

Kedua-duanya mempunyai suapan gandingan elektromagnet.  Pengurangan saiz 

sebanyak 37 % telah diperolehi daripada hasil simulasi untuk SCTSP berbanding 

CSTP pada frekuensi kendalian 2.45 GHz.  Hasil pengukuran menunjukkan bahawa 

galangan antena terpadan dengan baik pada frekuensi kendalian tetapi terdapat 123 

MHz anjakan kecil frekuensi, begitu juga dengan nisbah paksi 2.5 dB yang lebih 

tinggi.  Penapis lulus rendah direkabentuk dengan ciri fungsi eliptik.  Tiga 

rekabentuk dicadangkan untuk element tunggal peringkat ketiga, iaitu pin rambut 

galangan berlangkah (SIH), pin rambut sela-berliku (MGH) dan pin rambut sela-

berliku ganding-hujung-terlebih (OCEMGH).  Pengurangan saiz sebanyak 28.6 % 

telah diperolehi bagi MGH daripada hasil simulasi berbanding SIH.  Kedua-duanya 

mempunyai frekuensi potong yang sama.  Frekuensi potong yang lebih tinggi 

didapati menghasilkan kehilangan sisipan yang lebih rendah pada 2.45 GHz.  

Pengurangan saiz yang menakjubkan sebanyak 60 % telah diperolehi oleh OCEMGH 

berbanding SIH.  OCEMGH juga menunjukkan kehilangan sisipan pada 2.45 GHz 

dan penolakan pada 4.9 GHz yang lebih baik dan dicadangkan sebagai calon penapis 

pada rektena hujung-hadapan.  Penapis lulus rendah fungsi eliptik peringkat 5 juga 

direkabentuk.  Dua rekabentuk dicadangkan, iaitu susunan pin rambut kaskad tidak 

serbasama (UCH) dan pin rambut kaskad serbasama (ICH).  Hasil simulasi 

menunjukkan kedua-dua penapis mempunyai frekuensi potong yang lebih tajam 

berbanding SIH.  Hasil pengukuran menunjukkan bahawa kelima-lima penapis lulus 

rendah adalah setanding dengan hasil simulasi. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

A wireless power transmission (WPT) system refers to a system whereby 

electric power is transmitted from one point to another through the vacuum of space 

or the earth’s atmosphere without the use of wires or any substance.  The power in 

space would be in microwave or laser beams.  The laser has an advantage of having 

small beam divergence. However, the efficiencies in generating the laser beam and 

converting it back into electrical energy are low compared with microwave [1, 2]. 

Therefore, the development of power transmission system using microwave beam is 

more attractive.  

 

 

WPT is one of the most useful applications of radio waves.  The concept of 

beamed microwave power transmission is important where it is not feasible to 

transmit power from one place to another by traditional transmission and distribution 

system. The most abundant and sustainable source of energy for mankind is the sun.  

Solar energy is difficult to be used directly on earth, because of its low density, and 

its lack of regularity due to weather condition and day-and-night cycles.  To solve 

this problem, Glaser proposed an idea of orbiting satellites in geosynchronous 
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equatorial orbit to collect the unlimited sunlight, converting the solar energy and 

transmitting the energy through microwave to earth, called Solar Power Satellites 

(SPS) [2].  On the earth, the microwave will be rectified and transformed to utility 

power for public use.  This power then can be transmitted wireless from one point to 

another directly or by power relay satellites through microwave. 

 

 

Malaysia has a large area of relatively undeveloped land near the equator in 

Sarawak where many people still live without electricity.  Because of this, Malaysia 

is a potential place to be a rectenna site.  The WPT is also an alternative method of 

energy transmission in Malaysia.  In addition, the UTM Skudai campus has been 

identified as a rectenna test bed for implementing the WPT concept.  The campus is 

located very near to the equator. 

 

 

One of the key components in a WPT system is a rectenna at the receiving 

end [3, 4].  The block diagram of a rectenna is shown in Figure 1.1 which consists of 

an antenna, low-pass filter (LPF) and rectifying circuits.  The front-end of a rectenna 

is an antenna and LPF.  The LPF inserted between the antenna and the rectifying 

circuit needs to be designed so that the fundamental frequency can be passed and a 

portion of the higher order harmonics generated from the rectifying circuit be 

rejected back to the rectifying circuit [5]. 

 

 

 
 

Figure 1.1   Block diagram of a rectenna circuit connected to a load. 
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1.2 Problem Statement 

 

 

Power can be wirelessly delivered from one point to another by using 

microwave frequency.  In a WPT system, a rectenna is used to receive the 

transmitted power through space and converting the power to dc power, hence, it can 

be used for energy storage.  Two important components of the front-end rectenna are 

the receiving antenna and the adjacent low-pass filter.  There is an immediate need to 

develop a single front-end rectenna prototype which is useful for terrestrial WPT 

reception. 

 

 

To eliminate the need to orient the antennas between the transmitter and the 

receiver, the receiving antenna has to be circularly polarized.  Hence, the rectenna 

may be rotated without significantly changing the output voltage.  Besides that a 

compact antenna is desired which corresponds to lightweight device and cost 

effectiveness of fabrications.  

 

 

Low passband insertion loss, sharp cutoff frequency steepness and high 

stopband rejections are desirable elliptic function filter response.  Beside that, 

compactness in the design is desirable for cost effectiveness of fabrications. 

 

 

 

 

1.3 Front-end Rectenna Review 

 

 

Since the early 1960s, rectennas have been researched and developed. Brown 

was a pioneer in developing the first 2.45 GHz rectenna [3]. The front-end rectenna 

consists of an aluminium bar half-wave dipole antenna and LPF.  Besides being a 

filter, the LPF is used as an impedance matching between the antenna and the 

rectifying circuit.  Figure 1.2(a) shows the schematic of the rectenna.  Later, Brown 
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and Triner [6] developed a thin-film printed –circuit dipole rectenna to reduce the 

weight.  In [7], dual polarization rectenna was developed to receive power from 

transmitted beam of two orthogonal polarizations.  Hence, the power received will be 

maximum.  The antenna was realized by two thin-film dipole orthogonal linearly 

polarized foreplane in X and Y orientations separated by a multiple of half-

wavelength distance to achieve dual polarization as shown in Figure 1.2(b).  The 

basic antenna was employed from [6].  However, this geometry has a bulky structure 

due to using two orthogonal antennas to achieve dual polarization. 

 

 
(a) 

 
(b) 

Figure 1.2   (a) Schematic of a half-wave dipole rectenna [3]  (b) Dual polarization 

two orthogonal thin-film dipole antennas of a rectenna [7]. 

 

 

A rectenna element using a microstrip dipole antenna operating at 35 GHz 

has been developed [8].  Figure 1.3(a) shows the circuit configuration of the 

rectenna.  The rectenna has a coplanar strip line LPF which consists of three 

transmission line sections to connect the antenna and the rectifying circuit.  The LPF 

is of a stepped-impedance LPF having a Butterworth or Chebyshev response.  The 
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rectenna in this design has two filter sections similar to [3, 6, 7].  The LPF structure 

is space consuming. 

 

 

A dipole rectenna has been developed by [9, 10].  In [9], the rectenna 

operates at 5.8 GHz and is shown in Figure 1.3(b).  In this design, the LPF composed 

of three printed strips on the opposite of the coplanar strip line transmission line.  

The rectenna has only one section of LPF and the coplanar strip line has an 

advantage of allowing ease mounting of the rectifying circuit devices.  The cutoff 

frequency of the LPF was located between the fundamental frequency (to pass the 

operating frequency) and the second order harmonic (to reject the higher harmonics).  

The design of a single section LPF is interesting as the whole design can be made 

compact.  The filter proposed in this thesis employs such design. 

 

  

Antenna Rectifying 
circuit 

LPF 

(a)          (b) 

Figure 1.3   (a) circuit configuration of a 35 GHz dipole rectenna [8]  (b) 5.8 GHz 

dipole rectenna element [9]. 

 

 

 A dual-frequency printed dipole rectenna has been developed for WPT at 

2.45 GHz and 5.8 GHz [11].  The antenna consists of 2 dipoles as shown in Figure 

1.4(a).  The long dipole operates at 2.45 GHz while the short dipole operates at 5.8 

GHz.  The filter circuit in this design has a coplanar strip line (CPS) LPF integrated 

with a bandstop filter.  The LPF has a cutoff frequency of 7 GHz to pass 2.45 GHz 

and 5.8 GHz frequencies while rejects 11.6 GHz which is the second order harmonic 

of 5.8 GHz.  However, the LPF will also pass the 4.9 GHz and 7.35 GHz frequencies 

which are the second and third order harmonics of 2.45 GHz.  To reject these 

harmonics, a bandstop filter is introduced to the filter circuit.  The measured 
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frequency responses of the antenna and the antenna with filter are shown in Figure 

1.4(b).  This rectenna can be used for WPT at either frequency depending upon 

power availability at 2.45 GHz or 5.8 GHz.  However, the presence of two filters 

increases the bulkiness of the rectenna. 

 

 

 

1.072 λo for 2.45 GHz 

0.812 λo for 5.8 GHz 

Bandstop filter for 7.35 GHz 

Bandstop filter for 4.9 GHz Lowpass filter 

Load resistor 

           (a)          (b) 

Figure 1.4   (a) Circuit configuration of the dual-frequency dipole rectenna  

(b) measured frequency responses of the antenna and the antenna with filters [11]. 

 

 

 A circular patch antenna has been designed for dual polarized rectenna at 

2.45 GHz [12].  The antenna is fed 90o apart by two transmission line feeds at the 

edges of the antenna to achieve dual polarization as shown in Figure 1.5.  The LPFs 

are attached at the two feed lines.  The LPFs can be the stepped-impedance LPF 

having a Butterworth or Chebyshev response.  This configuration, however, 

increases the bulkiness of the front-end rectenna. 

 

 

A circular patch was also employed [13].  Figure 1.6 shows the configuration 

and the cut plane view of the rectenna.  The rectenna was constructed on two layer 

substrates and operates at 5.8 GHz.  The antenna was fed by a pin near the centre of 

the patch to minimize the area of the feeding circuit and leads to a linearly polarized.  

In this design, the LPF was included in the rectifying circuit and placed at the rear 

side of the rectenna.  The LPF is of stepped-impedance as shown in Figure 1.6(b).  
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The overall thickness of the rectenna element is 2.4 mm which is slightly bulky for 

mobile application.  In addition, the feed pin increases the difficulty of fabrication 

and decrease the cost effectiveness of the rectenna. 

 

 

 

Rectifying 
circuit Front-end 

Figure 1.5   The configuration of dual polarized circular patch rectenna [12]. 

 

 

   
(a)         (b) 

Figure 1.6   (a) Cut plane view and configuration of the antenna  (b) rectifying 

circuit configuration [13]. 

 

 

 A square patch microstrip antenna has been employed to construct the 

rectenna [14].  The antenna was fed by a microstrip line.  Microstrip LPF of 3rd order 

with Chebyshev response was used as the filter.  The disadvantage of this design is 

its microstrip antenna patch size.  Figure 1.7(a) shows the configuration of the 

rectenna element.  A similar square patch was developed with an inset feed 

microstrip line to reduce the size of the rectenna [15].  It was found that the inset 

does not significantly affect the resonant frequency but it modified the input 

impedance.  However, this design does not have a filter circuit to block the higher 

harmonics from the rectifier circuit which leads to degradation of the rectenna 

performance.  Figure 1.7(b) shows the corresponding rectenna layout. 
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A rectenna designed with a microstrip harmonic-rejecting circular sector 

antenna at 2.4 GHz has been proposed [16, 17].  Compared to the square patch 

antenna, the circular sector antenna using inset feed exhibits high reflection 

coefficient at the second and third harmonics.  Because of this, the LPF between the 

antenna and rectifying circuit can be eliminated.  In addition, the antenna exhibits 

linearly polarized wave.  The configuration of the rectenna with a microstrip circular 

sector antenna and the measured return losses of the microstrip circular sector and 

square patch antennas are shown in Figure 1.8.   

 

 

   
      (a)                  (b) 

Figure 1.7   (a) Square patch rectenna with microstrip feed line [14]   

         (b) square patch rectenna with microstrip inset feed line [15]. 

 

 

 
    (a)               (b) 

Figure 1.8   (a) Configuration of the rectenna with a microstrip circular sector 

antenna  (b) measured return losses of the microstrip circular sector and square patch 

antennas [16]. 
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 In the last seven years, researchers have been focused on circularly polarized 

rectenna.  Compared to the linearly or dual polarization, the circular polarization can 

eliminate the need to orient the antenna, reduce the effects of multipath and 

maximize the received signal.  Hence, the rectenna can be rotated while maintaining 

receiving constant power.  Planar dual-patch antenna has been used to achieve 

circularly polarized rectenna [18].  Dual identical almost quadratic patch has been 

proposed.  Figure 1.9 shows the layout of the circularly polarized dual-patch 

rectenna.  However, the rectenna is bulky due to having two patch antennas and has 

no LPF to reject the higher harmonics flowing back into the antenna. 

 

 

 

a 

b

l

Figure 1.9   The layout of circularly polarized dual-patch antenna [18]. 

 

 

 A 5.8 GHz rectenna using a dual rhombic loop antenna (DRLA) has been 

developed [19].  This antenna exhibits circular polarization.  Circular polarization is 

achieved by having two gap positions of DRLA.  The positioning of the gaps, as 

shown in Figure 1.10, yields left-hand circular polarization.  If the gaps are mirrored 

to the opposing sides of the antenna, the DRLA will become a right hand circular 

polarization.  The CPS tuning stubs tune out the imaginary impedance in order to 

yield a real impedance at the antenna’s input terminals and allow single rectenna 

element to be connected to other rectennas to form an array.  The advantages for 

using DRLA are high gain, wideband performance and fabrication simplicity.  The 

rectenna used a CPS band-reject filter to suppress the reradiated harmonics flowing 

from the diode to the antenna.  Figure 1.10 shows the rectenna block diagram and the 
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simulated band-reject filter frequency response.  The focused harmonic to be 

suppressed by the filter is the second harmonic.  This is because higher harmonics 

are not significant as the second harmonic [5].  However, the CPS band-reject filter 

has a complicated design structure. 

 

   
(a)     (b) 

Figure 1.10   (a) Rectenna block diagram (b) Simulated band-reject filter [19]. 

 

 

 A circularly polarized rectenna using a shorted annular ring-slot antenna 

operating at 5.8 GHz has been proposed [20].  Figure 1.11 shows the layout of the 

rectenna.  The antenna is fed from the bottom layer with a transmission line and two 

quarter-wave transformers to match to the rectifier circuit.  This leads to increasing 

the size of the rectenna.  In addition, the rectenna does not have any filter circuit 

between the antenna and the rectifier circuit for filtering out the higher order 

harmonics. 

 

 
Figure 1.11   The layout of the shorted annular ring-slot rectenna [20]. 
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A circularly polarized rectenna using a corner-truncated square patch has 

been developed [21, 22].  Figure 1.12 shows the rectenna structure in [21].  The LPF 

between the antenna and the rectifying circuit has a Chebyshev response.  This is a 

stepped-impedance LPF of 5th order.  The advantage of corner-truncated square patch 

is that the circular polarization can be achieved by a single feed which leads to 

reducing the size of the rectenna.  Such patch is attractive and the design is further 

modified and proposed in this thesis. 

 

 

Various operating frequencies of rectennas have been used by various 

researchers.  The conventional operating frequency is 2.45 GHz, located in the 

industrial, scientific and medical (ISM) band.  Later, the higher ISM band 5.8 GHz is 

proposed as the operating frequency to decrease the size of the antenna.  However, 

increasing the operating frequency further beyond 10 GHz will also increase severe 

problems of attenuation in rain and clouds and diminishing efficiency [23].  The 

operating frequency of 35 GHz has smaller aperture areas, however, the components 

necessary for generating high power at 35 GHz are inefficient and expensive [8].  

The 2.45 GHz has advantages of excellent compromise in transmission through the 

Earth’s atmosphere.  Furthermore, the components and the technology are the most 

advanced at 2.45 GHz. 

 

 

 
Figure 1.12   The structure of corner-truncated square patch rectenna [21]. 

 

 

The antenna proposed in this thesis focuses on having circular polarization 

due to the advantages as previously mentioned.  The design in [21] is employed and 

extended.  Some modifications were made and investigated for better performance.  
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The antenna structure was perturbed to obtain a compact configuration.  Two antenna 

feeds were considered; coaxial probe and electromagnetic coupling (EMC) feeds.  

The EMC feed has an advantage of reducing the spurious radiation from various 

transmission line discontinuities and eliminating the physical connection between the 

antenna and the feed line [24].  Furthermore, since most of the LPF between antenna 

and the rectifying circuit used Chebyshev stepped-impedance microstrip LPF, the 

elliptic function LPF in microstrip structure is proposed in this thesis to reduce the 

size of the structure but with high rejection in the attenuation band.  The LPF focuses 

on suppressing the second harmonic of the operating frequency, similar to [5, 19, 

25]. 

 

 

 

 

1.4 Objective of Research 

 

 

The objective of the research is to design and develop a single S-band front-

end rectenna (rectifying antenna) prototype elements operating at 2.45 GHz which 

consists of an antenna and an LPF for blocking the higher harmonic frequencies.   

 

 

 

 

1.5 Scopes of Research 

 

 

The scopes of the research are as follows: 

(i) Design of linearly polarized square patch antenna with two types of 

feed; coaxial feed and electromagnetic coupling (EMC) feed. 

(ii) Design of circularly polarized corner truncated square patch antenna 

with EMC feed. 

(iii) Design of modified circularly polarized corner-truncated square patch 

antenna with EMC feed. 
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(iv) Design of single element stepped impedance hairpin elliptic function 

(EF) LPF. 

(v) Design of single element modified stepped-impedance hairpin EF-

LPFs having meandered-gap and over-coupled end. 

(vi) Design of cascaded hairpin EF-LPF based on the single element 

designs. 

(vii) Simulate all the designed antennas and filters. 

(viii) Measure the optimum designed antenna and filters. 

 

 

Calculations were carried out using Mathcad 2000 [26] while Microwave 

Office 2003 v.6.0 Demo Version [27] was used for simulating the lumped elements 

of the LPF.  Sonnet Suites v.9 [28] was used for simulating the microstrip structures 

of the antennas and LPFs.  Measurements were performed using AntennaLab [29] 

and MST532 [30], for the optimum antenna and LPFs, respectively.  

 

 

The design specifications of the antenna and the filter are listed in Tables 1.1 

and 1.2, respectively.  Figure 1.13 shows the geometry of the proposed antennas and 

filters. 

 

 

Table 1.1:  Design specification of the antenna. 

 Operating Frequency 2.45 GHz 

Polarization Circular 

Voltage Standing Wave Ratio, VSWR 1 < VSWR < 2 

VSWR Bandwidth 24 MHz 

Input Return loss < -15 dB 

Axial Ratio, AR < 3 dB  

Circular Polarization  Bandwidth 10 MHz 
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Table 1.2:  Design specification of the low-pass filter. 

Response Elliptic Function 

Cutoff Frequency, fc 3 GHz 

Passband ripple, LAr -0.1 dB 

Stopband Ratio, Ωs 2 

Minimum Stopband Insertion Loss, LAs -24 dB 

Slope -7 dB/GHz 

Insertion Loss at Second harmonic, 2fr = 4.9 GHz < -20 dB 

Insertion Loss at Third harmonic, 3fr = 7.35 GHz < -10 dB 

 

 

       
         (a)            (b)           (c) 

        
(d)   (e)   (f)   (g) 

                                                      
           (h)         (i)         (j)    (k)  

 

Figure 1.13   Geometry of the investigated antennas and filters (not to scale). 
(a) Basic square patch, SP,     (b) Corner-truncated square patch, CTSP,   

(c) Slitted corner-truncated square patch, SCTSP,   (d) Single stepped-impedance hairpin, SIH,  

(e) Meandered-gap hairpin, MGH,    (f) Left over-coupled end hairpin, OCEH_L, 
(g) Right over-coupled end hairpin, OCEH_R,   (h) Left over-coupled end MGH, OCEMGH_L, 

(i) Right over-coupled end MGH, OCEMGH_R,  (j) Unidentical cascaded hairpin, UCH, 

(k) Identical cascaded hairpin, ICH. 
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Microstrip configuration was chosen as the planar structure for the antenna 

and low-pass filter.  The microstrip has advantages of being light weight, low profile, 

flat form and can be easily integrated with other electronic circuitry [24, 31, 21].  

The antenna is designed to have circular polarization which can eliminate the need to 

orient the antenna, reduce the effect of multipath and maximize the received signal.  

Corner-truncated square patch is chosen as the configuration for the antenna to 

achieve circular polarization with single feed.  EF response is chosen for the filter to 

achieve sharp roll-off cutoff frequency and higher stopband rejections. 

 

 

The research contributions are reflected in the design of the following front-

end elements: 

(i) circularly polarized SCTSP with EMC feed, 

(ii) single SIH EF-LPF, 

(iii) single MGH EF-LPF, 

(iv) OCEMGH EF-LPF, 

(v) UCH and ICH EF-LPFs and 

(vi) single front-end rectenna prototype elements; SCTSP and a single 

OCEMGH EF-LPF. 

 

 

 

 

1.6 Thesis Organization 

 

 

This thesis is organized into 8 chapters.  Chapter 1 introduces the research 

work which includes the background, objective, scope, contribution of the research 

and problem statement.  Literature review of the front-end rectenna is also presented. 

 

 

Chapter 2 covers the basic theory of the square patch microstrip antenna, the 

feeding techniques used, CTSP antenna and reviews of the compact microstrip 

antenna. 
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Chapter 3 covers the basic theory of the elliptic function LPF, coupled 

microstrip lines and reviews of the microstrip elliptic function LPF. 

 

 

Chapter 4 discusses the design of the slitted CTSP.  Initially, one layer square 

patch fed by coaxial feed is designed.  Then slitted CTSP fed by EMC feed was 

designed to operate at 2.45 GHz.  Two scaled down designs of 1.5 and 2 of slitted 

CTSP were also presented.  Simulation results were presented and discussed. 

 

 

Chapter 5 discusses the design of the hairpin elliptic function LPF of 3rd 

order.  Three designs were presented and their simulated performances were 

analyzed. 

 

 

In Chapter 6, the design of the cascaded hairpin elliptic function LPF of 5th 

order is discussed.  Two designs were presented and their simulated performances 

were analyzed. 

 

 

The experimental testing of the designed antenna and LPF were presented in 

Chapter 7.  The results and analysis were also presented. 

 

 

The final chapter concludes the thesis.  Recommendations and suggestions 

for future work were also presented. 
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