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Abstract: We realize a strongly dispersive material with large tunable 
group velocity dispersion (GVD) in a commercially-available photonic 
crystal fiber. Specifically, we pump the fiber with a two-frequency pump 
field that induces an absorbing resonance adjacent to an amplifying 
resonance via the stimulated Brillouin processes. We demonstrate all-
optical control of the GVD by measuring the linear frequency chirp 
impressed on a 28-nanosecond-duration optical pulse by the medium and 
find that it is tunable over the range ± 7.8 ns2/m. The maximum observed 
value of the GVD is 109 times larger than that in a typical single-mode 
silica optical fiber. Our observations are in good agreement with a 
theoretical model of the process. 

©2014 Optical Society of America 

OCIS codes: (260.2030) Dispersion; (130.2035) Dispersion compensation devices; (190.4370) 
Nonlinear optics, fibers; (290.5900) Scattering, stimulated Brillouin. 

References and links 

1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 
(2006). 

2. R. W. Boyd and D. J. Gauthier, “Controlling the Velocity of Light Pulses,” Science 326(5956), 1074–1077 
(2009). 

3. A. M. Weiner, Ultrafast optics (John Wiley and Sons, New Jersey, 2009). 
4. J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key 

distribution using dispersive optics,” Phys. Rev. A 87(6), 062322 (2013). 
5. J. Nunn, L. J. Wright, C. Söller, L. I. Zhang, I. A. Walmsley, and B. J. Smith, “Large-alphabet time-frequency 

entangled quantum key distribution by means of time-to-frequency conversion,” Opt. Express 21(13), 15959–
15973 (2013). 

6. J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, “Coherent Ultrafast Measurement of Time-Bin Encoded 
Photons,” Phys. Rev. Lett. 111(15), 153602 (2013). 

7. J. P. Yao, “A tutorial on microwave photonics - Part I,” IEEE Photon. Soc. Newsletter 26, 4–12 (2012). 
8. P. Bowlan and R. Trebino, “Complete single-shot measurement of arbitrary nanosecond laser pulses in time,” 

Opt. Express 19(2), 1367–1377 (2011). 
9. M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 

62–65 (2012). 
10. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an 

ultracold atomic gas,” Nature 397(6720), 594–598 (1999). 
11. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. 

Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 
(2005). 

12. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers 
using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005). 

13. G. P. Agrawal, Nonlinear Fiber Optics, 3rd Ed. (Academic Press, San Diego, 2001), Chs. 1–4. 
14. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-

light pulse delay,” Opt. Express 13(25), 9995–10002 (2005). 

#210131 - $15.00 USD Received 14 Apr 2014; revised 27 May 2014; accepted 29 May 2014; published 4 Jun 2014
(C) 2014 OSA 16 June 2014 | Vol. 22,  No. 12 | DOI:10.1364/OE.22.014382 | OPTICS EXPRESS  14382



15. Y. Wu, L. Zhan, Y. Wang, S. Luo, and Y. Xia, “Low distortion pulse delay using SBS slow- and fast-light 
propagation in cascaded optical fibers,” J. Opt. Soc. Am. B 28(11), 2605–2610 (2011). 

16. R. W. Boyd, Nonlinear Optics, 3rd Ed. (Academic Press, Amsterdam, 2008), Ch. 9. 
17. M. Born and E. Wolf, Principles of Optics, 7th Ed. (Cambridge University, Cambridge, 2002), Ch. II. 
18. Y. Zhu, M. Lee, M. A. Neifeld, and D. J. Gauthier, “High-fidelity, broadband stimulated-Brillouin-scattering-

based slow light using fast noise modulation,” Opt. Express 19(2), 687–697 (2011). 
19. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical 

fiber,” J. Lightwave Technol. 25(1), 201–206 (2007). 
20. K. Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32(3), 217–219 

(2007). 
21. R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, 

and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19(9), 8285–8290 (2011). 
22. H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson 3rd, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable 

stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013). 
23. G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic 

devices,” Nat. Commun. 4, 1994 (2013). 
24. Y. Zhu, J. Kim, and D. J. Gauthier, “Aberration-corrected quantum temporal imaging,” Phys. Rev. A 87(4), 

043808 (2013). 
25. M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum Optomechanics,” Phys. Today 65(7), 29–35 (2012). 
26. J. A. Greenberg and D. J. Gauthier, “Transient dynamics and momentum redistribution in cold atoms via recoil-

induced resonances,” Phys. Rev. A 79(3), 033414 (2009). 
27. S. P. Shipman and S. Venakides, “Resonant transmission near nonrobust periodic slab modes,” Phys. Rev. E 

Stat. Nonlin. Soft Matter Phys. 71(2), 026611 (2005). 
28. S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, 

A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic 
response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013). 

29. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. 
Express 19(7), 6312–6319 (2011). 

1. Introduction 

Breakthrough research over the past decade has demonstrated unprecedented control over the 
frequency-dependent refractive index of optical materials. For example, it is now possible to 
obtain negative values of the refractive index [1] using metamaterials and extremely large or 
negative values of the group index using laser-induced material resonances or photonic 
crystals [2]. In contrast, engineering the group velocity dispersion (GVD) is limited to the 
domain of ultra-fast light pulses [3], and therefore relies heavily on complicated and specified 
devices for picosecond or sub picosecond laser pulse generation. Yet, emerging applications, 
such as quantum key distribution [4,5], quantum [6] and classical [7,8] information 
processing, and temporal cloaking [9] require or can benefit from large GVD that can 
disperse longer-duration pulses. In these applications to date, optical pulse durations are 
typically in the sub-nanosecond regime for classical and quantum optical fiber 
telecommunication [6–8]. On the other hand, the photonic wavepackets that are used to 
convey qubits between quantum dots can have lifetimes on the order of several nanoseconds 
[6]. A large tunable dispersive element would immediately benefit passive dispersion 
compensation control, and moreover, enable the application of temporal Fourier operations 
into these emerging fields. 

Motivated by recent research [10–12] that has demonstrated extreme values of group 
index using resonances to enhance the material dispersion, we find that giant values of the 
GVD parameter β2 can be obtained when an amplifying resonance is placed next to an 
absorbing resonance. Here, we demonstrate giant and adjustable GVD over the range ± 7.8 
ns2/m appropriate for nanosecond-duration pulses realized using an optical fiber pumped by 
an auxiliary laser beam. The dispersion is ~109 times larger than that obtained in standard 
single-mode fiber. This method can be used for any wavelength within the transparent 
window of the optical fiber. In addition, the GVD dispersion value is widely tunable and the 
spectral profile can be optimized for specific applications by tailoring the pump-laser 
spectrum. The unprecedented large GVD value and wide tunability are promising avenues for 
applications involving the dispersion of long-duration pulses. 
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2. Theory of group velocity dispersion design 

In general terms, our approach can be understood by considering one-dimensional pulse 
propagation along the z-direction in a linear dispersive material characterized by a frequency-
dependent complex refractive index n(ω). In this case, electromagnetic theory predicts that 
the spectral amplitude of the output field is related to its input through the relation 

 ( )( ) ( )i z
out inE e Eβ ωω ω=  (1) 

where ( ) ( ) /n cβ ω ω ω=  is the pulse complex wavevector in the dispersive material and c is 

the speed of light in vacuum [13]. 
For pulses with a narrow-band spectrum centered at the carrier frequency 0ω  and slow 

variation of n(ω) over the pulse spectrum, a Taylor series expansion of the complex 
wavevector 

 2 3
0 0 1 0 2 0 3 0( ) ( ) ( ) ( ) / 2! ( ) / 3!β ω β ω β ω ω β ω ω β ω ω= + − + − + − +  (2) 

leads to approximate analytic solutions to the problem when the series is truncated, where the 

complex dispersion parameters are defined by 
0

/j j
j d d

ω ω
β β ω

=
= . For the case when β is 

essentially real, as appropriate for transparent glasses, the phase velocity of the pulse is given 
by 0 0 0/ ( ) /p c nυ ω ω β= = , and the group velocity is 1/ 1 /g gc nυ β= = . For slow- and fast-

light applications, the goal is to design a material that has large or small gn  ( 1β ) and to 

minimize the higher-order dispersion terms ( 1j > ) [14,15]. On the other hand, for a material 

dominated by GVD, the goal is to design a material with large |β2 | and to minimize the other 
terms in Eq. (2). 

For a material dominated by GVD, an incident transformed-limited pulse develops a 
linear frequency chirp (corresponding to a quadratic phase), as illustrated in Fig. 1(a). The 
characteristic distance over which the chirp develops is known as the dispersion length 

2
0 2/DL τ β= , where 0τ  is a measure of the pulse width. The substantial dispersion needed 

for the applications mentioned above requires that the length of the material DL L . The 

scaling of DL  with pulse width is the reason why it is difficult to observe GVD-effects for 

nanosecond-duration pulses for values of β2 characteristic of typical dispersive materials and 
devices (for example, β2 ~20 ps2/km for single-mode silica optical fibers at 1.55 μm). 

As mentioned above, we engineer a material with large GVD by considering the 
dispersion resulting from two neighboring resonances. The linear optical susceptibility for 
such a composite resonance, consisting of the case of a Lorentzian-shaped amplifying 
resonance at frequency rω − Δ , half-width γ, and strength G>0 and a similar absorbing 

resonance at frequency rω + Δ  and strength -G, is given by 

 
1 1

( ) .
1 ( ) / 1 ( ) /

h

r

cn G
i

i i
χ ω

ω δ γ δ γ
 = − + − + Δ − − Δ 

 (3) 

Here, the first (second) term in Eq. (3) represents the amplifying (absorbing) resonance, rω  is 

the center of the composite resonance, rδ ω ω= − is the detuning relative to the center of the 

resonance, 2Δ is the frequency separation between the gain and absorption line, hn is the 

index of refraction of the transparent host material and ( ) ( ) / 2h hn n nω χ ω≅ + , which is valid 

when the resonance is not too strong so that local-field effects can be ignored. The GVD 
parameter arising from the resonance profile described by Eq. (3) is obtained by taking the 
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Taylor-series expansion of this expression. We find that the GVD value at the central 
frequency δ = 0 is given by 

 
2

2 2 2 3

2 ( 3 )
,

(1 )

Gβ
γ

 Δ − + Δ=  + Δ 

 
  (4) 

with / γΔ ≡ Δ . 

 

Fig. 1. Group velocity dispersion in optical material. a An input transform-limited optical pulse 
develops a linear frequency chirp as it propagates through a material with group velocity 
dispersion parameter β2 (illustrated here for the case when β2 > 0). b Wavevector magnitude 
for a medium containing oscillators with a double resonance described by the susceptibility 
given by Eq. (3) with / 1.03γΔ = − . c GVD parameter for the double-resonance medium 

for the same conditions as in b. 

Figure 1(b) shows the complex wavevector profile for the susceptibility given by Eq. (3). 
It is seen that the real part of β is symmetric about δ = 0, as opposed to anti-symmetric for a 
single Lorentzian resonance, which gives rise to large slow- and fast-light effects. In addition 
β is approximately quadratic about δ = 0, which results in large positive β2 given by Eq. (4), 
as shown in Fig. 1(c). The profiles are inverted by changing the sign of Δ, which allows easy 
control over the sign of the GVD. The magnitude of the GVD value is controlled by the gain 
G. 

3. Experimental realization and measurement of giant tunable GVD in a photonic 
crystal fiber 

The dispersion profile in Fig. 1(b) is realized experimentally by inducing stimulated Brillouin 
scattering (SBS) resonances in a 10-meter-long photonic crystal optical fiber. The 
experimental setup used to observe large GVD is shown in Fig. 2. In the typical SBS process, 

#210131 - $15.00 USD Received 14 Apr 2014; revised 27 May 2014; accepted 29 May 2014; published 4 Jun 2014
(C) 2014 OSA 16 June 2014 | Vol. 22,  No. 12 | DOI:10.1364/OE.22.014382 | OPTICS EXPRESS  14385



a weak input laser beam interacts with a strong counterpropagating pump beam through wave 
mixing with an induced acoustic field [16], creating narrow Stokes (amplifying) and anti-
Stokes (absorbing) resonances whose strengths are proportional to the pump beam intensity. 
SBS resonances can be induced at any frequency where the material is transparent by 
adjusting the pump laser frequency, thus making this approach broadly tunable over the entire 
transparency window of the fiber (limited only by the availability of the laser source). To 
obtain adjacent amplifying and absorbing resonances as required by Eq. (3), we pump the 
PCF using a two-frequency pump beam that allows us to place the anti-Stokes resonance 
arising from one of the pump frequency components close to the Stokes resonance arising 
from the other component, as illustrated in Fig. 3(a). 

 

Fig. 2. Schematic of the experimental setup to observe giant GVD. We use a 10-m-long PCF 
(NKT Photonics Inc., NL-1550-NEG-1, SBS gain factor gSBS = 2.5 ± 0.2 W−1m−1, SBS 
resonance width γ/2π = 23.8 ± 0.6 MHz, and Brillouin frequency ΩB/2π = 9.60 GHz) that is 
pumped by a 1.55-μm-wavelength bichromatic pump beam. The pump beam is created by 
modulating the output of a telecommunications laser (Fitel 47X97A04) with a Mach-Zehnder 
modulator (EOSpace, AX-0K1-12-PFAP-PFA-R3-UL, 20 GHz) operating in carrier-
suppression mode and driven by a sinusoidal waveform at frequency produced by a microwave 
frequency source (Agilent E8267D). The modulated pump beam is passed through an erbium-
doped fiber amplifier (IPG Photonics EAD-1K) and a Faraday circulator before injection into 
the PCF so that it counterpropagates with respect to the signal beam. It is noted that such an 
experiment setting is not mandatory to realize giant GVD; we can also use two laser diodes as 
the dual-frequency pump given that the frequency jitter is small and stable. 

As a first step in characterizing the dispersive material, we inject a weak continuous-wave 
signal beam into the bichromatically-driven PCF and measure the gain spectrum of the 
composite SBS resonances as shown in Fig. 3(b). We use an auxiliary signal laser beam 
(Agilent HP81862A, power 3.6 μW,) whose frequency is scanned via current tuning. This 
beam is passed through a circulator before injection into the PCF. The signal beam is passed 
to a photoreceiver (New Focus 1611) via the other circulator and measured with an 
oscilloscope. When Δ = 0, there is essentially no change in the transmitted signal beam, 
demonstrating that the Stokes and anti-Stokes resonances do not depend on the relative 
phases of the pump beam frequency components and hence the susceptibility given by Eq. (3) 
is appropriate. When 0Δ < , we obtain a gain profile corresponding to the imaginary part of β 
shown in Fig. 1(b). The profile inverts, as discussed above, when 0Δ > . 

We next inject nanosecond-scale-duration, chirp-free Gaussian-shaped signal pulses with 

0 rω ω=  into the PCF and measure the frequency chirp using a homodyne detection technique 

that mixes some of the continuous wave pump laser light (serving as a phase reference) with 
the pulse transmitted (power ( )outP t ) from the PCF. For the pulsed experiments, we generate 
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the signal beam by splitting a small fraction of the power from the pump beam, thereby 
assuring that 0 rω ω= . This beam is passed through a Mach-Zehnder modulator (OTI 10 

Gb/s) driven by an arbitrary waveform generator (Tektronix AFG 3251) that generates a 
Gaussian-like pulse of the form 2

0 0( ) exp[ ( / ) ]P t P t τ= − , where P0 is the peak power and τ0 = 

28.0 ns. 

 

Fig. 3. Composite SBS resonance. a Illustration of SBS resonances. A counterpropagating 

pump beam of frequency 1pω
 induces an anti-Stokes absorption line at frequency 1p Bω + Ω  

and full-width at half-maximum width 2γ , and the pump beam component at frequency 2pω  

induces a Stokes gain line at frequency 2p Bω − Ω , also with the same width. These induced 

resonances are shown in red. The strength of the resonances are identical in magnitude and 

given by SBS pjG g P= , where SBSg  is the SBS gain factor and pjP  is the pump power of 

the pump beam at frequency j ( = 1, 2). The center of the composite SBS resonance is at 

frequency rω  and the frequency relative to this value is denoted by δ. The spacing between the 

gain and absorption lines is 2Δ, shown here for the case when Δ > 0. b Experimentally 
observed probe beam transmission profile for different values of Δ, showing the natural 
logarithm of the output probe beam power Pout divided by the input power Pin with 

0.33 0.03GL = ± . 

As shown in Fig. 4(a), with the reference blocked (Fig. 1(a)), we observe the broadened 
Gaussian shaped profile of the pulse. With the reference unblocked, the profile displays 
interference due to the frequency chirp, which agrees well with the expected dependence. We 
repeat this measurement for different pump powers and hence SBS gain G. The waveform is 
captured with an 8-GHz-analog-bandwidth, 40 Gsample/s oscilloscope (Agilent DSO80804B) 
and downloaded to a computer for offline analysis. We fit the resulting waveform under the 
assumption that the signal beam has a Gaussian envelope and a phase that is a second-order 
polynomial. In this case, the quadratic term is directly related to β2 by 

2 2 2 4
2 2 0 0{ / [1 ( / ) ]} / 2L L tφ β β τ τ= − + . We also fit the data with a fourth-order polynomial and 

find that the reduced-chi-square is larger than when fitting a quadratic polynomial, indicating 
that higher-order dispersion has a negligible effect on the GVD-induced chirp. 
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Figure 4(b) shows that β2 increases linearly with G (proportional to pjP ) as expected, 

demonstrating all-optical control of the GVD. We obtain a maximum value of |β2| = 7.8 
ns2/m, which is ~109 times larger than that obtained in standard telecommunication optical 
fibers at 1.55 μm. Negative GVD can be obtained by inverting Δ (see Fig. 3(b)). Our 
observations are in good agreement with Eq. (4), which predicts that 

2 20.9sgn[ ]Gβ = − Δ (ns2/m) for / 1.03γΔ = , where sgn is the sign function. There are no free 

parameters in our model. 

 

Fig. 4. Observation of giant GVD in a laser-pumped optical fiber. a Temporal evolution of the 
power at the output port Pout(t) of the homodyne detection setup normalized to its peak power 
((Pout)

max) for GL = 2.0 ± 0.08. When the reference beam is blocked (solid line, top), we 
observe the pulse profile. With the reference beam (solid line, bottom), we observe a complex 
pattern resulting from both the pulse profile and the temporal phase variation resulting from 
the GVD-induced chirp. The solid dots are a fit to the data (see text). b Linear variation of the 
GVD parameter with SBS gain, which is proportional to the power of the pump laser. The 
error bar shows the typical error in our measurement. 

4. Discussion of pulse distortion 

From the temporal pulse profile measurements shown in Fig. 4(a), we observe that there are 
some small distortions in the transmitted pulse properties, which are not expected based on 
our discussion above that assumes an idea transparent dispersive medium for which the 
imaginary part of β is essentially equal to zero. In an ideal dispersive medium, a chirp-free 
Gaussian pulse gains a pulse width broadening determined by β2. In our SBS-based GVD 
system, however, we have observed small pulse shape distortions including additional 
broadening, amplification and delay (shown in Fig. 5). These non-ideal effects are due 
predominantly to frequency-dependent gain and absorption arising from the imaginary part of 
β, which is unavoidable for a material satisfying the Kramers-Kronig relation [17]. These 
small non-ideal behaviors do not disrupt the GVD-induced linear frequency chirp and, 
furthermore, initial simulations show that they can be reduced substantially by tailoring the 
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pump beam spectrum using methods similar to those used to minimize pulse distortion in 
SBS-based slow- and fast-light [18]. 

We use two approaches for understanding the origin of the pulse distortion: a numerical 
solution to Eq. (1) using the full frequency-dependent susceptibility given in Eq. (3), and an 
approximate analytic method where we truncate the Taylor series expansion given in Eq. (2) 
after the second-order term. When the carrier frequency of the pulse is at the center of the 
composite resonance (δ = 0), βj is pure imaginary for j odd and pure real for j even (ignoring 
the dispersion of the silica). We assume this resonance condition in the discussion below, 
where we compare the predictions of the approximate analytic model, the full model, and 
experimental observations. 

The envelope of the pulse field amplitude transmitted through the laser-pumped fiber, 
assumed to be propagating along the + z-direction and for the case where the entrance face of 
the medium is at z = 0, can be found analytically for an input Gaussian pulse of the form 

 ( ) ( )2

0 00, exp / .A z t A t τ = = −   (4) 

After substantial calculation, we find the output pulse is Gaussian and that the analytic 
solution has the expected behavior for a material with GVD, including a frequency chirp and 
pulse broadening, as well as some non-ideal effects discussed below that arise from the 
imaginary part of β1. The predicted pulse broadening, characterized by the Gaussian pulse-
width parameter at the output of the dispersive material (z = L), is given by 

 2 2 2 2
0 (1 / ),DL Lτ τ= +  (5) 

where 2
0 2/DL τ β= , and is identical to the result found for an ideal GVD material. 

One non-ideal effect is a pulling of the pulse carrier frequency due to the frequency-
dependent gain (see Fig. 1(b)). The instantaneous pulse carrier frequency is given by 

 0( ) ,T
T

φω ω ∂= −
∂

 (6) 

where 1Re[ ]T t zβ= −  is the local time in the frame moving at the group velocity arising 

from the silica glass (not including the dispersion from the SBS resonances). The time-
dependent phase in Eq. (6) is given by 

 2 1
2 2

sgn( ) Im( )
,

D

L L
T

T L

β βφ
τ τ

∂− = −
∂

 (7) 

where the first term on the right-hand-side of Eq. (8) is the linear chirp expected for a material 
with GVD and the second term represents the non-ideal frequency shift. Here, 

 
( )1 22

4
Im( ) .

2 1

Gβ
γ

 Δ = −
 + Δ 




 (8) 

For our experiment, the frequency shift is of the order of γ (~2π × 24 MHz) for the largest 
value of G, which can be compensated using an acousto-optic modulator, for example, if 
required for a specific application. 

Another non-ideal effect is that the Gaussian pulse experiences a temporal offset given by 

 
2

2 1sgn( ) Im( )
,off

D

L
T

L

β β= −  (9) 
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which arises from both the effects of the first- and second-order dispersive terms in Eq. (2). 
Finally, the pulse experience an overall amplification so that the ratio of the output to 

input power is given by 

 
( )22

10
2
0

Im( )
exp .out

in

LP

P

βτ
τ τ

  =   
    

 (10) 

The prefactor in Eq. (10) is the expected result for a medium with pure GVD so that the pulse 
decreases in amplitude as it broadens. The exponential term arises from the fact that some of 
the pulse spectrum overlaps with the amplifying part of the composite gain line as its 
frequency is pulled toward the amplifying side of the resonance. 

By direct measurement of the temporal evolution of the pulse at the output of the GVD 
medium, we determine the pulse width, temporal offset, and amplification as a function of the 
SBS gain as shown in Fig. 5 and compare to the approximate analytic theory outlined above 
and the numerical solution using the full susceptibility. It is seen that there is good agreement 
between the experiments and both theoretical approaches for the pulse offset and 
amplification. However, the pulse broadens more than expected in the experiment when 
compared to the second-order theory, but is in good agreement with the full analysis. The 
additional pulse broadening results from the frequency filtering effect due to third and higher 
order dispersive terms in Eq. (2). Overall, these effects are small and may not be important 
for specific applications that mainly require a linear chirp of the input pulse. Also, we 
reiterate that these effects can be mitigated by tailoring the pump spectrum. 

Finally, we comment that that the Taylor series given in Eq. (2) has no radius of 
convergence when / 1γΔ <  and there is substantial disagreement between our approximate 

analytic expressions and the theory using the full susceptibility. Therefore, we conduct the 
experiment with / 1.03γΔ = ±  even though the GVD parameter β2 takes on its maximum 

value when / 0.73γΔ = ± . 

5. Conclusion and outlook 

In conclusion, we have successfully realized a strongly dispersive material with large tunable 
group velocity dispersion (GVD) via SBS in a photonic crystal fiber. We have obtained giant 
and tunable GVD over the range ± 7.8 ns2/m, verified by the measurement of the quadratic 
phase chirp induced on a 28-nanosecond-duration pulse. The dispersive properties of the fiber 
agree well with the theoretical model. Small pulse distortions are accounted for with second-
order approximate analytic model and full-rank numerical simulation. 
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Fig. 5. Parameters for an optical pulse propagating through a dual-line dispersive material. a 
Pulse width, b temporal offset, and c amplification as a function of the SBS gain. Here, 
amplification is defined at the peak power of the output probe pulse divided by the peak power 
of the pulse in the absence of the pump beams (i.e., with G = 0). The solid lines are the 
prediction of the second-order theory, the dashed lines are the predication of the full model 
using numerical techniques, and the solid circles are the experimental measurements, where 
the error bars indicate typical measurement error. In c, the typical error bar is of the order of 
the size of the symbol. 

There are many possible future directions of the work presented here that will allow for 
complete control of GVD in optical materials over a wide range of pulse parameters. For the 
SBS-based GVD investigated here, the resonances can be broadened to the 10's of GHz range 
by tailoring the pump spectrum [19,20], thereby realizing large GVD for pulses from the 
nanosecond to the sub-100-ps range. Also, there is sustained progress in realizing chip-scale 
SBS-based devices [21–23], which will allow compact dispersive GVD systems. In the 
quantum regime, it will be possible to disperse single-photon wavepackets without adding 
excess noise [24] if the SBS device is cooled to its quantum mechanical ground state, which 
is now within reach [25]. Considering other platforms, recoil-induced resonances in laser-
pumped ultra-cold gases [26] should display large GVD for millisecond-scale pulses and 
Fano-type resonances in photonic crystal [27], plasmonic [28] and metamaterial [29] devices 
are promising avenues to explore for high-bandwidth GVD engineering. 
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