
Heat Transfer Analysis of MHD Thin Film Flow of an
Unsteady Second Grade Fluid Past a Vertical Oscillating
Belt
Taza Gul1, Saeed Islam1, Rehan Ali Shah2, Ilyas Khan3, Asma Khalid4, Sharidan Shafie4*

1 Department of Mathematics, Abdul Wali Khan University, Mardan Khyber Pakhtunkhwa, Pakistan, 2 Department of Mathematics, University of Engineering and

Technology, Peshawar Khyber Pakhtunkhwa, Pakistan, 3 Department of Basic Sciences, College of Engineering Majmaah University, Majmaah, Saudi Arabia, 4 Department

of mathematical Sciences, Faculty of science, University Teknology Malaysia, UTM Johor Bahru, Johor, Malaysia

Abstract

This article aims to study the thin film layer flowing on a vertical oscillating belt. The flow is considered to satisfy the
constitutive equation of unsteady second grade fluid. The governing equation for velocity and temperature fields with
subjected initial and boundary conditions are solved by two analytical techniques namely Adomian Decomposition Method
(ADM) and Optimal Homotopy Asymptotic Method (OHAM). The comparisons of ADM and OHAM solutions for velocity and
temperature fields are shown numerically and graphically for both the lift and drainage problems. It is found that both these
solutions are identical. In order to understand the physical behavior of the embedded parameters such as Stock number,
frequency parameter, magnetic parameter, Brinkman number and Prandtl number, the analytical results are plotted
graphically and discussed.
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Introduction

Thin-film flow is significant regarding broad class of physical

applications and attracts the attention of physicists, engineers and

chemists. In the field of chemical engineering, thin film layers are

functioning to design efficient and gainful development units such

as thin-film reactors, evaporators, condensers, distillation columns

and heat exchangers. The enormous benefit of thin film layers is

related to their tiny thickness which, in turn, results in large heat-

and mass-transfer areas per unit volume. Further, thin fluid layers

have been executed in circumstances where a film of fluid layers is

over a solid surface such as in different coating processes [1]. At

the micron scale, thin layer is of particular importance, specified

by a large scale of microfluidic devices, as evaluated in the work of

Stone et al. [2] and Squires and Quake [3].

In physical, chemical and biological sciences, thin film flows

have been used in micro-channel heat sinks to provide cooling for

nanotechnologies. In environmental and geophysical engineering,

thin film flows have been related with geological problems such as

lava, debris flows and mudslides [4,5];

Keeping in view the rich applications of non-Newtonian fluids

in engineering and industry, such fluids have been widely studied.

Ample research has been carried out in this field. Considerable

efforts have been made to study non-Newtonian fluids through

analytical and numerical treatment.

One of the well-known model amongst non-Newtonian fluids is

the class of second grade fluids which has its constitutive equations

based on strong theoretical foundations. Some development and

relevant work on this topic is the wire coating in a straight annular

die for unsteady second grade fluid discussed by Rehan et al. in [6].

They modeled the unsteady second grade fluid flow between

wire and die with one oscillating boundary and the other

stationary in the form of partial differential equation. Similar

results can also be found in [7,9]. On the other hand, Samiulhaq

et al. [10] investigated unsteady free convection flow of a second

grade fluid. They have compared the influence of ramped

temperature and isothermal temperature on the velocity field

and skin friction through different cases in the presence of

magnetic field as well as porosity. Ali et al. [11] studied the closed

form solutions for unsteady second grade fluid near vertical

oscillating plate. They have shown the effect of various physical

parameters on the velocity and temperature fields.

The physical importance of thin film has been researched and

discussed by several authors. For examples, thin film flow of a

power law model liquid falling an inclined plate was discussed by

Miladinova et al. [12], wherein they observed that saturation of

non-linear interaction occurred in a finite amplitude permanent

wave. Alam et al. [13] investigated the thin-film flow of Johnson-

Segalman fluids for lifting and drainage problems. They observed

the effect of various parameters on the lift and drainage velocity

profiles. To solve real world problems, several approximate

techniques have been used in mathematics, fluid mechanics and

engineering sciences. Some of the common methods are, HAM and

OHAM [14,15]. Application of optimal Homotopy asymptotic
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method for solving non-linear equations arising in heat transfer was

investigated by Marinca and Herisanu [16]. They have also

discussed an optimal Homotopy asymptotic method applied to

steady flow of a fourth-grade fluid past a porous plate [17]. These

methods deal with the nonlinear problems effectively. Mabood et al.

[18] discussed OHAM solution of viscoelastic fluid in axisymmetric

heated channels. They have shown that the results of OHAM are

comparatively better than other methods’ results. Some develop-

ment in this direction is discussed in [19–27]. Taza Gul et al. [28]

investigated effects of MHD on thin film flow of third grade fluids

for lifting and drainage problems under the action of heat

dependent viscosity. The effects of various parameters on the lift

and drainage velocity profiles are also studied.

The main objective of this work is to study the effects of

oscillation into a MHD thin film flow of an unsteady second grade

fluid on a vertical oscillating belt using ADM and OHAM. In

1992, Adomian [29,30] introduced the ADM for the approximate

solutions for linear and non linear problems. Wazwaz [31,32] used

ADM for the reliable treatment of Bratu-type and Rmden-Fowler

equations. In a comparative study, Taza Gul et al. [33] used ADM

and OHAM for solution of thin film flow of a third grade fluid on

a vertical belt with slip boundary conditions.

The convergence of the decomposition series was cautiously

examined by several researchers to verify the fast convergence of

the resulting series. Cherruault examined the convergence of

Adomian’s method in [34]. Cherruault and Adomian presented a

new proof of convergence of the method in [35].

Basic Equations

The constitutive equations governing the problem (equation of

continuity, momentum and energy) under the influence of

externally imposed transverse magnetic field are:

+:u~0 ð1Þ

r
Du

Dt
~+:TzrgzJ|B, ð2Þ

r cp

DH

Dt
~k +2 Hztr T:Lð Þ, ð3Þ

where r, is the constant density, g denotes gravity, u is velocity

vector of the fluid, H defines temperature, k is the thermal

conductivity, cp is specific heat, L~+u,
D

Dt
~

L
Lt

z u:+ð Þ denotes

material time derivative, and T is the Cauchy stress tensor.

One of the body force term corresponding to MHD flow is the

Lorentz force J|B. Where B is the total magnetic field and J is

the current density. By using Ohm’s law, the current density is

given as

J~s EzVzBð Þ

where s is electrical conductivity of the fluid, E is the electric field,

V is the velocity vector field, B~B0zb1 with B0 is the imposed

magnetic field and b1 is the induced magnetic field. The current

densityJwith the assumptions E~0, b1~0 and B~B0~ 0,B0,0ð Þ,
where B0 is the strength of applied magnetic field B0, modifies to

J ~ s V | B0ð Þ: Finally the Lorentz force becomes

J|B~ 0,s B2
0 u(x,t),0

� �
, ð4Þ

Cauchy stress tensor T is given by

T~{pIzS, ð5Þ

where {pI denotes spherical stress and shear stress S, is defined as

S~m A1 z a1 A2 z a2 A2
1 , ð6Þ

a1 and a2 are the material constants and A1,A1 are the kinematical

tensors given by

A1 ~ +uð Þz +uð ÞT ,

An ~
D An-1

Dt
z An-1 +uð Þz +uð ÞT An-1 ,n§2

ð7Þ

Formulation of the Lift Problem
Consider, a wide flat belt moves vertically at time t~ 0z, the

belt is oscillated and translated with constant speed U through a

large bath of second grade liquid. The belt carries a layer of liquid

of constant thickness d. Coordinate system is chosen for analysis in

which the y-axis is taken parallel to the belt and x-axis is

perpendicular to the belt. Uniform magnetic field is applied

transversely to the belt. It has been assumed that the flow is

unsteady and laminar after a small distance above the liquid

surface layer.

Velocity and temperature fields are defined as:

u~ 0,u(x,t),0ð Þ,H~H(x,t) ð8Þ

Oscillating boundary conditions are:

u(0,t)~U(1zjCosvt),
Lu(d,t)

Lx
~0, ð9Þ

H(0,t)~H0 ,H(d,t)~H1 , ð10Þ

Here j is used as amplitude in [6] and [9]. v is used as

frequency of the oscillating belt.

Inserting the velocity field from Eq.(8) in continuity Eq.(1) and

in momentum Eqs.(2) and (4), the continuity Eq.(1) is satisfied

identically and momentum Eqs. (2) and (4) are reduced to the

following components of stress tensor as:

Txx ~{Pz(2 a1 z a2 )
Lu

Lx

� �2

, ð11Þ

Txy ~m
Lu

Lx
z a1

L
Lt

Lu

Lx

� �
, ð12Þ
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Tyy ~{Pz a2
Lu

Lx

� �2

, ð13Þ

Tzz ~{P, ð14Þ

Txz ~ Tyz ~0, ð15Þ

making use of Eqs. (11–15) in Eq.(2,3), the momentum and energy

Eqs. (2,3) are reduced to,

r
Lu

Lt
~{

Lp

Ly
zm

L2 u

Lx2
z a1

L
Lt

L2u

Lx2

 !
{rg{sB2

0u, ð16Þ

rcp
LH
Lt

� �
~k

L2H

Lx2
zm

Lu

Lx

� �2

z a1
Lu

Lx

� �
L
Lt

Lu

Lx

� �
, ð17Þ

Introducing the following non-dimensional variables

u
^

~
u

U
,x
^

~
x

d
, t
^

~
mt

rd2
,H
^

~
H{H0

H1{H0
,Br~

mU2

k(H1{H0)
,

M~
sB2

0d2

m0

,Pr~
mcp

k
,v
^

~
vd2r

m
,

St~
d2rg

mU
,a~

a1

rd2
,

ð18Þ

where v is the frequency parameter, a is non-Newtonian effect, M

is magnetic parameter, t is time parameter, Br is Brinkman

number, St is Stock’s number and Pr is the Prandtl number.

On inserting the above dimensionless variables in Eqs. (16, 17),

when
Lp

Ly
~0, the momentum and energy equations become,

Lu

Lt
~

L2 u

Lx2
za

L
Lt

L2u

Lx2

 !
{St{Mu, ð19Þ

Pr
LH
Lt

� �
~

L2H

Lx2
zBr

Lu

Lx

� �2

za
Lu

Lx

� �
L2u

LtLx

 !" #
, ð20Þ

From Eqs. (9, 10), the non-dimensional boundary conditions

are:

u(0,t)~1zjCosvt,
Lu(1,t)

Lx
~0, ð21Þ

H(0,t)~0,H(1,t)~1, ð22Þ

Analysis of Adomain Decomposition Method

The Adomian Decomposition Method (ADM) is used to

decompose the unknown function u(x, y) into a sum of an infinite

number of components

defined by the decomposition series.

u(x,t)~
X?

n~0
un(x,t), ð23Þ

The decomposition method is used to find the components

u0(x,t),u1(x,t),u2(x,t),::::: separately. The determination of these

components can be obtained through simple integrals.

To give a clear overview of ADM, we consider the linear partial

differential equation in an operator form as

Ltu(x,t)zLxu(x,t)zRu(x,t)zNu(x,t)~g(x,t), ð24Þ

Lxu(x,t)~g(x,t){Ltu(x,t){Ru(x,t){Nu(x,t), ð25Þ

Where Lx~
L2

Lx2
and Lt~

L
Lt

are linear operators in the partial

differential equation and are easily invertible, g(x,t) is a source

term, Ru(x,t) is a remaining linear term and Nu(x,t) is non-linear

analytical term expandable in the Adomian polynomials An

After applying the inverse operator L{1
x to both sides of Eq.

(25).

L{1
x Lxu(x,t)~L{1

x g(x,t){L{1
x Ltu(x,t){L{1

x Ru(x,t)

{L{1
x Nu(x,t),

ð26Þ

u(x,t)~f (x,t){L{1
x Ltu(x,t){L{1

x Ru(x,t){L{1
x Nu(x,t), ð27Þ

Here, the function f (x,t) represents the terms arising from

L{1
x g(x,t) after using the given conditions. L{1

x ~
ÐÐ

(:)dxdx is

used as inverse operator for the second order partial differential

equation. Similarly, it is used for higher order partial differential

equation L{1
x and Lx depend on the order of the partial

differential equation.

Adomian Decomposition Method defines the series solution

u(x,t) as,

u(x,t)~
X?

n~0
un(x,t), ð28Þ

X?

n~0
un(x,t)~f (x,t){L{1

x R
X?

n~0
un(x,t)

{L{1
x N

X?

n~0
un(x,t),

ð29Þ

The non-linear term expanding in Adomian polynomials as,

N
X?

n~0
un(x,t)~

X?

n~0
An, ð30Þ

where the components u0(x,t),u1(x,t),u2(x,t),::::: are periodically

derived as
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u0(x,t)zu1(x,t)zu2(x,t)z:::::~f (x,t)

{L{1
x R

u0(x,t)zu1(x,t)

zu2(x,t)z:::

 !

{L{1
x (A0zA1z:::),

ð31Þ

To determine the series components u0(x,t),u1(x,t),u2(x,t),:::::
it is important to note that ADM suggests that the function f (x,t),
actually described the zeroth component u0(x,t), is usually defined

by the function f (x,t) described above.

The formal recursive relation is defined as:

u0(x,t)~f (x,t),

u1(x,t)~{L{1
x R½u0(x,t)�{L{1

x ½A0�,

u2(x,t)~{L{1
x R½u1(x,t)�{L{1

x ½A1�,

u3(x,t)~{L{1
x R½u2(x,t)�{L{1

x ½A2�,and so on:

ð32Þ

Analysis of Optimal Homotopy Asymptotic
Method

For the analysis of OHAM, we consider the boundary value

problem as

L(u(x,t))zN(u(x,t))zG(u(x,t))~0,B(u)~0, ð33Þ

Where L is a linear operator in the differential equation, N is a

non-linear term, x is an independent variable, B is a boundary

operator and G is a source term. According to OHAM, we

construct a set of equation.

½1{p� Ly(x,t,p)zG(x,t)½ �

{H(p) Ly(x,t,p)zGy(x,t,p)zNy(x,t,p)½ �~0,
ð34Þ

p[½0,1� is an embedding parameter, H(p)~pc1zp2c2z:::m, is

an auxiliary function and c1,c2, are auxiliary constants and

y(x,t,p) is an unknown function. Obviously, when p~0 and p~1,
it holds that:

y(x,t,p)~u0(x,t),y(x,t,1)~u(x,t), ð35Þ

y(x,t,p,ci)~u0(x,t)z
X

k§1
uk(x,t,ci)p

k,i~1,2,3:::,m, ð36Þ

Inserting Eq.(30) in Eq.(28), assembling the similar powers of p

and comparing each coefficient of p to zero. The partial

differential equations are solved with the given boundary

conditions to get u0(x,t),u1(x,t),u2(x,t):
The general solution of Eq.(27) can be written as

um~u0(x,t)z
X

k~1
uk(x,t,ci), ð37Þ

The coefficients c1,c2,c3,:::,cm are the functions of x.

Inserting Eq. (31) in Eq.(27), the residual is obtained as:

R(x,t,ci)~L um(x,t,ci)ð ÞzG(x,t)zN um(x,t,ci)ð Þ, ð38Þ

Numerous methods like Galerkin’s Method, Ritz Method,

Method of Least Squares and Collocation Method are used to find

the optimal values of ci,i~1,2,3,4:::: We apply the Method of

Least Squares in our problem as given below:

J(c1,c2,c3,:::,cm)~

ðb

a

R2(x,t,c1,c2,c3,:::,cm)dx, ð39Þ

a and b are the constant values taking from domain of the

problem.

Auxiliary constants (c1,c2,c3,:::,cm) can be obtained from:

LJ(c1,c2,:::,cm)

Lc1
~

LJ(c1,c2,:::,cm)

Lc2
~:::~

LJ(c1,c2,:::,cm)

Lcm

~0 ð40Þ

Finally, from these auxiliary constants, the approximate solution

is well-determined.

The ADM Solution of Lifting Problem
The inverse operator L{1

x ~
ÐÐ

(:)dxdx, is applied on the second

order differential Eq. (16) and is according to the standard form of

ADM from Eq.(27):

u(x,t)~f (x,t)zML{1
x uzL{1

x

Lu

Lt

� �
{L{1

x

L
Lt

L2u

Lx2

 !" #
, ð41Þ

H(x,t)~h(x,t)zPrL
{1
x

LH
Lt

� �
zBrL

{1
x

Lu

Lx

� �2

za
Lu

Lx

� �
L2u

LtLx

 !
2
66664

3
77775, ð42Þ

Summation is used for the series solutions of Eqs. (41,42):

X?

n~o
un~f (x,t)zML{1

x

X?

n~o
un

h i
zL{1

x

L
Lt

X?

n~o
un

� �

{aL{1
x

X?

n~o
An

h i
,

ð43Þ
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X?

n~o
Hn~h(x,t)zPrL

{1
x

L
Lt

X?

n~o
Hn

� �
{BrL

{1
x

X?

n~o
Bn

h i

{BrL
{1
x

X?

n~o
Cn

h i
,

ð44Þ

For n§0 the Adomian polynomials An,Bn and Cn from

Eqs.(43,44) are defined as

X?

n~o
An~

L
Lt

L2u

Lx2

 !
,
X?

n~o
Bn~

Lu

Lt

� �2

,

X?

n~o
Cn~

Lu

Lt

L2u

LtLx

 !
,

ð45Þ

In Components form Eqs. (43,44) are derived as:

u0(x,t)zu1(x,t)zu2(x,t)z:::::~f (x,t)

zL{1
x

L
Lt

u0(x,t)

zu1(x,t)

zu2(x,t)z:::

0
BB@

1
CCA

2
664

3
775

zML{1
x

u0(x,t)zu1(x,t)

zu2(x,t)z:::

 !

{aL{1
x (A0zA1zA2z:::),

ð46Þ

H0zH1zH2z:::~h(x,t)zPrL
{1
x

L
Lt

(H0zH1zH2z:::)

� �

{BrL
{1
x (B0zB1zB2z:::)z½

a(C0zC1

zC2z:::)

#
,

ð47Þ

The components of velocity and temperature distribution are

obtained by comparing both sides of Eqs. (46,47):

Components of the Lift Problem up to Second Order
are:

u0(x,t)~f (x,t)~L{1
x

L2u0

Lx2
{St

 !
, ð48Þ

H0(x,t)~h(x,t)~L{1
x

L2H0

Lx2

 !
, ð49Þ

u1(x,t)~L{1
x

Lu0

Lx

� �
zML{1

x ½u0�{aL{1
x ½A0�, ð50Þ

H1(x,t)~PrL
{1
x

L
Lx

(H0)

� �
{BrL

{1
x ½B0{a(C0)�, ð51Þ

u2(x,t)~L{1
x

Lu1

Lx

� �
zML{1

x ½u1�{aL{1
x ½A1�, ð52Þ

H2(x,t)~PrL
{1
x

L
Lx

(H1)

� �
{BrL

{1
x ½B1{a(C1)�, ð53Þ

Making use of boundary conditions from Eqs.(21,22) in

Eqs.(48–53) the zero, first and second components solution are

obtained as:

u0(x,t)~1zjCos tv½ �{ 1zjCos tv½ �z St

2

� �
xz

St

2

� �
x2, ð54Þ

H0(x,t)~x, ð55Þ
Figure 2. Geometry of the Drainage problem.
doi:10.1371/journal.pone.0103843.g002

Figure 1. Geometry of the Lift problem.
doi:10.1371/journal.pone.0103843.g001
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Figure 3. Comparison of ADM and OHAM methods for lift velocity profile. c1~{0:976162,c2~{0:00022. v~0:2,a~0:02,St~0:5,
M~0:5,j~0:4,t~5,Pr~0:6,Br~4.
doi:10.1371/journal.pone.0103843.g003

Figure 4. Comparison of ADM and OHAM methods for lift temperature distribution. v~0:2,a~0:02,St~0:5,M~0:5,j~0:4,t~5,

Pr~0:6,Br~4, c1~{0:02275,c2~{0:023719254,c3~{0:933274,c4~{0:004472:
doi:10.1371/journal.pone.0103843.g004
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Figure 5. Comparison of ADM and OHAM methods for drainage velocity when c1~{0:98464,c2~{0:0000174: v~0:2,a~0:02,St~0:5,
M~0:5,j~0:4,t~10,Pr~0:6,Br~4:
doi:10.1371/journal.pone.0103843.g005

Figure 6. Comparison of ADM and OHAM methods for temperature distribution. c1~{2:4631,c2~{3:187955,c3~{0:780916,c4~

{0:08042: v~0:2,a~0:02,St~0:5,M~0:5,j~0:4,t~10,Pr~0:6,Br~4.
doi:10.1371/journal.pone.0103843.g006
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Figure 7. Influence of different time level on lift velocity
profile.
doi:10.1371/journal.pone.0103843.g007

Figure 8. Influence of different time level on drainage velocity
profile.
doi:10.1371/journal.pone.0103843.g008

Fig 9. Effect of different time level on lift temperature
distribution.
doi:10.1371/journal.pone.0103843.g009

Fig 10. Effect of different time level on drainage temperature
distribution.
doi:10.1371/journal.pone.0103843.g010
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u1(x,t)~M
1

3M
jvSin tv½ �z St

24
{

1

3
{

j

3
Cos½tv�

� �
x

z
M

2
z

1

2
MjCos½tv�{ j

2
vSin tv½ �

� �
x2

z
j

6
vSin tv½ �{ M

6
{

1

6
MjCos½tv�{ MSt

12

� �
x3

z
MSt

24

� �
x4,

ð56Þ

H1(x,t)~Br

j2

3
Cos tv½ �2z 12z4StzSt

2

24

� �
z

Stz6

6

� �
jCos tv½ �{ aj2v

4
Sin tv½ �

{
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The second term solution for temperature distribution is too

bulky, therefore, only graphical representations up to second order

are given.

The series solution of velocity distribution up to the second

component is as:

Figure 11. Lift velocity distribution at different time level. v~0:2,a~0:02,St~0:5,M~0:5,j~0:4:
doi:10.1371/journal.pone.0103843.g011
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Figure 12. Drainage velocity distribution at different time level. v~0:2,a~0:02,St~0:5,M~0:5,j~0:4.
doi:10.1371/journal.pone.0103843.g012

Figure 13. Lift temperature distribution of fluid. v~0:2,a~0:02,St~0:5,M~0:5,j~0:4,t~5,Pr~0:6,Br~4:
doi:10.1371/journal.pone.0103843.g013
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Figure 14. Drainage temperature distribution of fluid. v~0:2,a~0:02,St~0:5,M~0:5,j~0:4,t~5,Pr~0:6,Br~4:
doi:10.1371/journal.pone.0103843.g014

Figure 15. Effect of the Stock number and frequency parameter in lift velocity. a~0:02,M~0:4,j~0:9,t~10:
doi:10.1371/journal.pone.0103843.g015
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Figure 16. Effect of the Stock number and frequency parameter in drainage velocity. M~0:4,t~10,a~0:2,j~0:4:
doi:10.1371/journal.pone.0103843.g016

Figure 17. Combined effect of magnetic parameter and frequency parameter in Lift velocity. a~0:02,St~0:5,j~0:9,t~10,x~0:5:
doi:10.1371/journal.pone.0103843.g017
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Figure 18. Combined effect of magnetic parameter and frequency parameter in drainage velocity. a~0:02,St~0:5,j~0:9,t~10,x~0:5:
doi:10.1371/journal.pone.0103843.g018

Figure 19. Effect of Brinkman number in lift temperature distribution. v~0:5,a~0:2,St~0:5,M~0:5,j~0:4,t~10,Pr~0:6:
doi:10.1371/journal.pone.0103843.g019
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Figure 20. Effect of Brinkman number in drainage temperature distribution. v~0:5,a~0:2,St~0:5,M~0:5,j~0:4,t~10,Pr~0:6:
doi:10.1371/journal.pone.0103843.g020

Figure 21. The effect of Prandtl number in lift temperature distribution. v~0:5,a~0:2,St~0:5,M~0:5,j~0:4,t~10,Br~10:
doi:10.1371/journal.pone.0103843.g021
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Figure 22. The effect of Prandtl number in drainage temperature distribution. v~0:5,a~0:2,St~0:5,M~0:5,j~0:4,t~10,Br~10:
doi:10.1371/journal.pone.0103843.g022

Table 1. Comparison of OHAM and ADM for lift velocity.

x OHAM ADM Absolute Error

0:0 1:392026 1:392026 0

0:1 1:2125619 1:2125847 2:28|10{5

0:2 1:0440308 1:0407481 4:41|10{5

0:3 0:8856109 0:88567161 6:07|10{5

0:4 0:7365279 0:73659884 7:09|10{5

0:5 0:5960522 0:59612614 7:39|10{5

0:6 0:4634961 0:46356567 6:96|10{5

0:7 0:3382102 0:33826889 5:87|10{5

0:8 0:2195811 0:21962343 4:23|10{5

0:9 0:1070279 0:1070279 2:22|10{5

0:10 4:44|10{17 {2:467|10{18 4:68|10{17

When v~0:2,a~0:02,St~0:5,M~0:5,t~1,V~0:4,c1~{0:976162,c2~{0:00022:
doi:10.1371/journal.pone.0103843.t001
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Table 2. Comparison of OHAM and ADM for lift temperature distribution.

x OHAM ADM Absolute Error

0:0 0 0 0

0:1 0:2491118 0:2561266 7:01|10{3

0:2 0:4552903 0:4634234 8:13|10{3

0:3 0:6225271 0:6282834 5:75|10{3

0:4 0:7546329 0:7563998 1:76|10{3

0:5 0:8552365 0:8528328 2:40|10{3

0:6 0:9277853 0:9220711 5:71|10{3

0:7 0:9755444 0:9680901 7:45|10{3

0:8 1:0015971 0:9944065 7:19|10{3

0:9 1:0088431 1:0041281 4:71|10{3

0:10 1:0000000000000004 0:99999999999 1:16|10{15

v~0:2,a~0:02,St~0:5,Pr~0:6, t~10,V~0:4,Brandc1~{0:02275,c2~{0:0:023719254,c3~{0:933274,c4~{0:004472:

doi:10.1371/journal.pone.0103843.t002

Table 3. Comparison of OHAM and ADM for drainage velocity profile.

x OHAM ADM Absolute Error

0:0 0:2162092 0:2162092 0

0:1 0:21480638 0:21480528 1:11|10{6

0:2 0:20897722 0:20897538 1:84|10{6

0:3 0:19867913 0:19867691 2:22|10{6

0:4 0:18393209 0:18392977 2:32|10{6

0:5 0:16473082 0:16472863 2:18|10{6

0:6 0:14104521 0:14104332 1:89|10{6

0:7 0:11282061 0:16472863 1:48|10{6

0:8 0:07997793 0:07997691 1:01|10{6

0:9 0:04241369 0:04241319 5:16|10{7

1:0 3:778|10{18 3:084|10{19 3:46|10{18

When v~0:2,a~0:02,St~0:5,M~0:5,t~5,V~0:4,c1~{0:98464,c2~{0:0000174:
doi:10.1371/journal.pone.0103843.t003
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u(x,t)~u0(x,t)zu1(x,t)zu2(x,t), ð59Þ

Inserting components solutions from Eqs. (54,56,58), in the

series solution (59), we have:
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ð60Þ

The OHAM Solution of Lifting Problem
We construct a homotopy for Eqs. (16, 17) from the standard

form of OHAM in Eq (34).

According to aforementioned discussion, the zero, first and

second components problems are:
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Table 4. Comparison of OHAM and ADM for drainage temperature distribution.

x OHAM ADM Absolute Error

0:0 0 0 0

0:1 0:1143952 0:1129199 1:47|10{3

0:2 0:2216496 0:2196459 2:01|10{3

0:3 0:3239788 0:3219799 1:99|10{3

0:4 0:4239788 0:4213712 1:73|10{3

0:5 0:5203412 0:5189430 1:39|10{3

0:6 0:6166043 0:6155371 1:07|10{3

0:7 0:7125031 0:7117224 7:81|10{4

0:8 0:8083602 0:8078271 5:33|10{4

0:9 0:9042453 0:9039558 2:89|10{4

1:0 1 1 5:67|10{17

v~0:2,a~0:02,St~0:5, M~0:5,Pr~0:6,t~10,V~0:4,c1~{2:4631,c2~{3:187955,c3~{0:780916,c4~{0:08042:

doi:10.1371/journal.pone.0103843.t004
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Solving Eqs. (61–66) for zero, first and second components of

velocity and temperature profiles by using the corresponding

boundary conditions given in Eqs. (21,22) respectively.
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The second term solution for velocity and temperature profiles

are too long, therefore, only graphical representations up to

second order are given.

The arbitrary constants ci,i~1,2,3,4: are found by using the

residual:

R~L u(x,t,ci)ð ÞzG(u(x,t,ci))zN u(x,t,ci)ð Þ, ð71Þ

According to Eq.(36), the arbitrary constants for velocity

components u0(x,t),u1(x,t),u2(x,t) are c1~{0:97616,c2~

{0:00022:
For temperature distribution, the arbitrary constants are

c1~{0:02275,c2~{0:02371,c3~{0:93327,c4~{0:00447:

Formulation of Drainage Problem

The geometry and assumptions of the problem are the same as

in the previous problem. Consider, a film of non-Newtonian liquid

drains down the vertical belt, the belt is only oscillating and the

fluid drain down the belt due to gravity, so the gravity in this case

is opposite to the previous case. Therefore, the Stock number is

positively mentioned in Eq. (19). The coordinate system is selected

same as in previous case. Assuming the flow is unsteady and

laminar, fluid shear forces keeps the gravity balanced and the film

thickness remains constant.

In drainage problem Eq. (19) reduced as

Lu

Lt
~

L2u

Lx2
za

L
Lt

L2u

Lx2

 !
zSt{Mu, ð72Þ

Boundary conditions for drainage problem when belt is only

oscillating:

u(0,t)~jCosvt,
Lu(d,t)

Lx
~0, ð73Þ

Using non-dimensional variables from Eq. (14), the boundary

conditions (57) of drainage problem are reduced to:

u0(0,t)~jCosvt,
Lu0(1,t)

Lx
~0, ð74Þ

The ADM Solution of Drainage problem
The model for drainage problem is the same as for the lift

problem. The only difference in this problem is that the belt is only

oscillating and due to the draining of thin film, stock number is

positively mentioned in Eq. (72).

The boundary conditions for temperature distribution are the

same as given in Eq. (22) but solution of these components is

different. It depends on the different velocity profile of drainage

and lift problems. Due to lengthy analytical calculation, solutions

of temperature distribution up to first order terms are included

whereas the graphical representations up to second order terms

are given. Using boundary conditions (22) and (73) into Eqs. (48–

53), the component solutions are obtained as:

Components of the Lift Problem up to Second Order
are:
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The series solution up to the second component is

u(x,t)~u0(x,t)zu1(x,t)zu2(x,t), ð80Þ

inserting component solutions from Eqs. (75,77,79), in the series

solution (80), we have:
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The second term solution for temperature distribution are

lengthy, therefore, only graphical representations up to second

order are given.

The OHAM Solution of Drainage Problem
From the standard form of OHAM in Eq.(34), we construct a

homotopy for Eqs. (72, 20).

According to the aforementioned discussion, the zero, first and

second component problems are:
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L2H0

Lx2
~0, ð83Þ
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Solving Eqs. (72,20) by using the corresponding boundary

conditions given in Eq. (22) and in Eq. (74). The zero component

solution obtained as:

u0~jCos tv½ �{ jCos tv½ �z St

2

� �
x{

St

2

� �
x2, ð88Þ

H0(x,t)~x, ð89Þ

u1(x,t)~c1
Mj

3
Cos tv½ �{ jv

3
Sin tv½ �z MSt

24
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The auxiliary constants for the series solution of velocity profile

and temperature distribution are respectively:

c1~{0:98464,c1~{0:000017andc1~{2:4631,

c2~3:187955,c3~{0:780916,c4~{0:08042

Results and Discussion

In this article, we have presented and interpreted various results

for the thin film flow on a vertical oscillating belt. Figures 1 and 2

show the geometry of lift and drainage velocity profiles. The effect

of non-dimensional physical parameter like Stock number St,

Brinkman number Br, Prandtl number Pr and Frequency

parameter v in lifting and drainage problems have been discussed

in Figs. 3–22. A comparison of the ADM and OHAM solutions

for velocity and temperature distribution has been shown in

Figs. 3–6 for different values of physical parameters. From these

Figs., we conclude that the ADM and OHAM solutions are in

quite agreement. The numerical comparison of ADM and OHAM

at different time level have been computed in Tables 1–4 for both

lift and drainage velocity and temperature profiles respectively. It

has been concluded from these tables that absolute error between

ADM and OHAM decreases with decrease in time level, while it

increases with increase in time level. As the flow of fluid film is

subjected to the oscillation as well as translation of the belt, so the

velocity and temperature distribution of the fluid film will be high

at the surface of the belt comparatively to the residual domain and

will decrease gradually for the fluid film away from the surface of

the belt. These conclusions have been observed from Tables 1–4

and Figs 7–14. Fig. 15 shows that velocity increases in lift flow

when Stock number St increases. Physically, it is due to friction

which seems smaller near the belt and higher at the surface of the

fluid. The velocity of fluid decreases with increasing Stock number

in drainage problem shown in Fig 16. Physically, it is due to the

fact that increasing Stock number causes the fluids’ thickness and

reduces its flow. When the flow of fluid is downward in oscillation,

velocity increases while it decreases when the flow of fluid is

upward. Variations of the magnetic parameter M on lift and

drainage velocity profiles have been studied in Figs. 17, 18.

Increase in magnetic parameter increases the velocity profile in lift

problem but in drainage problem, it is clear that the boundary

layer thickness is reciprocal to the transverse magnetic field and

velocity decreases as flow progresses towards the surface of the
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fluid. In lift and drainage velocity profiles, increase in non-

dimensional frequency v changes the direction of fluid flow

frequently and steadily converges to a point on the surface of the

fluid. If the belt velocity increases with oscillation, the centripetal

force decreases and, as a result, velocity of fluid decreases. Figs. 19

and 20 show the effect of Brinkman number Br, for lift and

drainage temperature distribution. The temperature distribution

increases as the Br increases and becomes more trampled for

higher values of Br. Figs. 21, 22 show the effect of Prandtl number

Pr on the lift and drainage temperature distribution. In Eq. (20)

Prandtl number Pr is reciprocal to other physical parameters. So

increase in Prandtl number Pr decreases the temperature

distribution.

Conclusion

In this article, we have modeled the thin film flow of unsteady

second grade fluid on a vertical oscillating belt. The belt is

oscillating and translating for lift velocity distribution while belt is

only oscillating for drainage velocity distribution in the form of

partial differential equation. Both problems have been solved

analytically by ADM and OHAM. The comparison of ADM and

OHAM has been derived graphically and numerically. We have

concluded that the velocity and temperature distribution of the

fluid film will be high at the surface of the belt comparatively to the

residual domain and will decrease gradually for the fluid film away

from the surface of the belt. Expression for velocity and

temperature fields have been resulted and sketched. The effects

of physical parameters have been sketched and discussed.
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