DESIGN OF EFFICIENT IMPLEMENTATION OF II/4 DQPSK MODULATION FOR MULTIPATH FADING CHANNELS

FAKHRUL RADZY BIN HAMDAN

A project report submitted in partially fulfillment of the requirements for the degree of Master of Engineering (Electrical-Electronics & Telecommunication)

> Faculty of Engineering Universiti Technologi Malaysia

> > NOVEMBER 2005

ACKNOWLEDGEMENT

I would like to express my gratitude to the Most Gracious and Merciful ALLAH S.W.T. Praiseworthy to Almighty Allah for giving me free will and strength to complete my Final Year Project.

To my family especially to my parents, Hj. Hamdan Bin Ahmad and Hjh. Nurul Huda Binti Saleh for their love and support and it is a great pleasure for me to express my thanks and appreciation for both of you.

I would also like to express my deepest appreciation and gratitude to my supervisor, PM Dr. Ahmad Zuri Bin Sha'ameri, for his guidance, support, and patience during my graduate education especially for my Final Year Project. He has been an invaluable source of technical knowledge and has certainly helped inspire many of the ideas expressed in this thesis. I had the great benefits of the graduate level courses MEL1042 (Advance Digital Signal Processing) and MEL1052 (Advance Digital Communication) taught by him.

Special thanks to my course mates, Syed Mohd Fairuz and Azlin for the pressuring environment having myself forced to survive among the flock, which they are exceptionally the best among the best.

May Allah bless all of you.....

ABSTRACT

This project will be base on the wireless communication using $\pi/4$ Differential Quadrature Phase Keying ($\pi/4$ DQPSK) modulation technique in the transceiver system. This modulation technique will be evaluated using the channel with the present of Additive White Gaussian Noise (AWGN) and multipath Rayleigh fading. The design of the system will be totally base on simulation. In this case the simulation tool MATLAB will be used. In this project, normal receiver structure for $\pi/4$ DQPSK was redesign by using multiplier-less method. The new receiver was designed to obtain simpler structure in term of hardware implementation where it able to reduce number of Integrated Circuit (IC) used in the design. Performance of the new receiver structure then will be evaluate base on the error performance of the system. In this case, relation of Bit-Error-Rate (BER) and Signal to Noise Ration (SNR) will be used to produce the result of error performance. Normal and new receiver structures which were design in $\pi/4$ DQPSK system will be study base on error performance and hardware complexity to obtain the most efficient result for the communication system.

ABSTRAK

Projek ini melibatkan kajian mengenai transmisi tanpa wayar yang menggunakan teknik modulasi $\pi/4$ Differential Quadrature Phase Keying ($\pi/4$ DQPSK). Teknik modulasi ini akan dikaji menggunakan laluan yang mempunyai Pertambahan Bunyi Hingar Putih Gaussian (AWGN) dan kelenturan pelbagai laluan Rayleigh (multipath Rayleigh fading). Sistem ini akan dikaji dengan menggunakan simulasi computer MATLAB. Didalam projek ini, penerima biasa akan diubah suai dan dicipta menggunakan cara tanpa pendaraban. Penerima jenis ini dicipta untuk mendapatkan struktur yang lebih mudah terutama apabila melibatkan penggunaan alatan dimana ia akan menggurangkan penggunaan penyatuan rekabentuk (IC) didalam struktur. Penerima bir din kadar Signal dan hangar akan digunakan di dalam penilaian ini untuk mendapatkan keputusan kadar kesilapan sistem. Penerima biasa dan penerima yang baru yang dicipta dengan menggunakan modulasi $\pi/4$ DQPSK akan dikaji berdasarkan kadar kesilapan dan kesenaggan hardware untuk mendapatkan keputusan yang terbaik bagi digunakan didalam sistem komunikasi.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
ACKNOWLEDGEMENT		iii
ABSTRACT		iv
ABSTRAK		V
TABLE OF CONTENT		vi
LIST OF TABLES		xi
LIST OF FIGURES		xii
LIST OF ABBREVIATION		XV
LIST OF APPENDIX		xvi

1	INTRODUCTION	1
	1.1 Background	1

	1.1.1 Modulation	2
	1.2 Problem Statements	3
	1.3 Project Objective	4
	1.4 Scope of Work	5
2	LITERATURE REVIEW	7
	2.1 Previous Researches	7
	2.2 Finding and Result	9
3	THEORITICAL FOUNDATION	10
5	3.1 Modulation Scheme in Wireless Communication System	10
	3.2 $\pi/4$ Differential Quadrature Phase Keying ($\pi/4$ DOPSK)	10
	Modulation Technique	11
	3.3 Modulation Technique	12
	3.3.1 Complex Envelope Representation	13
	3.3.2 $\pi/4$ DQPSK Signal Description	14
	3.3.3 Receiver Structure of $\pi/4$ -DQPSK	17
	3.3.3.1 Baseband Differential Detector	18
	3.3.3.2 IF Differential Detector	20
	3.3.3.3 FM Discriminator	21
	3.3.3.4 Multiplier-less Receiver Structure	22
	3.4 Transmission Channel	22
	2.4.1 Additive White Gaussian Noise (AWGN)	23
	2.4.2 Multipath Rayleigh Fading	24
	3.5 Noise Measurement	27
	3.5.1 Signal-to-Noise Ratio (SNR)	27
	3.5.2 Bit Error Rate (BER)	28
	3.6 MATLAB Simulation	29

METHODOLOGY, RESULTS AND PERFORMANCE	31
ANALYSIS	
4.1 Simulation Methodology	32
4.2 Transmitter of $\pi/4$ DQPSK Modulation System	33
4.3 Channel Configuration	36
4.4 $\pi/4$ DQPSK Modulation System Using Baseband	
Differential Detector as Receiver Structure	36
4.4.1 Model 1: Important Parameters and	
Assumption	37
4.4.2 Simulation in Phase 1: Baseband Differential	
Detector In Channel Without Noise and Fading	40
4.4.3 Simulation in Phase 2: Baseband Differential	
Detector In Channel With Noise (AWGN)	42
4.4.4 Simulation in Phase 3: Baseband Differential	
Detector In Channel With Noise (AWGN) and	
Fading (Rayleigh fading)	44
4.5 $\pi/4$ DQPSK Modulation System Using Multiplier-less	
(1 st sector) Receiver Structure	46
4.5.1 Model 2: Important Parameters and	
Assumption	47
4.5.2 Simulation in Phase 1: Multiplier-less (1 st	
sector) Receiver In Channel Without Noise and	
Fading	50
4.5.3 Simulation in Phase 2: Multiplier-less (1 st	
sector) Receiver In Channel With Noise	
(AWGN)	52
4.5.4 Simulation in Phase 3: Multiplier-less (1 st	
sector) Receiver In Channel With Noise	
(AWGN) and Fading (Rayleigh fading)	54
4.6 $\pi/4$ DQPSK Modulation System Using Multiplier-less	

(1 st and 2 nd sector) Receiver Structure	56
4.6.1 Model 3: Important Parameters and	
Assumption	57
4.6.2 Simulation in Phase 1: Multiplier-less (1 st and	
2 nd sector) Receiver In Channel Without Noise	
and Fading	60
4.6.3 Simulation in Phase 2: Multiplier-less (1 st and	
2 nd sector) Receiver In Channel With Noise	
(AWGN)	62
4.6.4 Simulation in Phase 3: Multiplier-less (1 st and	
2 nd sector) Receiver In Channel With Noise	
(AWGN) and Fading (Rayleigh fading)	64
4.7 Performance Analysis	66
4.8 Constrain and Limitation	67
4.9 Simulation Result Organization	67
4.10 Performance Analysis of Model 1: $\pi/4$ DQPSK	
Modulation System Using Baseband Differential	
Detector	69
4.10.1 Error Performance Phase 2: Channel With	
AWGN	69
4.10.2 Error Performance Phase 3: Channel With	
AWGN and Rayleigh Fading	70
4.10.3 Hardware Performance	71
4.11 Performance Analysis of Model 2: $\pi/4$ DQPSK	
Modulation System Using Multiplier-less (1 st Sector)	
Receiver	72
4.11.1 Error Performance Phase 2: Channel With	
AWGN	72
4.11.2 Error Performance Phase 3: Channel With	
AWGN and Rayleigh Fading	73
4.11.3 Hardware Performance	74

4.12 Performance Analysis of Model 2: $\pi/4$ DQPSK	
Modulation System Using Multiplier-less (1st and 2nd	
Sector) Receiver	75
4.12.1 Error Performance Phase 2: Channel With	
AWGN	75
4.12.2 Error Performance Phase 3: Channel With	
AWGN and Rayleigh Fading	76
4.12.3 Hardware Performance	77
4.13 Performance Comparison for all Models	78
4.13.1 Error Performance for Channel With AWG	78
4.13.2 Error performance for Channel With AWGN	
and Rayleigh Fading	79
4.13.3 Hardware Performance for all Models	80

5	CONCLUSION AND FUTURE WORK	81
	5.1 Conclusion	81
	5.2 Future Work	83

85

APPENDIXES

88

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO.
3.1	Carrier Phase Shifts for $\pi/4$ -DQPSK Correspondence	16
	to Various Input Bit Pairs.	
4.1	Parameters used in model 1.	37
4.2	Parameters used in model 2.	47
4.3	Parameters used in model 3.	57

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE NO.

1.1	The overall system of wireless communications.	2
3.1	Unfiltered $\pi/4$ -DQPSK Signal Constellation	17
3.2	Block diagram of a baseband differential detector	18
	receiver structure.	
3.3	Block diagram of an IF differential detector receiver	21
	structure.	
3.4	Block diagram for FM discriminator detector receiver	21
	structure.	
3.5	Relationship among the channel correlation function	25
	and power density function.	
4.1	Transmitter of $\pi/4$ DQPSK modulation technique.	35
4.2	Flow chart of the first model (baseband differential	39
	detector as receiver).	
4.3	$\pi/4$ DQPSK modulation using baseband differential	41
	detector in channel without noise and fading.	
4.4	$\pi/4$ DQPSK modulation using baseband differential	43
	detector in channel with noise (AWGN).	
4.5	$\pi/4$ DQPSK using baseband differential detector in	45
	channel with noise (AWGN) and fading (Rayleigh).	

4.6	Flow chart of the second model (multiplier-less 1 st	49
	sector as receiver).	
4.7	$\pi/4$ DQPSK modulation using multiplier-less (1 st	51
	sector) receiver in channel without noise and fading.	
4.8	$\pi/4$ DQPSK modulation using multiplier-less (1 st	53
	sector) receiver in channel with noise (AWGN).	
4.9	$\pi/4$ DQPSK modulation using multiplier-less (1 st	55
	sector) receiver in channel with noise (AWGN) and	
	fading (Rayleigh).	
4.10	Flow chart of the second model (multiplier-less 1 st and	59
	2 nd sector as receiver).	
4.11	$\pi/4$ DQPSK modulation using multiplier-less (1 st and	61
	2 nd sector) receiver in channel without noise and	
	fading.	
4.12	$\pi/4$ DQPSK modulation using multiplier-less (1 st and	63
	2 nd sector) receiver in channel with noise (AWGN).	
4.13	$\pi/4$ DQPSK modulation using multiplier-less (1 st and	65
	2 nd sector) receiver in channel with noise (AWGN)	
	and fading (Rayleigh)	
4.14	Error performance (BER vs SNR) for $\pi/4$ DQPSK	69
	modulation system using baseband differential	
	detector as receiver channel with AWGN.	
4.15	Error performance (BER vs SNR) for $\pi/4$ DQPSK	70
	modulation system using baseband differential	
	detector as receiver in channel with AWGN and	
	Rayleigh Fading.	
4.16	Baseband differential detector receiver structure.	71
4.17	Error performance (BER vs SNR) for $\pi/4$ DQPSK	72
	modulation system using multiplier-less (1 st sector) as	
	receiver in channel with AWGN.	

Error performance (BER vs SNR) for $\pi/4$ DQPSK	73
modulation system using multiplier-less (1 st sector) as	
receiver in channel with AWGN and Rayleigh Fading.	
Multipler-less (1 st sector) receiver structure.	74
Error performance (BER vs SNR) for $\pi/4$ DQPSK	75
modulation system using multiplier-less $(1^{st} and 2^{nd})$	
sector) as receiver in channel with AWGN.	
Error performance (BER vs SNR) for $\pi/4$ DQPSK	76
modulation system using multiplier-less $(1^{st} and 2^{nd})$	
sector) as receiver in channel with AWGN and	
Rayleigh Fading.	
Multipler-less (1 st and 2 nd sector) receiver structure.	77
Comparison of error performance (BER vs SNR)	78
for $\pi/4$ DQPSK modulation system using all type of	
receivers in channel with AWGN.	
Comparison of error performance (BER vs SNR)	79
for $\pi/4$ DQPSK modulation system using all type of	
receivers in channel with AWGN and Rayleigh	
Fading.	
Relationship of error performance and hardware	
implementation.	83
	Error performance (BER vs SNR) for $\pi/4$ DQPSK modulation system using multiplier-less (1 st sector) as receiver in channel with AWGN and Rayleigh Fading. Multipler-less (1 st sector) receiver structure. Error performance (BER vs SNR) for $\pi/4$ DQPSK modulation system using multiplier-less (1 st and 2 nd sector) as receiver in channel with AWGN. Error performance (BER vs SNR) for $\pi/4$ DQPSK modulation system using multiplier-less (1 st and 2 nd sector) as receiver in channel with AWGN and Rayleigh Fading. Multipler-less (1 st and 2 nd sector) receiver structure. Comparison of error performance (BER vs SNR) for $\pi/4$ DQPSK modulation system using all type of receivers in channel with AWGN. Comparison of error performance (BER vs SNR) for $\pi/4$ DQPSK modulation system using all type of receivers in channel with AWGN. Comparison of error performance (BER vs SNR) for $\pi/4$ DQPSK modulation system using all type of receivers in channel with AWGN. Comparison of error performance (BER vs SNR) for $\pi/4$ DQPSK modulation system using all type of receivers in channel with AWGN and Rayleigh Fading. Relationship of error performance and hardware implementation.

LIST OF ABBREVIATIONS

$\pi/4$ DQPSK	$\pi/4$ Differential Quadrature Phase Shift Keying
AWGN	Additive White Gaussian Noise
IC	Integrated Circuit
BER	Bit Error Rate
SNR	Signal to Noise Ration
MTSO	Mobile Telephone Switching Office
PSTN	Public Switched Telephone Network
DSP	Digital Signal Processing
N-LOS	Non-Line of Sight
CPFSK	Continuous Phase Frequency Shift Keying
BPSK	Binary Phase Shift Keying
QPSK	Quadrature Phase Shift Keying
OKQPSK	Offset Keyed Quadrature Phase Shift Keying
RF	Radio Frequency

LIST OF APPENDIX

APPENDIX	TITLE	PAGE NO
NO.		
11	Matlab Source Code for Model 1: $\pi/4$ DOPSK	88
	modulation system using baseband differential detector	
	as a receiver structure	
1.1.1	Main File: Simulation testing on transmitter, receiver	88
	and channel.	
1.1.2	Transmitter source code for model 1.	109
1.1.3	Receiver source code for model 1	95
1.2	Matlab Source Code for Model 2: $\pi/4$ DQPSK	98
	modulation system using multiplier-less (1 st sector) as a	
	receiver structure	
1.2.1	Main File: Simulation testing on transmitter, receiver	99
	and channel	
1.2.2	Transmitter source code for model 2	101
1.2.3	Receiver source code for model 2	105
1.3	Matlab Source Code for Model 3: $\pi/4$ DQPSK	110
	modulation system using multiplier-less $(1^{st} and 2^{nd})$	
	sector) as a receiver structure	
1.3.1	Main File: Simulation testing on transmitter, receiver	110

and channel

1.3.2	Transmitter source code for model 3	113
1.3.3	Receiver source code for model 3	117
1.4	Other function used in project simulation	122
1.4.1	Source code to generate random binary data	122
1.4.2	Source code to generate sinusoidal wave	123
1.4.3	Source code to convert sinusoidal wave to square wave	123

CHAPTER 1

INTRODUCTION

1.1 Background.

Historically all telephone communications were accomplished by a wired line network. All telephones were connected to the network with a pair of wires. Recently, a wireless network has emerged where the link between the network and telephone is wireless. This wireless technology has been employed and recognized as a step forward.

Figure 1.1 shows an overall wireless communications systems. Communications today is on the move. In cars, office buildings, manufacturing plants, shopping malls and wherever people go, wireless telephones and other communications systems go with them. Base stations are at the heart of wireless communications systems. All base station cell sites connect to the Mobile Telephone Switching Office (MTSO). The MTSO in turn interfaces to the Public Switched Telephone Network (PSTN) by connecting to a Central Office. Control of all cell sites, all subscriber records, statistics, and billing is maintained at the MTSO. In the future, smaller "Microstations" will bring wireless

services into offices, factories, schools, shopping malls and wherever there is a need for mobile communications.

Figure 1.1: The overall system of wireless communications.

Driving this new mobility in communications is high-speed digital technology, and in the forefront of this technology is Digital Signal Processing (DSP). DSP is a prime enabler for digital communications and is confronting the specific needs of wireless systems for higher levels of integration and greater performance with low power consumption. DSP technology will also continue to be the key baseband technology on which digital wireless systems are built. DSP solutions will grow in importance as the partition between the radio and the baseband subsystem gradually moves to drive more and more functionality into the signal processor.

1.1.1 Modulation.

Modulation plays a key role in any communication system. The type of modulation used depends on the type of the communication channel. The choice for modulation technique has a direct impact on the capacity of a digital communication system. It determines the bandwidth efficiency of a single physical channel is terms of the number of bits per second per hertz (bit/s/Hz) and it is therefore important that this choice is discussed in detail.

In selection a suitable modulation scheme for a digital communication system, consideration must be given to achieving the following:

- 1. High bandwidth efficiency
- 2. High power efficiency.
- 3. Low carrier-to-co channel interference power ration (CCI)
- 4. Low out-of-band radiation
- 5. Low sensitivity to multipath fading
- 6. Constant or near constant envelope
- 7. Low cost and ease of implementation

To optimize all these features at the same time is not possible as each has its practical limitation and also is related to the others. For example, to achieve high bandwidth efficiency one may choose to use high-level modulation. However, if this is done two consequent disadvantages are introduced. Hence, a trade-off among all the above features must be adopted.

1.2 Problem Statements

Nowadays wireless has been very important and choice of communication for world wide user. However, there are two important criteria need to be consider in every type of communication which are efficiency in term of error performance and hardware design.

The implementation of modulation technique in communication that has efficient error performance and hardware design is very difficult to achieve in practical environment. With the additional circuitries, good error performance for communication system is very easy to achieve but not for hardware design.

Basically most of modulation techniques used a lot of multiplier in its design. The multiplier is difficult to design in term of hardware especially if the multiplication operation involves floating point. Base on the difficulties involve, the communication system will be expensive especially for the application required simpler and cheaper system.

1.3 Project Objective

The objectives and aims of this project are to investigate and evaluate the error performance of $\pi/4$ Differential Quadrature Phase Keying ($\pi/4$ DQPSK) modulation technique with the new implementation of hardware design subject to the channel with Additive White Gaussian Noise (AWGN) and Rayleigh fading. The performance study will be carried out base on the relationship of Bit Error rate (BER) and Signal to Noise Ratio (SNR). The relationship will be compare for the variable of receiver structures. The receiver structures will be design to have batter implementation in term of hardware design.

There will be three different type of $\pi/4$ DQPSK system models will be use d in this project. Those models are:

- 1. $\pi/4$ DQPSK modulation system using baseband differential detector as a receiver structure.
- 2. $\pi/4$ DQPSK modulation system using multiplier-less (1st sector) receiver structure.
- 3. $\pi/4$ DQPSK modulation system using multiplier-less (1st and 2nd sector) receiver structure.

1.4 Scope of Work

This project is an entirely simulation project using scientific computer simulation software, MATLAB 7.0. All models which been explained in previous sub chapter will be design by using m files in MATLAB 7.0. There will be no hardware design and application field test involve in this project.

As describe in sub chapter 1.3, there will be only three receivers structure will be investigate and evaluate which are baseband differential detector, multiplier-less (1^{st} sector) and multiplier-less $(1^{st} \text{ and } 2^{nd} \text{ sector})$. All of those receiver will be evaluate using the same transmitter.

There are two extreme cases of channel noise and fading that will be subjected to the $\pi/4$ DQPSK system models. The model will be simulated with different receiver structure under thermal noise, represented by Additive White Noise Gaussian (AWGN). Then, the channel is simulated with various different parameters using Non-Line of Sight (N-LOS) multiple reflected rays represented as multipath Rayleigh fading. In other word, the channel simulation will be focus on AWGN and Rayleigh fading only. Since there are involvement of noise and fading in the channel, error will produce during data transmission across the channel. In this case additional circuitries (error correction) can be used to reduce the error. But for this project, the evaluation and investigation will be base on transmitter and receiver without error correction scheme.

REFERENCES

- [1] Sandeep Chennakeshu and Gary J. Saulnier (1993), "Differential Detection of π/4-Shifted- DQPSK for Digital Cellular Radio", *IEEE Trans. Veh. Technol.*, Vol. 42, No. 1, Feb. 1993, pp.46-57.
- [2] Fitri Dewi Bt Jaswar (2003). FPGA Implementation of CPFSK Modulation Techniques for HF Data Communication. University Technology Malaysia: Master thesis.
- [3] Bernard Sklar, "Digital Communications: Fundamentals and Applications", Prentice-Hall, 2nd Edition, pp. 30-33.
- [4] Bernard Sklar, "Rayleigh Fading Channel in Mobile Digital Communication System Part 1: Characterization", IEEE Communication Magazine, pp. 90-100, July 1997.
- [5] Theodore S. Rappaport, "Wireless Communication: Principle and Practice", Pearson Educational International, 2nd edition. 2002.
- [6] WARREN HIOKI (1995), "Telecommunications", Second Edition. Prentice Hall. 501p.
- [7] Bernard Sklar, "Rayleigh Fading Channel in Mobile Digital Communication System Part 2: Mitigation", IEEE Communication Magazine, pp. 90-100, July 1997.

- [87] Ahmad Zuri Bin (2003). Bit Error Rate Performance Analysis of Spectrum Based Detector for FSK Digital Modulation. University Technology Malaysia: PhD thesis.
- [9] Kamilo Feher, "Advance Digital Communication System and Signal Processing Technique", Prentice-Hall. 1987.
- [10] Rodger E.Ziemer, "Introduction to Digital Communication ", Prentice-Hall, 2nd edition. 2001.
- [11] Boaz Porat, "A Course in Digital Signal Processing ", John Wiley & Sons, Inc. 1997.
- [12] Glover.Ian, "Digital Communication", Prentice-Hall. 1998.
- [13] A. H. Aghvami, (June 1993), "Digital Modulation Techniques for Mobile and Personal Communication System" Electronics & Communication Engineering Journal.
- [14] PEE, SEE TAT (1999). "Simulation of Bit Error Rate and Signal-to-Noise Ratio under Different Radio Channels." Universiti Teknologi Malaysia: Thesis B. Eng.
- [15] WENTAO LI (1999). "A DSP-Based π/4 DQPSK Modem." University of Saskatchewan, Saskatoon: Thesis B. Eng.
- [16] CHUN SUM NG (1993). "On the Error Rate of Differential Detected Narrowband π/4 DQPSK in Rayleigh Fading and Gaussia Noise", IEEE Communication Magazine, Vol. 42 No. 3, August 1993.
- [17] GERARD J.M SMITH (2001). "BER Estimation for Wireless Links Using BPSK/QPSK Modulation" Department of Electrical Engineering, Mathematics & Computer Science, University of Twenty, Enschede Netherlands.