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ABSTRACT

This work investigates a numerical method for the second kind Fredholm
integral equation with weakly singular kernel k(x, y), in particular, when k(x,y) =
In|z—y|, and k(z,y) = |[z—y|™*, —1 < z,y < 1,0 < a < 1. The solutions of such
equations may exhibit a singular behaviour in the neighbourhood of the endpoints
x = +1. We introduce a new smoothing transformation based on the Kress
transformation for solving weakly singular Fredholm integral equations of the
second kind, and then using the Hermite smoothing transformation as a standard.
With the transformation an equation which is still weakly singular is obtained,
but whose solution is smoother. The transformed equation is then solved
numerically by product integration methods with interpolating polynomials. Two
types of interpolating polynomials, namely the Gauss-Legendre and Chebyshev
polynomials, have been used. Numerical examples are presented to investigate

the performance of the former.
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ABSTRAK

Kajian ini adalah untuk menyelidiki kaedah berangka bagi persamaan
kamiran Fredholm jenis kedua dengan inti aneh secara lemah k(z,y), khususnya,
apabila k(z,y) = In|z — y|, dan k(z,y) = |z —y|™, -1 < z,y < 1,0 <
a < 1. Penyelesaian bagi persamaan ini mempamerkan perilaku singular dalam
kejiranan titik hujung x = 41. Diperkenalkan juga penjelmaan berdasarkan
penjelmaan Kress untuk menyelesaikan kelemahan singular persamaan kamiran
Fredholm jenis kedua, seterusnya menggunakan penjelmaan Hermite, sebagai
piawai. Dengan penjelmaan ini persamaan yang masih lemah, diperolehi tetapi
penyelesaiannya lebih licin. Persamaan penjelmaan kemudian diselesaikan secara
berangka dengan kaedah hasildarab kamiran bersama polinomial interpolasi. Dua
jenis polinomial interpolasi, Gauss-Legendre dan Chebyshev, telah digunakan.

Contoh berangka diberikan menunjukkan keberkesanan kaedah ini.
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CHAPTER 1

PRELIMINARY REMARKS

1.1 Introduction

An integral equation is an equation in which the unknown function f(x)
to be determined appears under the integral sign. A typical form of an integral
equation in f(z) is of the form

B(z)
$) =) [ k) iy = o), (1)
where k(z,y) is called the kernel of the integral equation, and «(z) and B(x) are
the limits of integration. It is important to point out that the kernel k(x,y) and

the function g(x) in (1.1) are given in advance, g(x) is called input function.

The standard form of a Volterra linear integral equation, where the limits

of integration are functions of rather than constants, are of the form

o) i) - [ ke, y)f()dy = g(z), a<w<b (1.2)

and the standard form of a Fredholm linear integral equation, where the limits

of integration a(x) and f(x) are constants (say a and b), is given by the form

B(x) () — A / ke, 9)f(y)dy = g(x), a<z,y<b (13)



where the kernel of the integral equation, k(z,y), and the function g(z) are given
in advance, and A\ is a parameter. The equations (1.2) and (1.3) is called linear
because the unknown function f(x) under the integral sign occurs linearly, i.e,

the power of f(x) is one.

The value of ¢(x) will give rise to the following kinds of Fredholm linear

integral equations:

1. When ¢(x) = 0, equation (1.3) becomes

g(z) + A / k(e 9)f(y)dy =0, a<ay<b (1.4)

and is called Fredholm integral equation of the first kind.

2. When ¢(z) = 1, equation (1.3) becomes

b
f(2) — A / k(o 9)f (9)dy = 9(), a<zy<b (1.5)

and is called linear Fredholm integral equation of the second kind. In fact, the
form of equation (1.5) can be obtained from (1.3) by dividing both sides of (1.3)
by ¢(x), provided that ¢(x) # 0,

As a special case of equation (1.5) when g(z) = 0, we have the equation

f() - A / ke y)f()dy =0, a<ay<b (1.6)

By a boundary value problem for an ordinary differential equation of n*
order, we mean the problem of determining the solution of the equation in a
certain interval, on the boundaries of which the solution and its derivatives of
order not higher than n — 1 take on prescribed values, or satisfy given relations.
These problems lead to Fredholm integral equations (see Pogorzelski (1966),
p.221).

The boundary value problems for partial differential equations the

parabolic and hyperbolic type lead to Volterra integral equations, while the



boundary value problems for partial differential equations of the elliptic type

yield Fredholm equations.

The solution of the Dirichlet and von Neumann problems are one of

applications of the theory of Fredholm equation (see Pogorzelski (1966), p.230).

Equation (1.1) is called singular if the lower limit, the upper limit or both
limits of integration are infinite. In addition, the equation (1.1) is also called a
singular integral equation if the kernel k(z,y) becomes infinite at one or more

points in the domain of integration (see Wazwaz (1997), p.7).

The kernels which become unbounded at z = y, for example
E(x,y) =z —y| ™ 0<a <1,

or

k?(l’,y) = 1H|£L’ - yla

are said to have a weak singularties (see Baker (1977), p.68). The case where
k(z,y) and g(x) are piecewise-continuous, with finite jump discontinuities only
on lines parallel to the coordinate axes; these ‘singularities’ are called ‘mild’ (see

Baker (1977), p.526).

Supposing that our functions k(z,y) and g(x) are piecewise-continuous
and bounded, then in solving (1.6) we seek values of the parameter A\ for which
(1.6) has a non-trivial solution f(x). Such a value X is called a characteristic

value and the solution is called the eigenfunction (see Baker (1977), p. 4).

In general we cannot guarantee the existence of any solution A # 0 for
equation (1.6). In particular if the kernel k(z,y) is not identically zero, real, and
k(x,y) = k(y,x) ( in this case k(x,y) is said to be real and symmetric), there is
at least one non-zero characteristic value and all of the characteristic values are

real.



A value X such that the equation (1.5) is uniquely solvable (when g(z)
is piecewise-continuous but otherwise arbitrary) is known as a regular value. If
A is a characteristic value and v (z) a corresponding eigenfunction then to any
solution f(x) of equation (1.5) there corresponds another solution f(z) + a(z),
where « is arbitrary. Thus if A is a characteristic value it cannot be a regular
value. Moreover, if X is not a characteristic value it can be shown that equation

(1.5) has a unique solution, for arbitrary g(x), and hence that A is a regular value

(see Baker (1977), p. 15).

The previous results, which are about uniqueness and existence of the
solution of Fredholm integral equations of the first and second kinds, are obtained
under the supposition that the kernel k(x,y) and the input function g(z) are
piecewise-continuous and bounded. Additional consideration of weakly singular
Fredholm integral equation requires some concepts such as compact integral
operators, and Banach spaces; furthermore it requires some theorems like the
Fredholm Alternative. Consider a weakly singular Fredholm integral equation of
the second kind of the form

f(2) - A / k(e 0)f(y)dy = g(z) —1<ay<l, (L.7)

1
with
k(z,y) =z —y| %, 0<a<l,
or
k(z,y) = Inl|z —yl.
It can be proved that (1.7) has a unique solution if and only if the corresponding

homogeneous equation has only the trivial solution; for more details see Atkinson

(1997), pages 6-13.

1.2 Problem Statement

This dissertation introduces a new smoothing transformation based on

the Kress transformation for solving weakly singular Fredholm integral equations



of the second kind, and then using the Hermite smoothing transformation as a

standard, investigates the performance of the former.

Consider weakly singular Fredholm integral equation of second kind of the

form

f(2) - A / Ko 9) f()dy = g(z) —1<ay<l, (18)

1

with weakly singular kernels of one of the following forms:
Abel kernel
k(x,y) =z —y| ™ 0<a <1,

logarithmic kernel

k(ﬁay) = hlll‘ - yla

where —1 <z < 1.

The numerical solution of (1.8) is closely related to the solution of a linear
algebraic system. Indeed, the main goal of the numerical methods to solve (1.8) is
to reduce it approximately to a linear algebraic system. Then the linear algebraic
system is solved to obtain an approximate solution of (1.8) as shown in the next

chapters.

The numerical treatment of weakly singular integral equations should take
into account the nature of the singularities at the endpoints x = 1. Some of the

techniques that can be used to solve these integral equations are as follows:

1. Canceling the singularity (of the kernel).

2. Modified quadrature method.

3. Smoothing the kernel.

4. Approximating the kernel by a degenerate kernel.

5. Expansion methods (Galerkin and collocation methods).

6. Product integration.



Kress (1990) introduces an algebraic transformation for smoothing the
solution of a boundary Fredholm integral equation in domains with corners.
The solution of this integral equation has a singularity at the corner point. He
considers integral equations of the second kind in the slightly unconventional
form, and supposes that the input function is continuous, so we will focus on
using of his transformation when the input function g(x) is smooth. We will do
some modifications of the Kress transformation to be applicable with non-smooth

input functions. More details for these transformations will be given later.

Elliott and Préssdorf (1995) introduce a transformation of [0,1] onto itself
such that an arbitrary number of derivatives vanish at the end points 0 and 1. If
the transformed kernel is dominated near the origin by a Mellin kernel then they
give conditions under which the use of a modified Euler-Maclaurin quadrature
rule and the Nystrom method gives an approximate solution which converges to

the exact solution of the original equation.

Monegato and Scuderi (1998) introduce a simple smoothing change
of variable to solve one-dimensional linear weakly singular integral equations
on bounded intervals, with input functions which may be smooth or not.
In both cases either the input function is smooth or non-smooth, they
define the smoothing transformation w = w(t) by using piecewise Hermite
interpolation polynomial Hy;(t), so we will call this transformation as the Hermite
transformation. We will focus on using the Hermite smoothing transformation
for both cases as a standard. We will give more details for this transformation

later.

1.3  Objectives of the Study

1. Using the Hermite smoothing transformation, reduce a second kind

Fredholm integral equation with a weakly singular kernel, for both smooth



and non-smooth input functions, to an equivalent equation with smoother

solution.

2. Using the Kress smoothing transformation, reduce a second kind Fredholm
integral equations with a weakly singular kernel, for smooth input functions,

to an equivalent equation with smoother solution.

3. Introduce a new transformation by modifying the Kress transformation so

that it can be applied to non-smooth input functions.

4. Using the modified Kress transformation, reduce a second kind Fredholm
integral equation with a weakly singular kernel, for non-smooth input

functions, to an equivalent equation with smoother solution.
5. Solve the new transformed equation using the product integration method.

6. Compare the numerical results from the transformations.

1.4  Scope of the Study

This dissertation focuses on introducing a new usage of the Kress
smoothing transformation for solving weakly singular Fredholm integral equation
of second kind, and then using the Hermite smoothing transformation as a

standard, investigates the performance of the former.

Firstly, we shall introduce a quadrature formula for the numerical

evaluation of integrals of the form

/11 f(2)dx, (1.9)

where the integrand is continuous on the interval (-1,1) and has singularities at
the endpoints £1. The idea of the new quadrature formula is to use the Hermite
and Kress smoothing transformations to reduce the integral (1.9) to an equivalent

integral with a smooth integrand.



Next, each transformation will be used to reduce, respectively, a second
kind Fredholm integral equation with a weakly singular kernel to an equivalent

equation with smoother solution.

The new transformed equation will be discretized using the product
integration method to obtain an equivalent linear algebraic system. The following

product integration methods will be used:

1. Product integration with Gauss-Legendre points and weights.

2. Product integration with Clenshaw-Curtis (practical Chebyshev) points.

The linear system will be solved using the MATLAB software (refer to

Rosenberg (2001)) to obtain an approximate solution to the integral equation.

1.5 Simulation Tool

MATLAB is a language for mathematical computations whose
fundamental data types are vectors and matrices. It is distinguished from
languages such as FORTRAN and C/C++ by operating at a higher mathematical
level, including hundreds of operations such as matrix inversion, the singular value
decomposition, and the fast Fourier transform as built-in commands. It is also
a problem-solving environment, processing top-level commends by an interpreter

rather than a compiler and providing in-line access to 2D and 3D graphics.

The version of MATLAB, MATLABY7.0, is used in the present study, and
the programs are written to reduce an integral equation to a linear algebraic
system, and to calculate the numerical solution of the algebraic problem. The

calculations are done on Intel Pentium 4 2.4GHz Personal Computer.



1.6 Dissertation’s Plan

This dissertation contains six chapters.

Chapter 2 is a literature review of some important numerical methods, the
solution behaviour, the Hermite smoothing transformation and Kress smoothing
transformation. Chapter 3 contains a discussion of the product integration
method with Gaussian abscissae and product integration method with Curtis-
Clenshaw points, and the application of the two methods to solving weakly
singular Fredholm integral equations of the second kind with Abel and logarithmic
kernels. Chapter 4 discusses the quadrature formula to obtain a numerical
approximation of integrals with singularities at the endpoints of the interval of
the integration by using the smoothing transformations. Chapter 5 presents the
numerical results of this study. Finally, a conclusion of the work is given in

Chapter 6.
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APPENDICES

APPENDIX A

MATLAB program to find the approximation

matrix using Gauss-Legendre method.

% gau_point.m
function [t,wg] = gau_point(n)
nl=n+1; el=nl1*(nl+1);
if mod(nl1,2)==0
m=nl/2
else
m=(nl+1)/2
end

for i=1:m
t=(4*-1)*pi/(4*n1+2); xo=(1-(1-1/n1)/(8*n1"2))*cos(t);
pkml=1; pk=xo;
for k=2:nl
tl=xo*pk; pkpl=tl-pkml-(t1-pkml)/k+t1;
pkml=pk; pk=pkpl;
end
den=1-x0"2; dl=n1*(pkml-xo*pk);
dpn=dl/den; dpn2=(2*xo*dpn-el*pk)/den;
dpn3=(4*xo0*dpn2+(2-el)*dpn)/den;
dpnd=(6*xo*dpn3+(6-el)*dpn2)/den;
u=pk/dpn; v=dpn2/dpn;
h=-u*(14-0.5*u*(v+u*(v"2-dpn3/(3*dpn))));
p=pk+h*(dpn+0.5*h*(dpn2+h/3*(dpn3+0.25*h*dpn4)));
dp=dpn+h*(dpn2+0.5*h*(dpn3+h*dpn4/3));



h=h-p/dp; x(i)=xo+h;
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fx=d1-h*el*(pk+0.5*h*(dpn+h/3*(dpn2+0.25*h*(dpn3+0.2*h*dpn4d))));

w(i)=2#(1-x(1)"2) /("2);
end
if (m+m > nl )
x(m)=0;
end
if (m+m >nl)
t(m)=0;
we(m)=vw(m);
for i=0:m-2
t(i+1)=-x(i+1); t(i+m+1)=x(m-i-1);
wg(i+1)=w(i+1); wg(i+m+1)=w(m-i-1);
end
else
for i=0:m-1
t(i+1)=-x(i+1); t(i+m+1)=x(m-i);
wg(i+l)=w(i+1); wg(i+m+1)=w(m-i);
end

end

. For kernel k(z,y) = |z —y| 2

% Gau_Leg_Abs_Mat.m
function [w, p] = Gau_Leg_Abs_Mat(n)
[t,wg] = gau_point(n);
for j=0:n
p(Lj+1)=1;
p(2,j+1)=t(j+1);
end
for i=1:n-1
for j=0:n
D2+ 1)=((2HH 1) (1) *p(ic+1,j+1)#p(i+1)) /(+1);
end
end
for i=0:n
a(1,i+1)=2*(sqrt(14+t(i+1))+sqrt(1-t(i+1)));
end
for i=0:n

a(2,i+1)=t(i+1)*a(1,i+1)+2*((1-t(i+1))~1.5-(1+t(i+1))~1.5)/3;

end



for k=1:n-1

for i=0:n

a(k+2,i+1)=2%((2%k+1)*t(i+1)*a(k+1,i+1)-0.5%(2%k-1)*a(k,i+1)) /...

(2*k+3);
end
end
for i=0:n
for j=0:n
sum1=0;
for k=0:n
suml=suml+(2*k+1)*p(k+1,j+1)*a(k+1,i+1)/2;
end
w(i+1,j+1)=wg(j+1)*suml,;
end
end

2. For kernel k(z,y) =In|x — y|

% Gau_Leg_log_Mat.m
function [w,p] = Gau_Leg_Log_Mat(n)
[t,wg] = gau_point(n);
for j=0:n
p(1,j+1)=1;
p(2,j+1)=t(j+1);
end
for i=1:n-1
for j=0:n
D2+ 1) =((2H 1) (1) p (it 1,41 +1)) /(+1);
end
end
for i=0:n
a(1,i+1)=(14+t(i+1))*log(1+t(i+1))+(1-t(i+1))*log(1-t(i+1))-2;
end
for i=0:n
a(2,i+1)=0.5%(1-t(i+1)~2)*log((1-t(i+1))/(14+t(i+1)))-t(i+1);
end
for i=0:n
a(3,i+1)=0.5%t(1+1)*(1-t(i+1)~2)*log((1-t(i+1)) /(1+t(i+1)))...
+(2-3*t(i+1)"2)/3;
end
for k=2:n-1
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for i=0:n
a(k+2,i+1)=((2*k+1)*t(i+1)*a(k+1,i+1)-(k-1)*a(k,i+1))/(k+2);
end
end
for i=0:n
for j=0:n
sum1=0;
for k=0:n
suml=suml+(2*k+1)*p(k+1,j+1)*a(k+1,i+1)/2;
end
w(i+1,j4+1)=wg(j+1)*suml;
end
end
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APPENDIX B

MATLAB program to find the approximation

matrix using Clenshaw-Curtis method

1. For kernel k(z,y) = |z —y| 2

% Cel_Cur_Abs_Mat.m
function [w,t] = Cel_Cur_Abs_Mat(m)
for i=0:m
t(i+1)=cos(i*pi/m);
end
for i=0:m
a(1,i4+1)=2*(sqrt(1+t(i+1))+sqrt(1-t(i+1)));
end
for i=0:m
a(2,i+1)=t(i+1)*a(1,i4+1)+2*((1-t(i+1))"1.5-(1+t(i+1))"1.5) /3;
end
for i=0:m
a(3,i+1)=4*t(i+1)*a(2,i+1)-(2*(t(i+1))"2 +1)*a(1,i+1)...
+4*((1-t(i+1))~(2.5)+(14+t(i+1))"(2.5))/5;

end
for j=2:m-1
for i=0:m
a(j+2,i4+1)=(2*j+2)*(2*t(i+1)*a(j+1,i+1)-(2%j-3)*a(j,i+1) /(2*(j-1))...
+2%(sqrt(1-t(i+1))-((-1)7)) *saqrt(1+t(i41))) /(1-j72)) / (2 +3);
end
end

p(1)=0.5; p(m+1)=0.5;
for i=1:m-1
p(i+1)=1;
end
for j=0:m
for i=0:m
sum=(a(1,i+1)+a(m+1,i+1)*cos(j*pi))/2;
for k=1:m-1
sum=sum-+a(k+1,i+1)*cos(j*k*pi/m);
end
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w(i+1,j4+1)=2%p(j+1)* sum/m;
end

end

. For kernel k(x,y) =In|x —y

% Cel_Cur_log_Mat.m
function [w,t] = Cel_Cur_Log_Mat(n)

for i=0:n
t(i+1)=cos((i*pi) /n);
end
a(1,1) =2*log(2)-2;  a(l,n+1)=2*log(2)-2;
for j=1:n-1

a(1,j+1)=((+1)+1)*log(1+t(j+1))+(1-t(j+1))*log(1-t(j+1))-2;
end
a(2,1) =-a(1,1)-142*log(2); a(2,n+1)=a(l,n+1)+1-2*log(2);
for j=1:n-1
a(2,j+1)=t(j+1)*(a(1,j+1)+1)+0.5*(((1-t(j+1))~2)*log(1-t(j+1))...
-(14t(j+1))2)*log(1+t(j+1)));
end
a(3,1) =-3*a(1,1)-4*a(2,1)+16*(3*log(2)-1)/9;
a(3,n+1)=-3*a(1,n+1)+4*a(2,n+1)+16*(3*log(2)-1)/9;
for j=1:n-1
a(3,j+1)=-(142*%t(j+1)~2)*a(1,j+1)+4*t(j+1)*a(2,j+1)...
+(6F(((14+t(j41))~3)*log(1+t(j+1))...
+((1-6(j+1))"3) *log(1-t(j+1)))-4* (143*(t(j+1))"2)) /9;
end
a(4,1) =-10*a(1,1)-15*a(2,1)-6*a(3,1)+16*log(2)-4;
a(4,n+1)=10*a(1,n+1)-15*a(2,n+1)+6*a(3,n+1)-16*log(2)+4;
for j=1:n-1
a(4,j+1)=2%t(j+1)*(3+2*t(j+1)"2)*a(1,j+1)-3*(1+4*t(j+1)"2)*a(2,j+1)...
+6*t(j4+1)*a(3,j+1)+(1-t(j41)) "4 log(1-t(j+1))-(1+t(j+1)) 4*...
log(1+t(j+1))4+2%t(j+1)* (14t (j+1)"2);
end
for i=3:n-1

if( j==0)

a(i+2,j+1)= (1+1) (-2* (1+1,J+1) (i-2)*a(i,j+1)/(i-1)+4*log(2) /(1-i"2)...
6*(1-(-1)"1)/((i"2-1)*(i"2-4)))/ (i+2);

elseif (j==n)

a(i+2,j+1)=(>+1)*(2*a(i+1,j+1)-(i- )*a(lj—i—l)/)(

(1-172)-6*(1-(-1)"1) /((i"2-1)*(i"2-4))

i-1)-4%(-1)"i*log(2) /..
)/ (i+2);
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else
a(i+2,j+1)=>1+1)*(2*%t(j
+2%((1- t(J—I—l))*log(l t(]
-6%(1-(-1)71)/((i"2-1)*(i

end

+1)*a (i—i—l J+1)-(-2)*a(i,j+1)/(-1)...
F1)-(-1) (1 (1)) Flog(1641)))/(1°2)...
"2-4)))/(1+2);
end
end
p(1)=0.5; p(n+1)=0.5;
for i=1:n-1
p(i+1)=1;
end
for j=0:n
for i=0:n
suml=(a(1,i+1)+a(n+1,i+1)*cos(j*pi))/2;
for k=1:n-1
suml=suml-+a(k+1,i+1)*cos(j*k*pi/n);
end
w(i+1,j4+1)=2%p(j+1)*suml/n;
end

end
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APPENDIX C

MATLAB program which solves a weakly singular Fredholm integral

equation with Abel kernel using Gauss-Legendre method

PART I Computation of the error norm between the exact and approximate

solutions.
% main.m
clear
n=256; % choose n
p=2; % choose p

[x,wg|=gau_point(n);
[B, pl]=Gau_Leg_Abs_Mat(n);
[w,wd]=w_wd(x,p); % For Hermite, replace it by ‘[w,wd]=h_hd(x,n)’.

/

xin=(wd.*g(w)).”;

% delta beginning
alpha=0.5;
for i=0:n
for j=0:n
if(i==j)
if(wd(i+1)==0)
delta(i+1,j4+1)=0;
else
delta(i+1,j+1)=((abs(wd(i+1)))"(-alpha))*wd(i+1);
end
else
delta(i+1,j+1)=((abs((w(i+1)-w(j+1))/(x(i+1)-x(j+1))))...
~(-alpha))*wd(i+1);
end
end
end
% delta end
A=B.*delta,
approximate_solution=(eye(n+1)-(1/pi).*A)\ xi_n;
exact_solution=(wd.*f(w)).’;

norm_infinity=norm (exact_solution-approximate_solution,inf)



clear

% w_wd.m

function [w,wd]=w_wd(t,p)

al=v(t,p).”p; a2=v(-t,p)."p; bl=v(t,p).”(p-1); b2=v(-t,p).”(p-1);

w=(al-a2)./(al+a2);

wd=2.%p.*(al.*b2.*vd(-t,p)+a2.*b1.*vd(t,p))./((al+a2)."2);

function v=v(t,p)

v = (1/2-1/p).*t.”3+t./p+1/2;
function vd=vd(t,p)

vd = 3.%(1/2-1/p).*t."2+1/p;

% h_-hd.m
function [h,hd]=h_hd(t,n)
syms y
h1=1980*y"8*(1+y)"3;
h2=1980*y"~8*(1-y)"3;
for i=0:n
if (t(i+1)<=0)
h(i+1)=double(int(h1,-1,t(i4+1))-1);
hd(i+1)=hd1(t(i+1));
else
h(i+1)=double(int(h2,0,t(i+1)));
hd(i+1)=hd2(t(i+1));
end
end
function z=hd1(r)
z=1980*(r"8)*((14+r)"3);
function z=hd2(r)
z=1980*(r~8)*((1-r)"3);

% g.m
function g=g(x)
x1=(14x).70.5; x2=(1-x).~0.5;

g=x."3-(2/pi) *(((-1/7) *x1.7T+(3/5) Fx. (x1.5)-(x.72) *(x1."3)+..
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(x.73).*x1)+((1/7).*x2.77+(3/5) . *x.*(x2.75) +(x.72).*(x2.73) +(x."3).*x2));

% f.m
function f=f(x);
f=x.73;
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PART II Computation of the absolute error between the reference and

approximate solutions.

% main.m

clear

n=128; % choose n
p=3; % choose p

[t,wg]|=gau_point(n);
[B,pl]=Gau_Leg_Abs_Mat(n);
[w,wd]=w_wd(t,p);
xin=(wd.*g(w)).”;
% delta beginning
alpha=0.5;
for i=0:n
for j=0:n
if(i==j)
if(wd(i+1)==0)
delta(i+1,j4+1)=0;
else
delta(i+1,j+1)=((abs(wd(i+1)))" (-alpha))*wd(i+1);
end
else
delta(i+1,j+1)=((abs((w(i+1)-w(j+1))/(t(i+1)-t(j+1))))...
~(-alpha))*wd(i+1);
end
end
end
% delta end
A=B.*delta;
approximate_solution=(eye(n+1)-(1/pi).*A)\xi_n;
% Computation of the approximate solution at the vector x
x=1[0.10.20.30.40.50.6 0.70.8 0.9];
for m=0:n
p2(m+1,:)=Leg(m,x);
end
for j=0:n
sum=0;
for m=0:n
sum=sum+(m+0.5)*p1(m+1,j4+1).*p2(m—+1,:);
end
phi(j+1,:)=wg(j+1).*sum;
end



sum=>0.%x;
for j=0:n
sum=sum-+approximate_solution(j+1).*phi(j+1,:);

end

thetan = sum.’;

theta_256=[-5.89029345423331
-4.72472398875914
-3.43967128944800
-2.26330205451274
-1.34307342163110
-0.71640457082352
-0.33606671856362
-0.12735966541007
-0.02774404425589];

absolut_error = abs(theta_256-theta n)

clear

% w_wd.m

function [w,wd]|=w_wd(t,p)

al=v(t,p)."p; a2=v(-t,p)."p; bl=v(t,p)."(p-1); b2=v(-t,p).” (p-1);
w=(al-a2)./(al+a2);
wd=2.%p.*(al.*b2.*vd(-t,p)+a2.*b1l.*vd(t,p))./((al+a2)."2);
function v=v(t,p)

v = (1/2-1/p).*t."3+t./p+1/2;

function vd=vd(t,p)

vd = 3.%(1/2-1/p).*t."2+1/p;

% g.m
function g=g(x)
g=abs(x);

% Leg.m

function y = Leg (n,x)

P3(1,:))=14x-x;

P3(2,:)=x;

for i=1:n-1
P3(i+1+1,:)=((2%i+1). 5. *P3(i+1,:)-1.5P3(1,:)) /(i41);

end

y=P3(n+1,:);
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APPENDIX D

MATLAB program which solves a weakly singular Fredholm integral

equation with logarithmic kernel using Clenshaw-Curtis method

% main.m % Computes the error norm between the exact and

clear % approximate solutions.
n=256; % choose n
p=2; % choose p

[C,x] = Cel_Cur_Log_Mat(n);
[W,Wd] :W,Wd(X,p);

/

xin=(wd.*g(w)).”;

% B beginning
gamma(1)=0.5; gamma(n+1)=0.5;
for i=1:n-1
gamma(i+1)=1;
end
for i=0:n
for j=0:n
sum=0;
for m=0:floor(n/2)
sum=sum-+gamma(2*m+1)*cos((2*m*j*pi) /n)/(1-4*m"2);
end
B(i+1,j+1)=(4*gamma(j+1)/n)*sum;
end
end

% B end

% delta beginning
for i=0:n
for j=0:n
if(i==j)
if(wd(i+1)==0)
delta(i+1,j4+1)=0;
else
delta(i+1,j4+1)=(log(abs(wd(i+1))))*wd(i+1);
end
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else
delta(i+1,j+1)=(log(abs((w(i+1)-w(j+1))/(x(i+1)-x(j+1)))))*wd(i+1);
end
end

end
% delta end
A=((wd.")*ones(1,n+1)).*C-B.*delta;
approximate_solution=(eye(n+1)-(1/pi).*A)\xi_n;
exact_solution=(wd.*f(w)).”;
norm_infinity=norm (exact_solution-approximate_solution,inf)

clear

% w_wd.m

function [w,wd|=w_wd(t,p)

al=v(t,p)."p; a2=v(-t,p).”p; bl=v(t,p).”(p-1); b2=v(-t,p)."(p-1);
w=(al-a2)./(al4a2);
wd=2.%p.*(al.*b2.*vd(-t,p)+a2.*b1.*vd(t,p))./((al+a2)."2);
function v=v(t,p)

v = (1/2-1/p).*t."3+t./p+1/2;

function vd=vd(t,p)

vd = 3.%(1/2-1/p).*t."2+1/p;

% g.m
function g=g(x)
g=1-(1/pi).*(log((x+1)." (x+1))+log((1-x)." (1-x))-2);

% f.m
function f=f(x)
f=x-x+1;





