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ABSTRACT 

 

 

 

 

This thesis presents optimization of input shaping technique for vibration 

control of a flexible robot manipulator using genetic algorithms (GA).  This 

simulation work is designed in Matlab based environment with sampling frequency 

of 2 kHz and implemented on a Pentium 4 2.66 GHz processor and the responses are 

presented in time and frequency domains. The simulation can be repeated for 

different payload of the system varying from 0 to 100g.  In this work, a single link 

flexible robot manipulator that moves in horizontal plane is considered.  Modeling is 

done using FE method where the system is divided into 10 elements and the damping 

ratio of the system are deduced as 0.026, 0.038 and 0.040 for the first three vibration 

mode respectively. The input shaping technique is used to reduce vibrations in the 

system.  This method requires estimated values of natural frequencies and damping 

ratios to generate impulse sequences.  It is noted that the input shaping control 

technique is a better control technique compared to the bang-bang torque input 

control technique.  It can be further optimized by using GA, by determining the 

optimal natural frequencies to cancel the resonance modes in the system and thus 

reducing the vibrations.  For input shaping with genetic algorithm (ISGA) versus 

bang-bang (BB) and ISGA versus input shaping (IS), the percentages of vibration 

improvement in term of area representation is about 2720.03% and 28.57% 

respectively.  In this work, GA optimization method not only reduces the vibrations, 

but also reduces time delay.  GA can also be used offline or online to tune the system 

to achieve better performance due to modeling error.  However, GA with input 

shaping technique increases the time and complexity of Matlab simulation. 
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ABSTRAK 

 

 

 

 

Tesis ini membincangkan pengoptimuman teknik pembentuk masukan untuk 

kawalan getaran terhadap pengolah lentur robot menggunakan algoritma genetik 

(GA). Simulasi ini direka berdasarkan Matlab dengan frekuensi persampelan 2 Khz 

dan dilaksanakan pada pemproses Pentium 4 2.66 Ghz dan sambutannya telah 

dibentangkan dalam domain masa dan frekuensi. Simulasi ini boleh diulang untuk 

beban 0 hingga 100 g. Satu cabang pengolah yang bergerak pada satah mendatar 

dipertimbangkan dalam kajian ini. Teknik finite element (FE) telah digunakan untuk 

memodel sistem dimana sistem telah dibahagikan kepada 10 elemen dan nisbah 

redaman 0.026, 0.038 dan 0.040 untuk tiga mod getaran digunakan. Teknik masukan 

pembentuk digunakan untuk menggurangkan gegaran dalam sistem. Kaedah ini 

memerlukan nilai anggaran frekuansi tabii dan nisbah redaman untuk menghasilkan 

susunan impulse. Teknik ini dilaksanakan dengan melingkarkan susunan impulse 

bersama dengan masukan sistem yang dikehendaki. Teknik kawalan pembentuk 

didapati lebih baik daripada teknik kawalan bang-bang. Teknik ini juga boleh 

diperbaiki dengan menggunakan GA dimana GA digunakan untuk menentukan 

frekuansi tabii yang optima untuk menghapuskan mod salunan, sekali gus 

menggurangkan getaran. Peratus pembaikan getaran dari segi luas bagi pembentuk 

masukan dengan algoritma genetic (ISGA) lawan bang-bang (BB) adalah sebanyak 

2720.03%, manakala bagi ISGA lawan pembentuk masukan (IS) adalah sebanyak 

28.57%. Kaedah pengoptimuman GA bukan sahaja menggurangkan getaran, malah 

menggurangkan masa lengah. GA juga boleh digunakan dalam talian luar atau dalam 

untuk menghasilkan prestasi yang lebih baik disebabkan ralat permodelan 

matematik. Walaubagaimanapun, teknik ini memakan masa dan merumitkan 

simulasi sistem. 
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INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

Most existing robotic manipulators are designed and built in a manner to 

maximize stiffness, in an attempt to minimize system vibration and achieve good 

positional accuracy (Mohamed and Tokhi, 2004).  High stiffness is achieved by using 

heavy material.  As a consequence, such robots are usually heavy with respect to the 

operating payload.  This, in turn, limits the operation speed of the robot manipulation, 

increases the actuator size, and boosts energy consumption and increase the overall 

cost.  Moreover, the payload to robot weight ratio, under such situation, is low. In 

order to solve these problems, robotic systems are designed to be lightweight and thus 

posses some level of flexibility.  Conversely, flexible robot manipulator exhibits 

many advantages over their rigid counterparts: they require less material, are lighter in 

weight; have higher manipulation speed, lower power consumption, require small 

actuators, are more maneuverable and transportable, are safer to operate due to 

reduced inertia, have enhanced back-drive ability due to elimination of gearing, have 

less overall cost and higher payload to robot weight ratio (Book and Majette, 1983).
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However, the control of flexible robot manipulators to maintain accurate 

positioning is an extremely challenging problem.  Due to the flexible nature and 

distributed characteristic of the system, the dynamics are highly non-linear and 

complex.  Problems arise due to precise positioning requirement, vibration due to 

system flexibility, the difficulty in obtaining accurate model of the system and non-

minimum phase characteristics of the system (Piedboeuf et al, 1983; Yurkovich, 

1992).  Therefore, flexible manipulators have not been favored in production 

industries, as the manipulator is required to have reasonable end-point accuracy in 

response to input commands.  In this respect, a control mechanism that accounts for 

both rigid body and flexural motions of the system is required.  If the advantages 

associated with lightness are not to be sacrificed, accurate models and efficient 

controllers have to be developed (Mohamed, Tokhi, 2004). 

 

 

 

1.2 Background of the Problems 

 

Control of machines that exhibit flexibility becomes important when designers 

attempt to push the state of the art with faster and lighter machines.  Many researches 

have examined different controller configurations in order to control machines 

without exciting resonances.  However, after designing a good controller, the input 

commands to the closed-loop system are ‘desired’ trajectories that the controller treats 

as disturbances.  Often these ‘desired’ trajectories are step inputs or trajectories that 

the machine cannot rigidly follow (Singer and Seering, 1989). 

 

Active vibration control of slewing flexible structures, such as flexible robotic 

manipulator systems, have experienced rapid growth in recent years.  Most of the 

attention has been focused on eliminating vibrations that result in the structure when 

control applied (Anthony and Yurkovich, 1993).  The vibration of flexible 

manipulator or system often limits speed and accuracy.  The vibration of such 

manipulator or system is usually caused by changes in the reference command or 

from external disturbance.  If the system dynamics are known, commands can be 

generated that will cancel the vibration from the system’s flexible modes (Bhat and 

Miu, 1990; Singer, 1989; Singer and Seering, 1990; Smith, 1957).  Accurate control 
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of flexible structures is an important and difficult problem and has been an active area 

of research (Book, 1993; Junkins and Kim, 1993). 

 

 

 

1.3  Statement of the Problems 

 

Vibration is a concern of virtually every engineering disciple; mechanical 

engineers continually face the problem of vibration because mechanical systems 

vibrate when performance is pushed to the limit.  The typical engineering solutions to 

vibration are to design ‘stiff’ systems, add damping to flexible system, or develop a 

good controller.  Input shaping is another possibility for vibration control that can 

supplement methods (Singhose et al., 1990). 

 

Plump et al. (1987) have examined the use of piezoresistive polymer films to 

generate additional damping in a structure. Albert Thomas et al. (1985) have used a 

thin layer of viscoelastic material to obtain passive damping that has enhanced system 

stability.  Crawley et al. (1986) have examined the use of a distributed array of 

piezoelectric device for actuation on a structure.  Cannon et al. (1984) have examined 

feedback control with non collocated end-point position measurements for a single  

link flexible robot.  Hollars et al. (1986) have compared four different control 

strategies for a two-link robot with elastic drives. Kotnik et al. (1998) have examined 

feedback acceleration techniques for residual vibration reduction. 

 

An early form of input shaping was the use of posicast control by Smith 

(1958).  This technique breaks a step of certain amplitude into two smaller steps, one 

which is delayed in time.  The result is a reduced settling time for the system.  

Optimal control approaches have also been used to generate input profiles for 

commanding vibratory systems. Junkins et al. (1986) and Chun et al. (1985) have also 

made considerable progress towards practical solutions of the optimal control 

formulation for flexible systems.  Gupta and Narendra (1980), and Junkins et al. 

(1986) have included some frequency shaping terms in the optimal formulation.  

Farrenkopf (1979) has developed velocity shaping techniques for flexible spacecraft. 
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Swigert (1980) demonstrated that torque shaping modeling decomposes into second 

order harmonics oscillators. 

 

Singer and Seering (1989) have shown that residual vibration can be 

significantly reduced for single mode system by employing an input shaping method 

that uses a simple system model and requires very little computation.  The system 

model consists only of the system’s natural frequency and damping ratio.  Constraints 

on the system inputs results in zero residual vibration if the system model is exact.  

When modeling errors occurs, the shaped input function keeps the system vibration at 

a low level that is acceptable for many applications.  Extending the method to multi 

mode system is straight forward. 

 

The shaping method involves convolution of a desired input with sequence of 

impulses to produce an input function that reduces vibration.  Selection of impulse 

amplitude and time location dictates how well the system performs.  Figure 1.1 shows 

how an impulse sequence can be convolved with system input to generate shaped 

inputs.  Three-impulse sequences have been shown to yield particular effective system 

inputs both in terms of vibration suppression and response (Singer and Seering, 1989). 

 

 
Figure 1.1: Convolution of an impulse sequence with a system input 

 

The shaping method is effective in reducing vibration in both open and closed 

loop systems.  The selection of amplitude and time location of the impulse is very 

crucial and affects the system.  If the parameters do not match the cancellation of the 
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vibration, the system’s vibration might be increased.  Therefore, optimization of the 

input shaping is needed to achieve better performance of the flexible manipulator. 

 

 

 

1.4 Objective of the Study 

 

(a) To investigate the previous research on input shaping for vibration 

control of a flexible robot manipulator. 

(b) To study the dynamic characteristic of the flexible manipulator in order 

to construct the controlling method to reduce the vibration. 

(c) To introduce a new method in determining the optimal input shaping 

using genetic algorithms. 

(d) To study the performance of a new method for vibration control of a 

flexible robot manipulator. 

 

 Some assumptions and limitations are made along the study to reduce the complexity 

in solving the problem. 

 

 

 

1.5 Scope of Study 

 

The scope of study is divided into three main parts.  The first part is to study 

the previous research regarding the existing methods in vibration reduction for 

flexible robot manipulators.  The flexible manipulator system considered in this work 

is a single-link flexible manipulator that moves in a horizontal plane. 

 

The second part of the project is to study the dynamic characteristics of the 

flexible manipulator (Martins et al., 2003).  The existing dynamic model of the system 

using finite element method will be used.  The study is done to understand the 

dynamic behaviors of the flexible manipulator system.  This is very a important part 

of the research in order to design a good controller for the system. 
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The third part of study is to design a suitable input shaper to control the 

flexible manipulator system.  A new approach in designing input shaper methods will 

be introduced and optimized for reduction in vibration for flexible manipulator 

system.  This work will be carried out through simulation and optimizes the continuity 

of previous research (Mohamed and Tokhi, 2004). 

 

 

 

1.6 Significance of Study 

 

An optimal input shaping technique is presented for controlling vibration for 

flexible manipulator system.  Vibration is eliminated by convolving a sequence of 

impulses, an input shaper, with a desired system command to produce a shaped input.  

The nature and distributed dynamic characteristics of the flexible manipulator system 

are highly non-linear and complex is controlled by shaped input.  This will ensure the 

flexible manipulator system to maintain accurate position.  The implication of the 

reduction of vibration in flexible manipulator system using the optimal input shaping 

enables it to be introduced in space structures, flexible aircraft wings and robotic 

manipulators (Marc, 1998).  Another area of interest is in disk drives, where 

read/write heads mounted at the end of small but flexible assemblies must be removed 

rapidly to distant tracks while being subjected to minimum residual vibrations (Miu, 

1993).  Thus, reducing the cost and increasing the production to its advantage.
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