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Global metabolic network reorganization by
adaptive mutations allows fast growth of
Escherichia coli on glycerol
Kian-Kai Cheng1,2,3, Baek-Seok Lee1,2,w, Takeshi Masuda1,2,w, Takuro Ito1,2,4, Kazutaka Ikeda1,2,

Akiyoshi Hirayama1,2, Lingli Deng5, Jiyang Dong5, Kazuyuki Shimizu1,2,6, Tomoyoshi Soga1,2,

Masaru Tomita1,2, Bernhard O. Palsson7 & Martin Robert1,2,w

Comparative whole-genome sequencing enables the identification of specific mutations

during adaptation of bacteria to new environments and allelic replacement can establish their

causality. However, the mechanisms of action are hard to decipher and little has been

achieved for epistatic mutations, especially at the metabolic level. Here we show that a strain

of Escherichia coli carrying mutations in the rpoC and glpK genes, derived from adaptation in

glycerol, uses two distinct metabolic strategies to gain growth advantage. A 27-bp deletion

in the rpoC gene first increases metabolic efficiency. Then, a point mutation in the glpK gene

promotes growth by improving glycerol utilization but results in increased carbon wasting as

overflow metabolism. In a strain carrying both mutations, these contrasting carbon/energy

saving and wasting mechanisms work together to give an 89% increase in growth rate. This

study provides insight into metabolic reprogramming during adaptive laboratory evolution for

fast cellular growth.
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T
he genotype–phenotype relationship is fundamental in
biology. Adaptive laboratory evolution can now be used to
carry out controlled evolutions under defined selection

pressures to produce new and fit phenotypes1–5. Re-sequencing
has allowed the detailed assessment of the genetic changes that
occur during adaptation6,7 and allelic replacement can be used to
ascertain the causality of the observed mutations relative to the
observed phenotype8. Moreover, next-generation sequencing has
made the determination of mutations occurring during
adaptation commonplace9. However, the genotype–phenotype
relationship is multilayered and hierarchical and the measured
genotypes and phenotypes are the opposite ends of this hierarchy.
The in vitro assessment of the effects of the mutated gene
products relative to the wild type (WT) can help determine
how molecular properties change10,11 but studies at the level
of individual gene-product properties give limited insights into
the mechanisms that change the phenotype. Network-level
changes resulting from the introduction of causal mutations can
now be characterized through the generation and integrative
analysis of polyomic data sets. Here we provide a detailed
network-level analysis, based on polyomic data sets, of the effects
of individual causal mutations found during adaptive laboratory
evolution of E. coli. These network-wide measurements are then
combined to produce one of the first metabolic studies of two
epistatic mutations that improve growth on glycerol.

The first whole-genome comparative sequencing study that
included allelic replacement of mutations showed that as few as
two to three causal mutations can lead to significant changes in
growth rate of E. coli during adaptation to glycerol minimum
medium8. Most of the acquired mutations affecting growth
phenotype can be grouped into those affecting condition-specific
function (for example, glycerol kinase or glpK) or global
transcription patterns (for example, RNA polymerase b0 subunit
encoded by rpoC). Although the biochemical characteristics of
some of the naturally occurring mutations in glycerol kinase
and RNA polymerase have been studied10,11, the underlying
molecular and network-level consequences and mechanisms
promoting cell growth in vivo have not been uncovered. While
adaptive evolution and identification of mutations by re-
sequencing has been made easy and cheap, the elucidation of
network-level mechanisms remains a major bottleneck in the
study of adaptive evolution4,12.

In the current study, we perform comprehensive cellular and
exo-metabolome analysis, proteomics, lipidomics and phenotypic
characterization of WT and mutant strains of E. coli to investigate
the metabolic consequences of two specific adaptive mutations
(glpK 218a4t and rpoC 27 bp deletion) identified in a glycerol-
evolved strain. To disentangle the contribution of different
mutations, we present data on MG1655 WT and strains
harbouring the individual (GLPK and RPOC strains) or

combined mutations (DKI strain). The latter’s growth phenotype
reconstitutes the glycerol-evolution end point strain (GB)8.

Our findings provide an overall picture of metabolic network
reorganization induced by two adaptive mutations, leading to
significant increase in growth rate. Two contrasting strategies that
optimize a trade-off between biomass yield by carbon saving and
increased carbon flow and metabolic overflow are combined
to allow fast growth on glycerol. Globally, these results reveal
important metabolic regulatory events under evolutionary
selection for fast growth on a non-fermentable carbon source.

Results
Glycerol uptake is affected by glpK and rpoC mutations. We
used 1H-NMR spectroscopy to monitor change in glycerol con-
centration in culture medium at different time points during
exponential growth over an optical density (OD)600 of 0.05–0.75
to evaluate the glycerol uptake rate. It took about 10 h for the DKI
strains to reach an OD600 of 0.75, faster than the RPOC (11 h),
GLPK (13 h) and WT (16 h) strains. The altered growth rates
(Fig. 1a) are associated with differences in cell size, as expected,
and all data and analysis in this study take cell size into account
for normalizing concentrations (see Methods section and
Supplementary Fig. 1). For all studied strains, we found that less
than half of the available glycerol had been consumed at the last
sampling point, showing that glycerol was not limiting during the
course of the experiment (Supplementary Fig. 2). Compared with
the WT strain, glycerol uptake rates for all single- and double-
mutant strains were increased by 30–66% (Fig. 1b).

As an index of biomass yield, we monitored the amount of
glycerol consumed for each unit of increase in culture optical
density for each strain (Fig. 1c). Consistent with previous
results11, biomass yield was increased by the rpoC mutation
(expressed as decreased glycerol consumption for equal biomass
increase), although it grew faster than both WT and GLPK
(Fig. 1a). This suggests that strains with this mutation are more
efficient in biomass conversion. In contrast, glpK mutation caused
increased glycerol consumption for equivalent biomass yield,
suggesting that this mutation accelerates growth through
increased but less efficient carbon utilization.

The rpoC mutation improves metabolic efficiency. To elucidate
the underlying consequences of adaptive evolution, we performed
a combination of metabolomic, lipidomic and proteomic analyses
on the strains. For metabolomics, we identified 121 metabolic
features present across all samples using capillary electrophoresis
mass spectrometry (Supplementary Fig. 3 and Supplementary
Data 1). At an OD600 of 0.25, the concentrations of 68 metabolites
were significantly affected by the rpoC mutation (Fig. 2a, two-way
analysis of variance, Bonferroni-corrected Po0.05, n¼ 6),
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revealing the major changes in the metabolome due to this spe-
cific mutation. In addition, 23 metabolite changes were observed
as a result of glpK mutation (Supplementary Fig. 4). The large and
strain-specific differences in metabolite profiles are also apparent
in the results of multivariate analysis (partial least squares dis-
criminant analysis; PLS-DA) of the metabolomic data collected
for all strains and sampling points. Strains were clearly separated
based on their rpoC genotype in the first PLS-DA component,
and based on their glpK genotype in the second PLS-DA com-
ponent (Fig. 2b).

In Fig. 2a, the most striking and global change in the metabolic
state is the reduced concentration of most metabolites induced by
the rpoC mutation. We ruled out that cell volume effects between
strains (dilution) could be responsible for the general decrease in
most metabolites (see Methods and Supplementary Fig. 1).
Notable exceptions include increases in both reduced dinucleo-
tide redox cofactors NADH and NADPH, adenine, dADP,
nicotinamide, and putrescine. Most of these changes were also
reflected by similar changes in the DKI strain. Ratios of reduced/
oxidized metabolites were calculated to better describe redox state
and are shown in Fig. 2c). For WT, the observed reduced/
oxidized dinucleotide ratios were comparable to previously

reported data for WT on glucose minimal media (NADH/
NADþ , 0.31; NADPH/NADPþ , 1.05)1. However, for both
RPOC and DKI strains, the rpoC mutation caused on average a
fivefold increase in NADH/NADþ ratio and a sevenfold increase
in NADPH/NADPþ ratio, as compared with the WT and GLPK
strains. The ratios of several other key reporters of redox and
nitrogen metabolism are shown in Supplementary Fig. 5. The
large increases in reduced/oxidized dinucleotide ratios following
rpoC mutation provide a driver for anabolism, reflected in the
lower energy charge while the decrease in glutamine–glutamate/
2-ketoglutarate ratios suggest high nitrogen turnover for amino
acid/protein production (Supplementary Fig. 5). Consistent with
this finding, both RPOC and DKI strains showed increased
levels of proteins involved in fatty-acid synthesis (FabAB), and
assembly of peptidoglycan (MurA) as well as ribosome biogenesis
(ObgE, DeaD; Supplementary Fig. 6). Together, these results
suggest that the rpoC mutation improves growth through major
reorganization of the metabolic network that reflects increased
anabolic needs to cope with rapid growth. Moreover, since the
growth rate enhancing effects of the rpoC mutation are observable
only on minimal media11, these global changes can also be
interpreted as depicting a response optimizing the synthesis of
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Figure 2 | Broad metabolic changes associated with the rpoC mutation increase metabolic efficiency. (a) Heat map of a subset of 68 identified
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most biomass precursors, which might explain the generally
lower levels of precursor metabolites.

To further detail the metabolic effect of adaptive mutations, we
performed lipidomic analysis. Consistent with the known major
lipid species in E. coli13–16, we observed 22 lipids mainly in the
forms of phosphatidylethanolamine and phosphatidylglycerol.
Interestingly, the main changes in lipid composition were
due the rpoC mutation, as both RPOC and DKI strains showed
sharply reduced concentrations in phospholipids that contain
cyclopropane fatty acids (CFA) such as cy17:0 and cy19:0 (Fig. 2d
and Supplementary Fig. 7). The proteomic data also revealed
that the level of CFA synthase (Cfa), the key enzyme for
cyclopropanation was reduced sixfold in both RPOC and DKI
strains (Supplementary Fig. 6) supporting and explaining the
origin of the change in cyclopropane containing lipids. Previous
studies have shown that cyclopropanation of fatty acids, a post-
synthesis lipid modification, begins normally when the cells enter
stationary phase until all unsaturated fatty acids are modified into
their corresponding CFA (for example, modification from 16:1 to
cy17:0)17. The conversion is energetically costly, as three ATPs
are required to generate an S-adenosylmethionine molecule,
which is then used as methyl donor for cyclopropanation17.
Therefore, these lipidomic results showed that rpoC mutation
promotes energy saving by repressing this costly lipid
modification process.

The function of cyclopropanation of fatty acid is still not fully
understood, although CFAs are known to improve cell resistance
to acid stress17. In line with reduction in Cfa, a number of other
acid resistance proteins (including GadABC, HdeAB and Slp)
were also strongly repressed (97–99% reduction) by the rpoC
mutation (Supplementary Fig. 6). This result is also consistent
with previous studies showing downregulation of acid resistance
genes in the RPOC strain11,18. In addition, stationary phase and
stress-induced proteins including Dps, MscS, OsmE, OsmY and
Sra were also lowered by 64–81% in RPOC and DKI strains.
Interestingly, the level of the ppGpp alarmone was reduced in
both RPOC and DKI strains, although the difference was not
statistically significant. Collectively, these results suggest that
the rpoC mutation relieves E. coli from stress and stationary
phase-induced responses during growth on glycerol and allows
redeployment of metabolic resources to increase biomass yield.
However, the stress response regulator, RpoS, was found to be
elevated in RPOC strain, although the level of RpoD was also
higher in both RPOC and DKI strains. The increased RpoS level
might be related to the fivefold increase in cellular putrescine
concentration in the RPOC strain (Fig. 2a)19,20. While the exact
molecular mechanism remains to be elucidated, it is possible that
this specific rpoC mutation affects its interactions with the sigma
factors rpoD and rpoS, thus affecting the stress response. A prior
study has shown that some rpoC mutations can vastly modify
gene expression particularly those related to motility and acid
resistance11.

Analysis of exo-metabolome showed significantly decreased
secretion of N-acetyl aspartate and pyrimidine pathway inter-
mediates (including carbamoylaspartate, dihydroorotate and
orotate), in both RPOC and DKI strains compared with the
WT and GLPK strains (Fig. 2e). Secretion of these metabolites
by E. coli has been reported before21 and the pyrimidines
biosynthetic intermediates are known to accumulate in E. coli
K-12 because of a mutation in the rph/pyrE21,22. These observed
changes in the exo-metabolome correlate well with the reduction
of intracellular concentrations of the same metabolites (Fig. 2a),
as well as the reduced level of enzymes (PyrBCI) involved in
pyrimidine biosynthesis pathway (Fig. 2f and Supplementary
Fig. 6). Contrarily to what might be expected, the PyrE protein
was not detected in any strain suggesting that the reduced

accumulation was not likely due to increased enzyme expression
level, in agreement with an earlier study11. The fact that
pyrimidine intermediates are not secreted in large amounts in
RPOC strain and that several enzymes required for their
biosynthesis are actually downregulated suggests that either
pyrimidine biosynthesis is not a bottleneck for fast growth or
that PyrE enzyme activity is regulated by other means that do not
involve increased expression. Moreover, the fact that the other
enzymes (PyrBCI) known to be negatively regulated by the end
products of the pathway are reduced in RPOC suggests there are
enough pyrimidines to meet growth needs and also contributes to
limit less efficient secretion of intermediates. It is interesting to
note that the decrease in these intermediates is even more
pronounced in DKI than RPOC strain (epistasis), a difference
that may be linked to the faster growth of DKI.

Together, the above results indicate that rpoC mutation
reprograms E. coli for improved biomass yield by repressing the
accumulation of metabolites and energy-wasting processes such
as post-synthetic lipid modification, stress and stationary phase-
induced responses, and carbon-spilling reactions and secretion
(Fig. 2f). Interestingly, these are systemic and coordinated
responses resulting from a single mutation showing that it acts
through multiple mechanisms, as others have reported2,23.

The glpK mutation improves glycerol utilization. While the
rpoC mutation switches E. coli into carbon saving and high-
efficiency mode, the glycerol utilization pattern of the glpK
mutant strain suggests that this mutation promotes increased cell
growth through a different mechanism. This metabolic difference
is evident by a higher secretion of acetate for both the GLPK and
DKI strains (Fig. 3a). Acetate production and secretion is an
overflow mechanism generally interpreted as resulting from an
imbalance between carbon uptake/availability and the metabolic
network capacity to use it for energy and biomass production24.
On the other hand, it is also an important source of energy
generation through substrate-level phosphorylation25. In addition
to acetate secretion, we found that both GLPK and DKI strains
also secrete significant levels of D-lactate (Fig. 3b), succinate and
pyruvate (Fig. 3c). This elevated level of mixed acid production
suggests that the higher glycerol uptake rate induced by the glpK
mutation exceeds the need or capacity of cellular metabolism to
use the increased carbon flow for biomass formation. Notably,
D-lactate production is particularly high in the DKI strain, which
could be due to a combined effect of high carbon flow and the
elevated ratio of NADH/NADþ cofactor (Fig. 2c). Overall, 23%
of consumed glycerol was converted to acetate and lactate in
DKI strain, followed by GLPK (20%), RPOC (16%) and finally
WT (15%).

The type of carbon overflow observed here (Fig. 3d) is
consistent with a previous study26 that associated overflow with
catabolite repression on glucose and decreased concentrations of
acetyl-CoA synthetase and cyclic AMP (cAMP). In the present
study, acetyl-CoA synthetase, the key protein for acetate
utilization, was markedly repressed (93% reduction) in both
GLPK and DKI strains. In addition, cAMP level in the
extracellular medium was significantly lowered by the presence
of the glpK mutation (Fig. 3c). A previous study showed reduced
intracellular cAMP level in the GLPK strain, and this result was
consistent in three other knock-in strains with different adaptive
glpK mutations10. This observation is further supported at the
proteome level by a twofold decrease of cAMP receptor protein
(Crp) in GLPK and DKI strains (Supplementary Fig. 6).

In WT E. coli, cAMP-Crp levels are higher during growth on
glycerol compared with growth on glucose27. Since cAMP-Crp
activates tricarboxylic acid (TCA) cycle genes, acetate formation
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is limited on glycerol, a normally non-fermentable carbon source.
On the other hand, the glycerol uptake rate was enhanced in the
glpK mutant most probably because of reduced inhibitory effect
of fructose 1,6-bisphosphate on GlpK, as shown previously for
this mutant10. This results in increased transfer of phosphate
from phosphorylated EIIAGlc to produce glycerol-3-phosphate28.
The resulting decrease in phosphorylated EIIAGlc will in turn
reduce adenylate cyclase activity and cAMP production. This can
then result in repression of the TCA cycle activity, a claim
supported by the decreased levels of several enzymes of the TCA
cycle (GltA, AcnAB, FumAC, SucBCD and Mdh), the glyoxylate
shunt (AceA and AceB) and gluconeogenesis (Pck, Pps and
MaeB). Together, these effects result in overflow metabolism
and production of acetate, pyruvate and lactate. In addition,
the accumulation of pyrimidine pathway intermediates
(carbamoylaspartate, orotate and dihydroorotate) also
represents a form of overflow metabolism21, although the
findings in RPOC suggest that it may not be optimal. The
decrease in cAMP-Crp is also reflected in the downregulation of
transporters, such as MglB (galactose), RbsB (ribose), CstA
(peptides), DppA (dipeptides), GatABC (galactitol), GlnH
(glutamine), MtlA (mannitol) and NagE (N-acetylglucosamine;
Supplementary Fig. 6). The decrease in cAMP levels in glpK
mutation containing strains therefore appears responsible for
converting glycerol into the observed overflow metabolites.
Another interesting possibility is that the glpK mutation, by
affecting cAMP levels, may contribute to better optimizing
proteomic resources to metabolic needs, as recently proposed29.
This would suggest that these needs are poorly adjusted in WT
E. coli resulting in slower than expected growth.

On the basis of these results, we postulate that the decreased
cAMP levels and increased glycerol utilization and overflow that
are induced by the glpK mutation together result in the increase
in growth rate. We note that these changes were not observed in

the RPOC strain that displays an intermediate growth rate
between the GLPK and DKI strains. The increased carbon flow is
probably due to the improved kinetics of mutant GlpK, as well
as reduced inhibition by fructose 1,6-bisphosphate, although
the level of GlpK actually decreases in the GLPK strain
(Supplementary Table 1)10. Reduced GlpK expression may
appear as a counterintuitive response but it has previously been
suggested to be linked to catabolite repression of glpFKX operon
owing to reduced cAMP levels and suggested to be important to
limit methylglyoxal toxicity10. Taken together, glpK mutation
appears to promote cell growth by increasing glycerol uptake to a
level that may surpass demand and capacity of cell metabolism,
leading to increased wasteful carbon overflow. Prior studies have
suggested that less efficient overflow metabolism may be
advantageous when carbon source is non-limiting and protect
against methylglyoxal toxicity30. Overflow has also been proposed
to represent a trade-off between energy and biomass yield and the
biosynthetic costs of respiration that occur during fast growth31.
In addition, competition for membrane space between substrate
uptake and respiration has also been proposed to be a constraint
leading to carbon wasting32. Our results suggest that the GLPK
and RPOC strains may preferentially use overflow/fermentation
and respiration, respectively, while the DKI has optimized the
balance between these processes and biomass yield to achieve a
maximum growth rate. These results agree well with known
trade-offs between yield and growth rate during the evolutionary
process33,34.

Epistatic effects of rpoC and glpK mutations. Mutations in glpK
and RNA polymerase (rpoB/C) genes were repeatedly found
in the glycerol-evolved E. coli strains8, suggesting a possible
interaction between these two mutations in conferring fitness and
growth advantage. On the basis of the results, we postulate that
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cAMP ↓
Crp ↓

***

***

***

***
********

Figure 3 | Metabolic changes associated with the glpK mutation lead to increased overflow metabolism. (a) Increased secretion of acetate and,

(b), D-lactate or (c) cAMP, succinate and pyruvate. Plots show the mean±s.e. P values were obtained from two-way analysis of variance

(**Po0.01, ***Po0.001, n¼ 6 for a and b, and n¼ 18 for c). (d) Proposed mechanism of the glpK mutation metabolic effects based on proteomics

and metabolomics data. All values in c are calculated relative to levels in DKI at OD of 0.75 (100%).
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the rpoC mutation may improve growth rate by triggering a
carbon-saving response that limits non-essential metabolic
activities for optimal glycerol utilization and biomass yield.
In such a carbon-saving mode, the bottleneck for biomass
production then becomes the glycerol uptake and utilization rate,
which is overcome by a mutation in the glpK gene. The combined
contribution of rpoC and glpK mutations on growth rate of the
DKI strain is about 10% greater than the sum of their individual
effects showing that the mutations are epistatic (Fig. 4). The
DKI strain may also have improved capacity to counter
methylglyoxal toxicity as shown in its more balanced redox
state (Supplementary Fig. 5) and the reduced expression of
several enzymes involved in methylglyoxal detoxification (AldA,
Dld and HchA, and DkgA; Supplementary Table 1).

The polyomic data revealed that the two mutations in the DKI
strain display epistasis that is observable at the metabolic level.
The reductions in transporter levels, TCA cycle and glyoxylate
enzymes can be linked to the glpK mutation, whereas reductions
in the level of stress-related and acid resistance enzymes are
triggered by the rpoC mutation (Supplementary Fig. 6). More-
over, the metabolite and proteome profiles of the DKI strain also
display unique properties distinct from both GLPK and RPOC
strains. Notably, lactate secretion is particularly enhanced
(419-fold, compared with WT) in the DKI strain, and is most
apparent at the later phase of growth (Fig. 3d). This unique
metabolic change shows a synergistic effect of rpoC and glpK
mutations, whereby the high NADH/NADþ ratio in the RPOC
strain seems to favour conversion of pyruvate to lactate (twofold
increase in lactate secretion), while high carbon flow induced by
glpK mutation increased its secretion fourfold (Figs 2c and 3b and
Supplementary Fig. 5). The enhanced lactate production can
regenerate NADþ from NADH (thus, lower NADH/NADþ

ratio in Fig. 2c) to support high glycolytic activity and faster
growth in DKI strain. In addition, some other metabolites also
seem specifically secreted at higher levels by the DKI strain
(Supplementary Fig. 8).

In the RPOC strain, the cellular level of putrescine (a
polyamine) was increased fivefold as compared with WT (t-test,
Bonferroni-corrected Po0.01, n¼ 6, Fig. 2a). In E. coli, this
polyamine is essential for cell proliferation and normal cell
growth35, but it was also shown to have negative effects on cell

growth at high concentration36. Previously, putrescine was also
reported to stimulate production of adenylate cyclase and
RpoS19,20. This activation is consistent with the current finding
in which both cAMP (Fig. 2a) and RpoS (Supplementary Fig. 4)
were also increased in the RPOC strain. With the additional
mutation in the glpK gene, putrescine concentration in DKI strain
was reduced to a level comparable to WT (t-test, Bonferroni-
corrected P40.05, n¼ 6), and this was accompanied by
reductions of cAMP (Fig. 3c) and RpoS (Fig. 3d and
Supplementary Fig. 6). Therefore, the interaction between rpoC
and glpK mutations and the putrescine pathway, and
consequently with the numerous genes regulated by cAMP and
RpoS might also contribute to increased cell growth in DKI strain.

Epistatic interaction between the glpK and rpoC mutations is
also apparent in the pyrimidine pathway. With a single mutation
in rpoC gene, the RPOC strain reduces carbon wasting in the
form of carbamoylaspartate, orotate and dihydroorotate (Fig. 2e).
The changes are reflected in the DKI strain by even greater
reductions in extracellular concentration of these metabolites, as
well as intracellular pyrimidine pathway enzymes (Fig. 2e and
Supplementary Fig. 6), showing that the carbon-conserving
mechanism initiated by the rpoC mutation is further enhanced
by glpK mutation in the DKI strain. Together, these features of
the DKI strain support and provide specific molecular details for
an epistatic effect of the adaptive mutations, leading to enhanced
cell growth compared with the combined effect of individual
rpoC and glpK mutations.

As observed previously, the glpK mutation is a specialist
mutation improving growth solely on glycerol, while the rpoC
mutation is a generalist one improving growth on several carbon
sources10,11. Our study provides clear mechanistic support in the
form of a general energy saving and efficient reorganization of
metabolism by rpoC mutation that can improve growth on most
carbon sources (on minimal medium) while the effects of glpK
mutation are obviously glycerol dependent. The rpoC mutation
improved metabolic efficiency and biomass yield, while the fast
glycerol utilization following glpK mutation results in faster but
more wasteful metabolic function. Together, the DKI combines
high biomass yield and metabolic efficiency with fast carbon flow
and consequent lactate production to dominate the adaptive
evolution landscape on glycerol.

While we cannot make direct claims about the universality of
our findings (based on the characterization of a single pair of
rpoC/glpK mutants) to other mutations in rpoC and glpK that
emerge during the evolutionary process, there are good reasons to
believe that the findings have greater relevance. First, several
different rpoC mutations have been found to generate well-
conserved transcriptome changes11. In addition, the effects on the
pyrimidine biosynthesis pathway appear connected to mutations
in rph-pyrE that also contribute to an increase in growth rate
when combined with other mutations8. This suggests that a
metabolic solution to the pyrimidine intermediate accumulation
is an important step in increasing growth potential and is not
only limited to the mutations we studied here. Moreover, several
different glpK mutations have been shown to result in a decrease
in cAMP10, as observed here, and many of the changes in the
metabolome and proteome observed here can be directly
connected to cAMP-Crp regulation.

Discussion
Using polyomic data sets (metabolomic, proteomic and
lipidomic) obtained from strains harbouring single and combined
mutations that improve growth rate of E. coli on glycerol, we have
identified two separate but complementary mechanisms for
optimizing cellular growth. One mechanism increases biomass

rpoC
KI

Carbon saving

(μ+58%)

rpoC
Mutation

�=0.23h–1

glpK
Mutation

glpK
KI

(μ+22%)

Increases
carbon flow

glpK/rpoC
DKI

(�+89%)
WT

Efficient in converting
glycerol to biomass

Higher production of
acetate and D-lactate

Figure 4 | Proposed mechanism of action of adaptive mutations in rpoC

and glpK on the metabolic phenotype. Whereas the rpoC mutation triggers

a carbon-saving metabolic state favouring optimal glycerol utilization,

mutation in the glpK gene confers a growth advantage by increasing

glycerol uptake with concomitant increased carbon wasting. The metabolic

contribution of both rpoC and glpK mutations appear epistatic with

combined mutations resulting in a greater growth rate increase than the

sum of the effect of both mutations individually.
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yield through reduction in non-essential pathways and improved
utilization of carbon while the other improves carbon flow. Both
mechanisms together produce global changes that reorganize that
metabolic network for optimal growth. The use of energy
inefficient and wasteful metabolite overflow appears to be an
essential trade-off to achieve fast growth under conditions where
carbon source is abundant, as suggested by other studies31,33. It
will be interesting to see how the optimized network of the fast
growing mutants described here fares under nutrient-limiting
conditions where biosynthetic and efficiency requirements and
priorities are different.

Our findings bear interesting similarities with two recent
related studies about metabolic effects of adaptive evolution of
yeast for optimizing growth on galactose4,37. These authors also
uncovered alternative and less intuitive paths leading to growth
rate improvements. Together, these different studies demonstrate
the importance and power of combining adaptive evolution
experiments and polyomic analysis to study the regulatory
mechanisms underlying improved metabolic and phenotypic
performance under defined selection pressure. They can also
provide novel strategies for evolution-based bioengineering
applications.

Methods
E. coli strains and culture. All E. coli strains used in the current study were
derived from K-12 MG1655 (ATCC 47076) strain. The wild type E. coli refers to
genetically unmodified MG1655 (ATCC 47076) stock strain. Two single knock-in
strains (GLPK, glpK 218a4t; RPOC, rpoC 27 bp del), as well as a double knock-in
strain (DKI, glpK 218a4tþ rpoC 27 bp del; a reconstruction strain of a glycerol-
evolved clone) were derived in a previous study8 and correspond to WT (BOP27)
MG1655 ATCC #47076, RPOC (BOP135), GLPK (BOP21)* and DKI (BOP133)*.
Before publication, it has come to our attention that while the WT and RPOC
strains’ background genotype corresponds to that of E. coli MG1655 ATCC
#47076, GLPK* and DKI* strains used in the current study contain three additional
non-adaptive mutations (that is, btuE, hisC and ydaC), as they were originally
inserted in WT-A background8. Although this does not affect the interpretation of
the effects of the rpoC mutation, it is a potentially confounding factor in studying
the effect of glpK mutation. Nevertheless, a previous study showed that these
mutations do not confer any growth advantage or affect the growth rate of E. coli
on glycerol minimum media8. Furthermore, the core metabolic changes found in
GLPK and DKI strain, including the observed decrease in cAMP and catabolite
repression are known to be directly caused by glpK mutation, and have been
repeatedly observed in a number of glpK mutants, with and without the non-
adaptive mutations10. In addition, glpK mutation effects (as shown in Fig. 3d),
including changes in transporter proteins, gluconeogenesis, TCA cycle, glyoxylate
cycle, acetate consumption and carbon-wasting mechanism have previously been
similarly associated with decreased levels of cAMP, catabolite repression and
increased growth rate in E. coli21,26. Moreover, most changes observed in the
RPOC strain (containing no additional non-adaptive mutations) are overall
dominant and well reflected in the DKI strain (Fig. 2a and Supplementary
Figs 3 and 4), supporting that their origin is specific to rpoC mutation. Therefore,
there is very strong support to conclude that the current findings observed in
GLPK and DKI strains can be attributed specifically to the adaptive glpK mutation
and the combination of glpK and rpoC mutation, respectively.

Main cultures (n¼ 6) were grown in 185 ml of M9 minimal medium with
2 g l� 1 of glycerol as carbon source in 500 ml Erlenmeyer flasks, incubated at 30 �C
in a water bath and aerated by magnetic stirring bars spinning at 1,000 r.p.m. This
number of replicate was chosen to optimize the power of the study while
considering available resources.

Sample preparation. At OD600 from 0.05 to 0.75 (0.1 OD intervals), 1.5 ml
samples were filtered through a 0.2-mm cellulose acetate syringe filter, and the
filtrates were stored at � 80 �C before exo-metabolome analysis. At OD600 of 0.25,
0.45 and 0.75, samples were collected (sampling volume in ml, V¼ 20/OD600) for
metabolomics, proteomics and lipidomics analysis. In brief, cells were filtered by a
vacuum filtration system using a 0.4-mm pore size filter, and metabolites and lipids
were extracted using a methanol–chloroform–water extraction method38. The
methanol used contained 5 mM each of methionine sulphone and D-camphor-10-
sulphonic acid as internal standards for metabolomics. In addition, two internal
standards for lipidomics (10 mM each of 1,2-dimyristoyl(d54)-sn-glycero-3-
phosphocholine and 1,2-dihexanoyl(d22)-sn-glycero-3-phosphocholine) were
added in the chloroform used in the extraction process. Glassware was used
throughout the lipid extraction process to prevent contamination from plastic
extractives.

Note that some of the experiments display data for cell samples at optical
densities of 0.25, 0.45 and 0.75, while most emphasize only 0.25. This choice is
based on the fact that adaptive evolution was performed on cells that were kept at
the early- to mid-exponential stage for the whole duration of the process3. In this
case, we can therefore expect that the evolutionary process may result in a response
that is optimized for lower cell density conditions. For this reason, our main
conclusions emphasize findings for cells at 0.25, mainly to be consistent with the
conditions under which adaptive evolution was conducted. However, the data
collected at later time points are also relevant and, especially for the exo-
metabolome, the higher cell densities thereof, make it easier to detect secreted
metabolites. Most endo-metabolome changes are consistent for all three sampling
points.

Metabolomics. Dried aqueous metabolites were reconstituted with 50 ml of
Milli-Q water that contained two reference compounds (200 mM each of
3-aminopyrrolidine and trimesic acid). Samples were analysed using capillary
electrophoresis-electrospray ionization (ESI)–time-of-flight mass spectrometry
(TOFMS) in both positive and negative mode39. In brief, cationic metabolites were
separated in a fused silica capillary (50 mm i.d.� 100 cm total length) filled with
1 mol l� 1 formic acid as the reference electrolyte. The sheath liquid was
methanol/water (50% v/v) containing 0.1 mmol l� 1 Hexakis and was delivered at
10 ml min� 1. ESI–TOFMS was operated in positive-ion mode, and mass spectra
were acquired at a rate of 1.5 cycles per second from m/z 50 to 1,000. In addition,
anionic metabolites were separated in a commercially available COSMO(þ )
capillary, which was chemically coated with a cationic polymer. Ammonium
acetate solution (50 mmol l� 1, pH 8.5) was used as the electrolyte for capillary
electrophoresis separation. Ammonium acetate (5 mmol l� 1) in methanol/water
(50% v/v) containing 0.1 mmol l� 1 Hexakis was delivered as the sheath liquid at
10 ml min� 1. ESI–TOFMS was operated in negative-ion mode and mass spectra
were acquired at a rate of 1.5 cycles per second from m/z 50 to 1,000. The obtained
data were processed using in-house software (MasterHands)40. The data set is
available in Supplementary Data 1.

Proteomics. The protease inhibitor, 4-(2-aminoethyl)benzenesulphonyl fluoride
hydrochloride was added to 100ml cell lysate (final concentration of 1 mmol l� 1),
and the samples were stored in � 80�C freezer until further analysis. Proteins
were extracted with 12 mmol l� 1 sodium deoxycholate, 12 mmol l� 1 sodium
N-lauroylsarcosinate and 100 mmol l� 1 Tris–HCl (pH 9.0), reduced with
10 mmol l� 1 dithiothreitol at room temperature for 30 min, and alkylated with
50 mmol l� 1 iodoacetamide in the dark at room temperature for 30 min. The
protein mixture was diluted fivefold with 50 mmol l� 1 ammonium bicarbonate,
digested with Lys-C, followed by trypsin digestion overnight. An equal volume of
ethyl acetate was added to the sample solution and the mixture was acidified with
0.5% trifluoroacetic acid (final concentration) according to the phase-transfer
surfactants protocol41. In brief, the mixture was shaken for 1 min and centrifuged
at 15,700 g for 2 min, and then the aqueous phase was collected. Peptides were
desalted using C18-StageTips42–44, and labelled with isotopomeric dimethyl
labels45. In brief, peptides were dissolved with 100 mmol l� 1 triethyl ammonium
bicarbonate and labelled with formaldehyde and cyanoborohydride for 60 min. In
the current study, a pooled sample from all studied strains was labelled with CH2O
(light), while each sample was labelled with 13CD2O (heavy). The reaction was
terminated by adding ammonium solution, and then mixed together before the
desalting step using C18-StageTip. Then, the samples were analysed using an LTQ-
Orbitrap XL (Thermo Fisher Scientific, Bremen, Germany) with a nanoLC
interface (Nikkyo Technos, Tokyo, Japan)46. The acquired raw data files were
analysed by Mass Navigator v1.2 (Mitsui Knowledge Industry, Tokyo, Japan) to
create peak lists on the basis of the recorded fragmentation spectra for Mascot v2.2
(Matrix Science, London) and using, for identification, E. coli K-12 proteins
registered in GenoBase (4,316 entries, as of 31 January 2006, http://
www.ecoli.naist.jp/GB8-dev/index.jsp?page=genome_download.jsp). A precursor
mass tolerance of 3 p.p.m. and a fragment ion mass tolerance of 0.8 Da were
employed with strict trypsin specificity, allowing for up to two missed cleavages.
Carbamidomethylation of cysteine was set as a fixed modification, while
dimethylation of N-termini and primary amino groups of lysine, as well as
methionine oxidation, were allowed as variable modifications. Peptides were
rejected if the Mascot score was below the 95% confidence limit based on the
‘identity’ score of each peptide, and a minimum of two peptides with at least seven
amino-acid residues was required for protein identification. In cases where the
identified protein was a member of a multiprotein family featuring similar
sequences, the protein was identified according to the highest number of matched
peptides and Mascot score. False-positive rates were estimated by searching against
a randomized decoy database created by the Mascot Perl program supplied by
Matrix Science. In total, 768 proteins based on 8,349 peptides (false discovery rate:
0.88%) were identified in the proteomic study. The data set is available in
Supplementary Data 1.

Lipidomics. Lipid extracts were analysed using a liquid chromatography–TOFMS
(LC–TOFMS) using an Ascentis Express C8 column (particle size, 2.7 mm;
ø 2.1� 150 mm i.d.; Sigma-Aldrich, St Louis, MO, USA)47. In brief, the mobile
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phase used was composed of Milli-Q water containing 10 mmol l� 1 ammonium
acetate (A) and isopropanol (B). The gradient started with a composition of 45% B,
which was linearly increased to 99% B over 40 min with holding for 5 min. For each
analysis, the mobile phase was pumped at a flow rate of 200 ml min� 1. TOFMS was
conducted in the positive-ion mode: the capillary voltage was set at 4 kV; nitrogen
gas (350 �C) was used for ESI; the fragmenter, skimmer and octopole radio
frequency voltage were set at 250, 60 and 250 V; mass spectra were acquired at the
rate of 1.0 cycles s� 1 over an m/z range of 50–1,650. Raw data from LC–TOFMS
were processed using in-house software (MasterHands)40. Relative abundance of
lipids was calculated using lipid internal standard. For determination of lipid
species and acyl chain length, lipid samples from each E. coli strains were analysed
using a LC–MS/MS. In brief, reversed-phase LC separation was achieved by
ACQUITY UPLC HSS column (particle size, 1.8 mm, 50� 2.1 mm i.d., Waters
Corporation, Milford, MA, USA) at 45 �C. The mobile phase was prepared by
mixing solvents (A) acetonitrile/methanol/water (20/20/60; 5mmol l� 1

ammonium formate) and (B) isopropanol (5mmol l� 1 ammonium formate). The
mobile phase was pumped at a flow rate of 300ml min� 1. LC–MS/MS analysis was
performed using Triple Quad 5500 System (AB SCIEX, Foster City, CA, USA) with
an Agilent 1290 Infinity LC system (Agilent Technologies, Loveland, CO, USA) in
the negative-ion mode. Each glycerophospholipid was identified by the product ion
peaks of fatty acids and polar head group from MS/MS analysis. The data set is
available in Supplementary Data 1.

It should be noted that the analytical method used does not allow to distinguish
cy17:0 and cy19:0 from their corresponding isobaric unsaturated 17:1 and 19:1
fatty acids. This is a common limitation for most LC–MS and LC–MS/MS-based
lipidomic studies that identify lipids based on the product ion signals of fatty acids.
However, neither 17:1 nor 19:1 unsaturated fatty acids are known to be produced
by E. coli and the observed signals were therefore assigned to CFA, in line with
prior studies14–16.

Exo-metabolome analysis. A total of 192 dried samples were reconstituted in
500ml of 150 mmol l� 1 phosphate buffer (including K2HPO4 and NaH2PO4 in
D2O, pH 7.4) containing 0.58 mmol l� 1 sodium-3-(tri-methylsilyl)-2,2,3,3-
tetradeuteriopropionate (TSP) as an internal standard and chemical shift standard.
The samples were analysed by 1H-NMR spectroscopy at 499.84 MHz using a
Varian 500 MHz NMR spectrometer equipped with a triple resonance probe
(Palo Alto, CA, USA) at 293 K, using a solvent suppression pulse sequence based
on a one-dimensional nuclear Överhauser enhancement spectroscopy pulse
sequence. A total of 64 transients with a spectral width of 10 kHz and 20,000 data
points (that is, acquisition time of 2 s) were collected for every NMR spectrum.
The NMR spectra were processed using MestRe-C software (version 4.8, http://
mestrelab.com/). Spectra were Fourier transformed, referenced to TSP at 0.0 p.p.m.
and were phase- and baseline-corrected manually. Each spectrum was integrated
using 0.005 p.p.m. integral regions between � 0.5 and 9.0 p.p.m. The region con-
taining water (4.5–6 p.p.m.) was excluded from further analysis. Each integral
region was normalized to the integral value of TSP for each spectrum. All NMR
peaks were assigned according to the Human Metabolome database (http://
www.hmdb.ca/)48, published literature49 and Chenomx NMR suite version 7.5
(Chenomx, Alberta, Canada). Metabolite concentrations were estimated using
Chenomx NMR suite. Enantiomeric determination of D-lactate was confirmed
using enzymatic assays (Boehringer Mannheim, R-Biopharm, Darmstadt,
Germany). In addition, acetate concentration in the culture medium was also
monitored using enzymatic assays (Boehringer Mannheim, R-Biopharm).

To widen the coverage of exo-metabolome and complement the NMR data,
exo-metabolites collected at OD600 of 0.25, 0.45 and 0.75 were analysed using
LC–TOFMS and LC–MS/MS. First, samples were analysed using a LC–TOFMS to
identify metabolites present in the spent culture media. Then, these metabolites
were targeted for analysis using a LC–MS/MS operating in multiple reaction
monitoring mode. The multiple reaction monitoring parameters for each
metabolite were determined using authentic metabolic standards, and optimized
using the Optimizer feature of the MassHunter software (Agilent Technologies).
LC–MS/MS was carried out using an Agilent 1,200 series HPLC system (Agilent
Technologies) and an Agilent 6430 triple quadrupole mass spectrometer.
Metabolites separation was carried out on a pentafluorophenylpropyl column
(Luna PFP (2), 150� 2 mm, 3 mm, Phenomenex, Torrance, CA, USA)50. In brief,
the mobile phase A used was composed of water with 0.1% (v/v) formic acid and
mobile phase B was acetonitrile. A linear gradient was used for positive ESI mode
with a total run time of 40 min at 0.20 ml min� 1: 0% B (0–8 min), 0–25% B
(8–26 min), 25–100% B (26–28 min), 100% B (28–33 min), 100–0% B (33–34 min)
and 0% B (34–40 min). In addition, the total run time for negative ESI mode
was 34 min at 0.20 ml min� 1, using a linear gradient: 0% B (8 min), 0–30% B
(8–15 min), 30–50% B (15–16 min), 50% B (16–21 min), 50–100% B (21–22 min)
and 100% B (22–27 min), 100–0% B (27–28 min) and 0% B (28–34 min). The
injection volume was 5 ml for both positive and negative modes. System control,
data acquisition and analysis were performed using MassHunter software. The data
set is available in Supplementary Data 1.

Cell size and number. At OD600 of 0.25, 0.45 and 0.75, cells were sampled and
fixed with formaldehyde (0.1% final concentration). The cell density and volume
were measured using a particle analyser, CDA-1000 (Sysmex, Japan). As shown in

Supplementary Fig. 1a, cell volume is considerably affected by the mutations. This
observation agrees with the known increase in cell volume with increase in growth
rate but suggests that growth rate is not the only factor since GLPK cells are much
smaller than RPOC cells, although they have similar growth rates. Moreover, at
higher OD where growth rate should be reduced, RPOC cells retain a large volume.
While such differences in cell size could potentially affect concentration
measurements, all metabolite levels reported were normalized to unit OD and
Supplementary Fig. 1b shows that the total cell volume in all strains varies by
o20% from WT and will not significantly affect results or conclusions of our
study.

Statistical analysis. Metabolomics, lipidomics and proteomics data were analysed
using t-test and analysis of variance in MATLAB (The MathWorks), and the P
values shown were corrected with Bonferroni correction unless otherwise specified.
In addition, the metabolomic data set was imported into SIMCA-Pþ 11.0
(Umetrics, Umeå, Sweden) for processing using PLS-DA.
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