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ABSTRACT

Single Kernel Effects on Breakage during Wheat Milling

Single kernel properties of wheat were investigated in order to improve predictive
models of breakage during roller milling based on measured distributions of kernel
properties. The breakage equation approach for describing First Break roller milling
was also extended to include information about the composition of particles in the
broken material. An image analysis-based approach to quantifying the bran content of
flour stocks was adapted to allow a bran distribution function for First Break roller
milling to be defined and quantified.

The Perten Single Kernel Characterisation System (SKCS) measures the distributions of
kernel hardness, mass, moisture content and diameter in a mixture of wheat kernels.
For the first time, the particle size distribution (psd) resulting from breakage of kernels
in the SKCS itsclf was quantified. Wheat varieties of different haid..css, as measured
by the SKCS, gave surprisingly consistent psd’s on breakage in the SKCS. This
indicates that the psd produced by the SKCS cannot be related directly to that produced
on breakage during industrial roller milling. More positively, however, it signifies that
the hardness index reported by the SKCS indicates relatively unambiguously the energy
required to achieve a constant degree of breakage. This implies that the hardness index
is inherently meaningful, and explains why it has been possible in previous work to
relate the hardness index directly to breakage during First Break roller milling.

Breakage equations have been constructed previously to predict the output particle size
distribution from First Break roller milling based on distributions of kernel hardness,
mass and moisture as measured by the SKCS. The current work added the fourth SKCS
parameter, kernel mass, to breakage equations, and demonstrated that the ratio kernel
mass:diameter was related to other kernel shape descriptors, thereby adding factors
related to kernel shape to the breakage equation model.

Further studies of kernel shape investigated the breakage of ancient emmer wheat lines,
which have much more elongated kernels than modern varieties. These studies
demonstrated that the hardness values reported when the SKCS is applied to these
ancient wheats are not meaningful in terms of indicating their breakage patterns. The
reason for this was considered to be the unusual shape of the kernels of these wheats.
Evidence for this was presented by plotting breakage patterns versus shape descriptors
rather than hardness, which appeared to show a smooth continuum between the ancient
and modern wheat varieties.

The particles produced on breakage of wheat kernels by roller milling vary in
composition as well as size, such that large particles tend to have higher bran contents,
and smaller particles higher endosperm contents. The breakage equation for First Break
roller milling was extended to allow description of the composition of particles. A bran
distribution function was defined, and the form of the function quantified by measuring
bran contents in broken fractions using image analysis.
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GLOSSARY OF TERMS

Throughout this thesis a number of industry specific terms have been used. The
majority of which are explained the first time that they occur. This section provides a
reference section for terms that might not be familiar to the reader.

First Break

Aleurone

Aleurone Threshold

Aleurone Bleed Threshold
Bleed Range

Bran

Break rolls

Bushel weight
Comminution

Conditioning

Cultivar

Debranning
Differential
Endosperm

Extraction yield
Fluted

Flutes
Gradual reduction

Grist

Magnification

Milling ratio

The first stage in the roller milling process; grains are
sheared open using coarse roll fluting.

Layer of cells situated between the bran and endosperm
of cereals. Contains enzymes that activate the growth
during germination.

This defines the brightness of the aleurone particles
compared to the background colour.

This defines the edge of the aleurone specks.

The Bleed Range is ar internal parameter and should
always be set to 2.

Outer cover of wheat grain. Brown in colour, bran
protects the nutrients in the endosperm from the
atmosphere

Rolls at the start of a flourmill; fluted rolls that either
break-open wheat grains or scrapes bran from
endosperm.

Measure of the bulk density of a sample, in mass per
unit volume. Also known as specific or test weight.
Breakage of particles

Adding moisture to wheat samples prior to milling to
achieve a certain target moisture content in produced
flour

Wheat variety

Removal of bran layers using abrasion

Difference in operating speed of two rolls

Central white portion of the wheat grain. A structure
made of protein and starch. Utilised in the production
of flour.

Percentage flour from the total milled products, also
known as yield

Containing flutes

Saw-tooth roll corrugations

Series of break and reduction stages connected by
sifting operations that gradually reduces the wheat to
flour.

Blend of wheat samples prior to milling. A grist is
specific to a grade of flour being produced and contains
component wheat lots to achieve consistent flour
quality.

The magnification defines how many microns will be
equal to one pixel. This is calculated when the system
is set up, and need only be changed if the camera’s
focus or position has been modified.

The ratio of roll gap to mean grain thickness (G/D)
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Min Speck Diameter

NIR(S)
Normalised

Once-through
Overtails

Pericarp Threshold
Pericarp Bleed Threshold

Range

Semolina
Single kernel analysis
Specks

Specific weight
Subsample Internal

Tempering
Throughs

Yield (flour)
Yield (wheat)

The minimum speck diameter defines the size of the
smallest group of particles (in microns) that the system
will determine as a speck.

Near-infrared  spectroscopy. Equipment utilising
wavelength of light to measure quality parameters.
Expressed in a manner such that the sum of all the
constituents is one

A single pass operation.

Materials remaining on a sieve mesh (after sifting) are
known as the overtails of that sieve.

This defines the darkness of the pericarp particles
compared to the background colour

The pericarp bleed threshold defines the edge of the
pericarp stock

The Range defines maximum speck size. This should
be set larger than your anticipated speck radius,
however this measurement is in pixels not microns.
Coarse granules of endosperm fed to the reduction
system.

Testing of single kernel quality attributes and analysis
of their distribution with a sample.

Broken cells and finer debris appear in intact
endosperm cells

See Bushel weight.

The Subsample Interval is an internal parameter and
should always be set to 1

See Conditioning

Material passing through a sieve mesh (after sifting) is
known as the throughs of that sieve.

See Extraction yield.

Growing return, tonnes per unit area.
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Chapter 1 — The wheat kernel in relation to flour milling

CHAPTER 1 - THE WHEAT KERNEL IN RELATION TO

FLOUR MILLING

1.1 INTRODUCTION

Wheat is a unique cereal and arguably the most important cereal crop in the world. It has
been a staple food for human for thousand of years since people first began the move from
nomadic to settled societies. The composition of the grain makes wheat a nutritious food
of high energy value. It is a major source of protein and dietary fibre in the human diet, as
well as providing several other nutrients, vitamins and antioxidants (Decker ef al., 2002).
About 75% of the world’s wheat is consumed directly by human, 15% is in the form of

animal feed, and another 10% is used for seed and industrial use (Carter, 2001).

Wheat is by far the most important internationally traded grain, representing over 30% of
the total world grain production (Dendy and Brockway, 2001). The major wheat exporters
are North America, Canada, Australia, Europe and Argentina. The UK is self sufficient in
flour with a small positive trade balance. A total of over 5.5 million tonnes of flour is
produced each year (NABIM, 2001). Flour milling in the UK is operated by 33 companies
and the two largest companies Allied Mills and Rank Hovis, account for approximately
50% of flour produced in the UK each year (NABIM, 2001). As a traded commodity,
wheat is subject to wide variations in the price and available quality. This is because of the
different harvesting time around the world as a result of the seasons, and different grading

systems and classification (Bunn, 2001).
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The wheat grain consists of three main constituents: the bran, the germ and the endosperm
(Figure 1.1). The starchy endosperm is the inner part of the kernel that yields high-quality

white flour which is extracted and separated from the bran and germ during flour milling,

Kernel coat
. (bran)

Inner part
(endosperm)

Figure 1.1 Grains of wheat

The grinding of grain is one of the major industries in the world and the one that has had
the longest continuous existence of any industrial process (Kent and Evers, 1994).
Archaeologists have noted that man first started his quest for more edible food by
fractionating various wild seeds by grinding them between his teeth because the interior
portion of grain kernels tasted better than the outer kernel cover (Harlan, 1981). Stones
were then used to pound grain to release edible seeds from hulls. From this primitive
beginning about 10,000 years ago, milling technology gradually evolved. The history of
the flour milling industry started with animal-driven and hand-powered milling. The first
known mechanically driven mill was introduced by the Greeks in about 450-400 BC in the
form of an ungeared water mill. A hundred years later the Romans introduced the geared
water mill. In about 600 AD the windmill was invented with arms revolving on a tripod
stand. Later, steam-powered units were introduced and in 1784 the first steam driven mill
was erected in London. This was followed by the introduction of electrically driven mills

in the late 19" century (Bass, 1998).
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Today modern milling equipment and processes have been largely standardized. Milling
procedures are controlled in the same manner to accommodate different wheat types and
different characteristics within the same type. Processing alterations depend on both the
physical and chemical composition of the grain and on the objectives of the miller
(Pomeranz, 1990). Recent advances in biotechnology for wheat hybridisation have
enabled wheat breeders to develop new cultivars with good yield potential without
sacrificing quality (Cline and Esfeld, 1998). Nevertheless, improvements to wheat and

flour quality and to the milling process are constantly sought in order to produce consistent

flour quality.

1.2 MONITORING SINGLE KERNEL ASPECTS TO CONTROL THE QUALITY

The quality of wheat depends on a complex number of factors dependent on how it grows,
mills and adapts to an end use in any one of many different kinds of products. Hence
defining wheat quality is complex because producers, millers and bakers view it
differently. Producers are concerned primarily with wheat yield, yield stability and disease
resistance (Shellenberger, 1961; Carter, 2001). Millers evaluate wheat by analysing the
purity of the wheat and its physical characteristics such as wheat hardness, size and shape,
response to conditioning, behaviour during milling, and flour yield. Wheat quality from the
baker’s perspective is related to flour properties such as protein, water absorption, starch
damage, mixing parameters, fermentation tolerance and loaf volume potential, where many
of these depend on protein quantity and quality. The complex and varied processing
methods and the multiplicity of products produced from wheat have created a major
demand for wheat having specific quality characteristics and nutritional values (Satumbaga
et al., 1995). Hence the important goal of milling processes is to obtain suitable

consistency for the targeted consumer end use.

In recent years, wheat quality testing has started to move from bulk methods to single
kernel methods. This emerging trend gives additional information about the distribution of
quality parameters of individual grains and allows correlations between single kernel

parameters and processing performance to be identified. Several innovative techniques
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have been investigated in order to provide accurate, rapid, convenient and informative
methods of measuring and predicting quality from tests on single kernels (Evers, 1996;
Osborne and Anderssen, 2003). The concept behind this approach is that bulk tests (e.g.
1,000 kernel weight hardness, grain protein and moisture content measured by near-
infrared spectroscopy) only give an estimate of the whole sample but do not measure
individual kernels and thus do not provide any information on sample uniformity. In order
to describe a sample’s bulk characteristics from single kernel tests, a mean value of all the
grains still has to be derived from the individual data and the advantages of the more
detailed approach may not at once be appreciated. However the new single kernel testing
approach reveals additional information about the degree of variation within the sample

and also about systematic associations not previously known to exist (Regnér, 1995; Evers,
1996).

The most developed example of this approach is the Single Kernel Characterisation System
(SKCS) developed by the USDA Research Centre at Beltsville, MD and commercialised
by Perten Instruments AB (Sweden) for evaluating the quality characteristics of individual
wheat kernels (Martin et al., 1993a; Psotka, 1995; Gaines et al., 1996; Osborne et al.,
1997; Sissons et al., 2000). The SKCS measures the mass, diameter, hardness and
moisture of (usually) 300 individual kernels within 5 minutes, and provides information in
the form of means and distributions (Martin et al., 1993b). Interest in single kernel
parameters of wheat grains and the distribution of those parameters within a sample has
grown in recent years. Researchers have measured wheat properties with the SKCS and
reported on the usefulness of the results comparable with conventional methods
(Satumbaga, ef al., 1995; Gaines et al., 1996; Osborne et al., 1997, 2000). Knowing the
mean value of a parameter (such as hardness) and also how that parameter varies within a
sample (i.e. its distribution about the mean) provides the opportunity to gain a greater
understanding of wheat breakage in the actual milling system. In the short term, the main
driving force for the acceptance of single kernel technology by the milling industry will be
improved milling performance. There is convincing evidence that the single kernel
technology provides the possibility of obtaining data on the uniformity of a grain sample

with essentially the same speed as bulk tests that offer an average value only (Psotka,
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1995; Gaines et al., 1996; Sissons et al., 2000). The challenge, however, is to relate single

kernel parameters to actual wheat breakage in the mill.

1.3 PARTICLE BREAKAGE DURING WHEAT MILLING

Conceptually milling involves breaking the wheat kernel to release the endosperm and
separate the bran and germ. This process uses repeated size reduction and separation
operations. Good milling performance means the separation of bran from the floury
endosperm is highly efficient, producing a high yield of good quality flour. Hence,
understanding wheat breakage is critical in order to be able to mill wheat into flour
effectively. Roller milling is particularly suited to milling of wheat to produce flour; the
broad and even distribution of particle sizes produced allows effective separation of bran
and efficient recovery of white flour (Campbell et al., 2001a). This is perhaps explained by
the breakage patterns of each kernel in the roller mill, which depend only on the roller mill
design and operation (speed, differential, disposition) and their interaction with the grain’s
physico-chemical properties including size, mass, moisture and protein content, density

and hardness (Campbell and Webb, 2001; Campbell et al., 2001a,b; Bunn et al., 2001).

Wheat hardness is not clearly defined, and is a complex parameter dependent upon a
number of kernel properties (Simmonds, 1974; Wu et al., 1990). The hardness index
reported by the SKCS itself is an arbitrary indicator, nominally varying from O to 100, with
no units. Also, in addition to hardness, several other single kernel parameters, including
weight, size, shape, moisture content and density are believed to affect milling (Williams et
al., 1987; Pomeranz et al., 1988). In relation to wheat breakage, the effects of other

factors, i.e. kernel shape, kernel mass, bran composition and distribution, are another focus

in this research.

An understanding of the relationship between feed characteristics and resultant particle-
size distributions from roller milling operations is crucial for effective design and control
of flour mills (Campbell and Webb, 2001). Recent studies have verified that during First
Break roller milling of wheat, each kernel breaks independently according to its own

physico-chemical properties, independent of the mixture of kernels surrounding it
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(Campbell and Webb, 2001). Knowing the distribution of kernel properties in a sample, the
particle size distribution of the milled stocks can be predicted for a heterogeneous feed
milled at any roll gap (Campbell and Webb, 2001; Campbell et al., 2001b; Bunn et al.,
2001; Fang and Campbell, 2002b). Campbell and Webb (2001) developed an
understanding of roller milling based on the concept of a ‘breakage equation’, which is a
mathematical relationship Between the inlet and outlet particle-size distributions.
Campbell et al. (2001b) described further studies on the First Break milling of narrowly
sized fractions of wheat. They showed that the average particle size of the outlet stream
increased linearly with roll gap setting G and decreased with increasing feed size D. They
demonstrated that the milling ratio (G/D) is relevant to milling and postulated that the
‘breakage function’ approach which relates the inlet and outlet particle-size distributions

provides a potential link between single kernel testing and milling performance.

Subsequently, Campbell and Fang (2002) extended the work to incorporate single kernel
hardness into the breakage equation. They noted that the effect of hardness is greater
under dull-to-dull milling, which produces a larger proportion of very large and very small
particles, with fewer in the mid-size range, compared with sharp-to-sharp. The results
from different wheat varieties show consistent trends, indicating that the SKCS hardness

measurement is meaningful in terms of actual breakage during roller milling.

Fang and Campbell (2003b) further demonstrated that the breakage equation could be
extended to account for moisture content distribution. They investigated the effect of
wheat moisture content on the First Break milling of Hereward and Consort wheats, and
noted that the effect of adding water was to change an initially inverted U-shaped
distribution at low moisture contents to a linear distribution at 16% moisture, then to a U-

shaped distribution at higher moisture contents.

The progress made so far has demonstrated that if the distribution of single kernel

properties in a sample is known, and if predictive equations of breakage of individual
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kernels in terms of their physico-chemical properties exist, then it is feasible, in principle,

to predict the breakage of the mixture based on the distributions of single kernel properties.

The objective of the work presented here was to extend predictive models of wheat
breakage during roller milling to include other single kernel parameters, specifically kernel
mass, shape and composition. As a step towards this objective, a primary goal was to
determine the breakage produced in the SKCS itself. This would help in identifying the
basis of the hardness index reported by the SKCS and thus interpreting its physical

significance, and in relating wheat mass and shape to breakage during roller milling.

The second objective was to develop predictions of bran size distribution resulting from
breakage of wheat mixtures during First Break roller milling, based on measurement of
distributions of single kernel parameters in the SKCS and bran distributions, and further to

examine the feasibility of incorporating compositional information into the breakage

equation.

1.4 SCOPE OF THE THESIS

Relating single kernel characteristics of wheat to breakage during roller milling has been
identified as an important area of research and the subject of this thesis. The remainder of

this thesis is organised into seven chapters as follows.

Chapter 2 reviews wheat origin and development, the flour milling process and important
single kernel aspects of wheat that govern the quality of flour. Hardness is identified as the
major property that influences milling performance. The factors that govern hardness
properties are described, highlighting the importance of moving from bulk methods to
single kernel analysis for cereal quality testing. The chapter describes the reasoning behind

the project and its potential benefits with respect to flour milling technology.
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A comprehensive review of the literature on single kernel studies and wheat breakage
during milling is presented in Chapters 3 and 4. Chapter 3 discusses single kernel analysis
and its contribution to cereal study, in particular wheat. Some of these methods are
reviewed, both bulk and single kernel, and the design, development and application of the
Perten Single Kernel Characterisation System (SKCS) are described. Chapter 4 discusses
wheat breakage with particular emphasis on the breakage models used in the current work
to relate single kernel parameters, i.e. distributions of size, hardness, and moisture content
to First Break roller milling performance. It draws on related work in order to understand
wheat milling processes and discusses concepts and design choices related to the feasibility

of prediction of milling performance based on single kernel breakage.

Chapters 5 through 9 detail the experimental studies carried out within this project. Chapter
5 describes the equipment used in this project, the materials and the preparatory work
employed. Chapter 6 presents results of the breakage of different wheat varieties used in
the SKCS to investigate the effects of single kernel hardness, mass, size and moisture
content of wheat. Chapter 7 presents results on breakage of different wheat varieties during
First Break roller milling. This chapter highlights some of the novel features offered by
breakage in the SKCS and relates them to the breakage in the roller mill. The effects of
kernel mass and shape on breakage are particularly explored. Continuing this theme,
Chapter 8 then investigates breakage of samples of an ancient wheat line, emmer wheat,
which has an unusually long and elongated shape compared with modern varieties.
Chapter 9 reports a study on bran distribution analysis from breakage in the roller mill. A
model to predict the breakage of wheat mixtures in the roller mill based on SKCS

measurements is discussed examining the feasibility of incorporating compositional

information.

Finally, Chapter 10 highlights the findings and conclusions of this study, indicates its

relevance and identifies areas requiring further attention.
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