

A HARDWARE IMPLEMENTATION OF RIVEST-SHAMIR-ADLEMAN

CO-PROCESSOR FOR RESOURCE CONSTRAINED EMBEDDED SYSTEMS

ARUL A/L PANIANDI

UNIVERSITI TEKNOLOGI MALAYSIA

A HARDWARE IMPLEMENTATION OF RIVEST-SHAMIR-ADLEMAN

 CO-PROCESSOR FOR RESOURCE CONSTRAINED EMBEDDED SYSTEMS

ARUL A/L PANIANDI

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Master of Engineering (Electrical)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

MAY 2006

iii

Specially dedicated to

 my beloved family

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to extend my deepest gratitude is to Professor

Dr. Mohamed Khalil bin Haji Mohd Hani for giving me the opportunity to explore

new grounds in the computer-aided design of electronic systems without getting lost

in the process. His constant encouragement, support and guidance were key to

bringing this project to a fruitful completion. I have learnt and gained much in my

two years with him, not only in the field of research, but also in the lessons of life.

My sincerest appreciation goes out to all those who have contributed directly

and indirectly to the completion of this research and thesis. Of particular mention are

lecturer Encik Nasir Shaikh Husin for for his sincere guidance and the VLSI-ECAD

lab technicians, En. Zulkffli bin Che Embong and En. Khomarudden bin Mohd Khair

Juhari, in creating a conducive learning and research environment in the lab.

Many thanks are due to past and present members of our research group at

VLSI-ECAD lab. I am especially thankful to my colleagues Avinash, Kie Woon,

Hau Yuan Wen, Kwee Siong, Izzeldin, Illiasaak, Heng San, Shikin and Chew for

providing a supportive and productive environment during the course of my stay at

UTM. At the same time, the constant encouragement and camaraderie shared

between all my friends in campus made life in UTM an enriching experience.

Finally, I would like to express my love and appreciation to my family who

have shown unrelenting care and support throughout this challenging endevour.

v

ABSTRACT

The concern with security problems has been rapidly increasing as computers

and Internet services become a more pervasive part of our daily life. This need is

further fueled by the advent of mobile electronic devices like smart cards, mobile

phones and hardware tokens. Public key cryptographic systems such as RSA (Rivest-

Shamir-Adleman) are vital in providing this security in terms of authentication,

private key exchange, and digital signatures. Unfortunately, current RSA

implementations are either resource exhaustive or too slow. In this thesis, a fast and

configurable hardware implementation of the RSA algorithm for public key

cryptography is presented that addresses the issues above. The designed RSA co-

processor core is actually a modular exponentiation hardware engine, which is the

basic arithmetic operation in implementing a RSA public key encryption and

decryption algorithm. The computation intensive modular multiplication operation is

based on the Montgomery’s algorithm and implemented using systolic array

architecture. The modules in the RSA co-processor are modeled using VHDL

hardware description language before being integrated with Altera’s softcore

general-purpose processor, Nios II, and standard peripherals to form a complete

cryptosystem in SoPC environment. Embedded C language codes are then written to

test the functionality of the RSA co-processor on hardware. Upon verification, a

demonstration application prototype that performs RSA encryption and decryption is

developed using Visual Basic 6.0. This RSA co-processor core is able to encrypt and

decrypt data with variable key lengths up to 4096 bits. The 1024 bit implementation

uses 7000 Logic Elements (LE) on the Altera Stratix EP1S40-F780C5 FPGA

development board which roughly translates to 49,000 gates. Encryption takes 2 ms

while decryption takes 79 ms with the clock frequency of 40MHz. The speed and

area constraint achieved is comparable and even better than several other research

and commercial implementations.

vi

ABSTRAK

 Penggunaan computer dan Internet yang semakin meluas menyebabkan

perhatian yang diberikan terhadap isu keselamatannya kian meningkat. Keperluaan

ini semakin terasa dengan penggunaan alatan elektronik mudah alih seperti kad

pintar, telefon bimbit dan token perkakasan. Sistem kriptografi kunci-awam seperti

RSA (Rivest-Shamir-Adleman) amat penting dalam menyediakan sekuriti ini

daripada aspek autentikasi, pertukaran kunci-persendirian dan tandatangan digital.

Malangnya, implementasi RSA yang sedia ada sama ada terlalu besar atau terlalu

perlahan. Dalam tesis ini, suatu implementasi teras kripto berdasarkan algoritma

RSA, yang laju dan mudah diubah-suai, dicadangkan bagi menangani isu di atas

untuk sistem kriptografi kunci-awam. Teras RSA yang direka ini sebenarnya adalah

perkakasan ekponensasi modular, yang merupakan operasi aritmetik asas dalam

enkripsi dan dekripsi yang dinyatakan oleh algoritma RSA. Operasi pendaraban

modular yang intensif komputasi adalah berdasarkan algoritma Montgomery dan

dilaksanakan dengan senibina tatasusunan sistolik. Modul-modul dalam teras RSA

ini dimodelkan menggunakan bahasa deskripsi perkakasan, VHDL, sebelum

digabungkan dengan mikropemproses buatan Altera, Nios II dengan persistan

langsung, untuk membentuk sistem kripto menerusi SoPC. Kod C terbenam

kemudian ditulis untuk menguji kesahihan implementas iteras RSA atas perkakasan.

Setelah terbukti sahih, sebuah prototaip aplikasi demonstrasi yang melaksanakan

enkripsi dan dekripsi RSA dibangunkan menggunakan Visual Basic 6.0. Teras RSA

ini boleh enkrip dan dekrip data dengan variasi panjang kunci sehingga 4096 bit.

Implementasi 1024 bit menggunakan 7000 Elemen Logic (LE) perkakasan FPGA

Altera Stratix EP1S40-F780C5, iaitu lebih kurang 49,000 get logik. Enkripsi

mengambil masa lebih kurang 2 ms manakala dekripsi 79 ms dengan frekuensi 40

MHz. Kelajuan dan limitasi saiz yang dicapai adalah sama ada standing atau lebih

baik berbanding implementasi penyelidikan atau komersial yang lain.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENTS iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES xii

 LIST OF FIGURES xiv

 LIST OF SYMBOLS xviii

 LIST OF APPENDICES xx

1 INTRODUCTION 1

 1.1 Background

1.2 Problem Statement

1.3 Objectives

1.4 Scope of Work

1.5 Research Strategies

1.6 Research Contribution and Project Delivery

1.7 Thesis Organization

1.8 Summary

1

2

4

5

6

7

8

9

viii

2 BACKGROUND AND LITERATURE REVIEW 10

 2.1 Cryptography

2.2 Public Key Cryptography

2.3 Public Key Algorithms

 2.3.1 RSA Algorithm

 2.3.2 El-Gamal Algorithm

 2.3.3 ECC Algorithm

2.4 RSA Implementations

2.5 Systolic Array Architecture for Montgomery’s

Algorithm

2.6 Summary

10

13

16

16

17

18

19

21

23

3 RESEARCH METHODOLOGY 25

 3.1 Project Workflow

3.2 Dedicated Hardware Design

3.3 FPGA-based Hardware/Software Embedded Systems

 3.3.1 Embedded Hardware Development

 3.3.2 Embedded Software Development

3.4 Software Development

3.5 Conclusion

25

27

29

31

33

34

34

4 ALGORITHM SPECIFICATION OF THE RSA CORE 35

 4.1 Introduction

4.2 RSA Algorithms

4.3 Modular Exponentiation - Square and Multiply

Algorithm

4.4 Modular Multiplication

4.4.1 Montgomery’s Modular Multiplication

35

35

35

39

40

ix

4.5 Modular Exponentiation using Montgomery Modular

Multiplication

4.6 Chinese Remainder Theorem

4.7 Conclusion

45

49

51

5 DESIGN OF THE RSA CORE 52

 5.1 Introduction

5.2 RSA Processor – System Architecture

5.3 The RSA Core – Top Level Description

5.4 Design of Montgomery Modular Multiplication

Module

5.4.1 The Add Module

5.4.2 The AddBlock Module

5.4.3 The Processing Element (PE) in MonMult

Module

5.4.4 Signal Flow in Modular Multiplication Block

(MonMult)

5.5 Design of the RAM Modules

5.5.1 RAM_M Module

5.5.2 RAM_R Module

5.5.3 RAM_E Module

5.5.4 RAM_Z Module

5.5.5 RAM_P Module

5.6 Design of the Controller Module

5.7 Design Parameterization

5.8 Conclusion

52

52

54

56

58

59

59

62

64

65

66

68

69

71

73

74

74

x

6 DESIGN OF A RSA CRYPTOSYSTEM &

APPLICATION DEMONSTRATION PROTOTYPE

75

 6.1 Introduction

6.2 Overview of Hybrid Encryption Cryptosystem

6.3 RSA Public Key Cryptosystem

6.4 RSA Avalon Interface Module

6.4.1 Control Reg Interface Design

6.4.2 Data Reg Interface Design

6.5 RSA Device Drivers and Software Subroutines

6.5.1 Data Handling Subroutines

6.5.2 Computation Subroutines

6.6 RSA Cryptosystem APIs

6.7 Application Development Protoype

6.7.1 Application Functionality

6.7.2 Application Graphical User Interface (GUI)

75

76

77

79

80

84

86

88

92

94

95

96

97

7 TEST& PERFORMANCE EVALUATION 101

7.1 Introduction

7.2 Hardware Test Based on Simulation

7.2.1 Simulation of RAM Modules

7.2.2 Simulation of Processing Element (PE)

Module

7.2.3 Simulation of RSA Core (ModExp) Module

7.2.4 Simulation of UTM-RSA_CoProcessor

7.3 Hardware Test of RSA Processor

7.4 Area and Timing Performance of UTM-

RSA_CoProcessor

7.5 Comparison with Previous Implementations

7.6 Conclusion

101

101

102

103

104

106

108

109

114

116

xi

8 CONCLUSIONS 117

 8.1 Concluding Remarks

8.2 Recommendations for Future Work

117

120

 REFERENCES 123

 APPENDIX A - F 129- 187

xii

LIST OF TABLES

TABLE NO TITLE PAGE

4.1 Computation Flow Table of the Montgomery

Modular Multiplication applied in this Thesis

 45

4.2 Computation Flow Table of the Modular

Exponentiation using Montgomery Multiplication

Algorithm

 47

5.1 Parameterizable Settings of the RSA Core 74

6.1 Instruction Format of UTM-RSA_CoProcessor 82

6.2 Control Instruction Bit Position 82

6.3 Control Instruction Bit Function 83

6.4 Status Signal Bit Position 83

6.5 Status Signal Bit Function 83

7.1 Area and Performance for UTM-

RSA_CoProcessor

 110

7.2 Decryption with CRT and Key Pair Generation

Performance for UTM-RSA_Processor

 111

7.3 Comparison of Area Utilization on FPGA and

ASIC Implementation of DigitalCore Design IP

Cores

 113

7.4 Gate Count Conversion for UTM-

RSA_CoProcessor

 113

7.5 Comparison with Other Implementations (all are

1024bit implementations)

 114

7.6 Comparison with Commercial Products 116

8.1 Features of UTM-RSA_CoProcessor 118

xiii

8.2 Performance Summary of UTM-

RSA_CoProcessor

 119

xiv

LIST OF FIGURES

FIGURE NO TITLE PAGE

1.1 System Architecture of Proposed RSA

Cryptosystem

 8

2.1 Cryptography in Computer Security and Safety 11

2.2 Concept of Public Key Encryption/Decryption 14

2.3 Example System of Public Key Infrastructure

(PKI)

 15

2.4 The RSA Public Key Encryption/Decryption 16

2.5 Example of a systolic array architecture 21

3.1 Project Work Flow 26

3.2 Dedicated Hardware Design Methodology

Flowchart

 28

3.3 Hardware/Software Development Flow for Nios

II Processor based Embedded Systems

 29

3.4 Example of a Nios II Processor System 31

4.1 L-R Binary Method Modular Exponentiation 38

4.2 R-L Binary Method Modular Exponentiation 39

4.3 Montgomery Modular Multiplication 41

4.4 Multi-precision version of Montgomery Modular

Multiplication

 42

4.5 Montgomery Modular Multiplication in radix-2

without final subtraction

 43

4.6 Montgomery Modular Multiplication with single

multiplicative addition

 44

4.7 Modular Exponentiation using Modular

Multiplication Algorithm

 46

xv

4.8 Modular Exponentiation Algorithm Implemented

in this Thesis

 48

4.9 Algorithm of Chinese Remainder Theorem

(CRT) in RSA

 50

5.1 System Architecture of RSA Processor 53

5.2 Top-Level Block Diagram of the RSA Core 54

5.3 Flow Chart of RSA Core’s Behavioural Phases 55

5.4 Block Diagram of the Modular Multiplication

Block

 56

5.5 Detailed Diagram of the Add Module 58

5.6 Detailed Diagram of the AddBlock Module 59

5.7 Detailed Diagram of the Processing Element

Module

 60

5.8 Signal Flow of One Modular Multiplication in

MonMult Module

 63

5.9 Flow Chart of RAM_M Module’s Behaviour 65

5.10 Detailed Diagram of the RAM_M Module 66

5.11 Flow Chart of RAM_R Module’s Behaviour 66

5.12 Detailed Diagram of the RAM_R Module 67

5.13 Flow Chart of RAM_E Module’s Behaviour 68

5.14 Detailed Diagram of the RAM_E Module 69

5.15 Flow Chart of RAM_Z Module’s Behaviour 69

5.16 Detailed Diagram of the RAM_Z Module 70

5.17 Flow Chart of RAM_P Module’s Behaviour 71

5.18 Detailed Diagram of the RAM_P Module 72

5.19 I/O Block Diagram of the Controller Module 73

6.1 Overview of Hybrid Cryptosystem 76

6.2 Functional Block Diagram of RSA Cryptosystem 77

6.3 Block Diagram of RSA Avalon Interface Module 79

6.4 Block Diagram of Control Reg Interface 81

xvi

6.5 Block Diagram of Data Reg Interface 84

6.6 State Diagram of Data Reg CU 85

6.7 Other modules in Data Reg CU 86

6.8 Overview of RSA Device Driver and Software

Subroutines

 87

6.9 Flow Chart for Parameter Sending Operation 90

6.10 Flow Chart for Result Receiving Operation 91

6.11 Flow Chart for RSA Encryption/Decryption

Operation

 92

6.12 Flow Chart for RSA Key Pair Generation

Operation

 93

6.13 Flow Chart for Encryption Operation in VB 94

6.14 Overview of RSA File Encryption System 95

6.15 Document Encryption Process 96

6.16 Document Decryption Process 97

6.17 General GUI of RSA File Encryption System 98

6.18 GUI of RSA Key Pair Generation Function 99

6.19 GUI of RSA Encryption 100

7.1 Simulation Waveform of RAM_M Module 102

7.2 Simulation Waveform of PE Module 103

7.3 Simulation Waveform of ModExp Module

(Input Phase)

 105

7.4 Simulation Waveform of ModExp Module

(Output Phase)

 106

7.5 Simulation Waveform of UTM-

RSA_CoProcessor (Input Phase)

 107

7.6 Simulation Waveform of UTM-

RSA_CoProcessor (Input Phase)

 107

7.7 Screen-shot of RSA Encryption/Decryption

Results on Nios SDK Shell

 108

xvii

7.8 Screen-shot of RSA Key Pair Generation Results

on Nios SDK Shell

 109

xviii

LIST OF SYMBOLS

AES - Advanced Encryption Standard

API - Application Programming Interface

ASIC - Application Sppecific Integrated Circuit

CAD - Computer Aided Design

CECG Communications-Electronics Security Group

CPLD Complex Programmable Logic Device

CPU - Central Processing Unit

CRT Chinese Remainder Theorem

DES - Data Encryption Standard

DMA - Direct Memory Access

ECC - Elliptic Curve Cryptography

FPGA - Field Programmable Gate Array

GB Gigabyte

GCD Greatest Common Divisor

GCHQ Government Communications Headquarters

GUI - Graphical User Interface

HDL Hardware Development Language

IDE Integrated Development Environment

I/O - Input/Output

IP - Intellectual Property

LE - Logic Element

LSB - Least Significant Bit

MHz - Megahertz

MIT Massachusetts Institute of Technology

MSB - Most Significant Bit

NIST National Institute of Standards and Technology

xix

PC - Personal Computer

PDA Personal Digital Assistant

PIO - Parallel Input Output

PKI - Public Key Infrastructure

PLD - Programmable Logic Device

PRNG - Pseudo Random Number Generator

RAM - Random Access Memory

RISC - Reduced Instruction Set Computer

RSA - Rivest-Shamir-Adleman

SDK - System Development Kit

SHA-1 - Secure Hash Algorithm

SoC - System-on-Chip

SOPC - System-on-Programmable-Chip

UART - Universal Asynchronous Receiver Transmitter

USB - Universal Serial Bus

UTM Universiti Teknologi Malaysia

VHDL - Very High Speed Integrated Circuit Hardware Description Language

VB - Visual Basic

VLSI - Very Large Scale Integration

xx

LIST OF APPENDICES

APPENDIX TITLE PAGE

A VHDL Source Codes for UTM-

RSA_CoProcessor

 129

B Verification : Simulation Waveforms 157

C C-Language Codes 160

D Visual Basic (VB) Codes 172

E Rsa Core RTL Control Sequence 177

F Upper Bound Of MonMult And ModExp 181

G Numerical Examples for Algorithms 183

CHAPTER 1

INTRODUCTION

This thesis proposes the design and implementation of a RSA cryptographic

co-processor on FPGA. The design applies the System-on-Chip (SoC) technology to

produce a RSA cryptosystem that performs operations such as encryption, decryption

and key generation. The aim is to produce a RSA co-processor that strikes a balance

between speed and area so that it is both compact and fast enough for commercial

implementation. This first chapter covers background of research, problem

statement, research objectives, scope of work, significance and contribution of the

research, and finally thesis organization.

1.9 Background

The use of mobile electronic devices like smart cards, wireless handsets,

PDAs, PCs, and network equipment, are becoming more prevalent since the turn of

the new millennium. Their various applications cover almost every aspect of human

life, including some very important fields like commerce and person identification.

These embedded systems are ubiquitously used to capture, store, manipulate, and

exchange sensitive information over insecure mediums, and consequently, they are

subject to increasing security concerns.

2

This concern can be addressed effectively by the application of crypto

algorithms in these devices. Security mechanisms utilize crypto algorithms (public-

key ciphers, symmetric encryption, hashing functions, etc.) as building blocks in a

suitable scheme to achieve the desired security services. The fundamental security

requirements include confidentiality, authentication, data integrity, and non-

repudiation. To provide such security services, normally systems use public key

cryptography. Among the various public key cryptography algorithms, the RSA

cryptosystem [Rivest et al, 1978] is the best known and widely used public key

crypto algorithm today. It is named after Ron Rivest, Adi Shamir and Len Adleman,

who invented it in 1977.

Since RSA is the current de-facto public key crypto algorithm, numerous

implementations of RSA have been done throughout the world. Two main

approaches are pursued, which are software implementations and hardware

implementations. Software solutions are slower in performance compared to

hardware implementations since they are not dedicated to the RSA operation. To

achieve optimal system performance while maintaining physical security, it is

desirable to implement the RSA algorithm in hardware. Hardware implementations

also can be made tamper-resistant and clone-free.

1.2 Problem Statement

Public key cryptosystems have proved to be essential in the security of

electronic transactions especially with the sudden boom in electronic commerce and

transmissions of secure personal data. Since their invention in 1976 by Whitfield

Diffie and Martin Hellman [1976] to solve the key management problem in

symmetric key cryptography, various public key cryptosystems such as RSA, El-

Gamal and ECC, have been proposed. Public key cryptography can be used not only

for privacy (encryption), but for authentication as well. Unfortunately, its drawback

is that it performs much slower compared to symmetric key cryptography.

3

As the RSA algorithm provides high security and easy to implement, it

quickly became the most widely used public key cryptosystem. Its advantage is that

it is able to provide privacy, confidentiality and digital signatures using the same key

pair, and based on the same mathematical operation. However, due to its underlying

complex wide-operand modular arithmetic, the RSA operation requires a long

computation time. Software implementations of RSA are about 100 times slower

than DES while hardware implementations of RSA are about 1000 times slower than

DES. (Schneier, 1996)

Due to increasing data rates and complexity of security protocols, software

solutions are not sufficient to keep up with the computational demands of crypto

processing. Thus, hardware implementation presents a viable solution to implement a

RSA cryptosystem. Unfortunately, due to its underlying complex wide-operand

modular arithmetic, the implementation of RSA in hardware poses a design

challenge in itself. Coupled with the very fast speed requirement, the design

challenge increases dramatically when we further add in the resource constraint issue

of mobile electronic devices.

Although a plethora of RSA cryptosystems in hardware exists, most of them

are tailored to high-speed applications thus do not display a suitable compromise

between speed and utilized hardware resources. As hardware resources are cost

critical factors in devices like smart cards and hardware tokens, current

implementations of RSA cores are unsuitable for them.

Therefore, a compact yet reasonably fast RSA co-processor core is much

needed to facilitate the upcoming of cryptographic functions in mobile devices. The

RSA co-processor core design should be able to strike good a balance between speed

and resource utilization. The design should also be parameterized so that it can be

scaled up or down from the 1024 bits for either a more compact implementation with

some compromise to the level of security, or a larger design with higher security.

4

This flexibility in design could not be provided by full custom and semi

custom ASIC solutions. However, reconfigurable logic like FPGA and CPLD can

provide this flexibility. In hardware implementation, the FPGA has become the

chosen platform for any proof-of-concept design, before being committed to an

ASIC (Application-Specific Integrated Circuit) or VLSI implementation. Other than

that, FPGA also allows for rapid prototyping which makes them suitable for

implementations of crypto hardware on embedded systems.

1.3 Objectives

From the discussion in the previous sections, the objectives of the work

presented in this thesis are as follows:

1) To design and implement a 1024 bit RSA core which is able to perform RSA

encryption and decryption within stipulated area and speed constraints. The

design also has to be parameterizable so that it can be reconfigured for

different key lengths.

2) To design an embedded RSA cryptosystem that integrates the RSA core with

an embedded processor on a System-on-Programmable Chip (SoPC)

platform.

3) To develop a prototype for demonstration of real-world RSA cryptography as

a verification system in PC environment through the use of Graphical User

Interface (GUI). A simple file encryption system is developed as the

demonstration application prototype.

5

1.4 Scope of Work

Based on the outlined objectives above, available hardware and software

resources, and the time frame allocated, this research project is narrowed down to the

following scope of work.

1) As specified by the research objectives, a hardware implementation of 1024

bit RSA must consist of approximately 50,000 gates and must be able to

perform the RSA encryption and decryption operation in less than 100 ms.

Similarly, a 2048 bit RSA implementation must consist of approximately

100,000 gates and must be able to perform the RSA encryption and

decryption operation in less than 400 ms. (MyMS, 2004)

2) The RSA co-processor, henceforth known as UTM-RSA_CoProcessor, is

designed using VHDL. The design must be parameterizable so that the co-

processor can be reconfigured to other key sizes, based on the security level

and the hardware resources required by targeted applications.

3) The UTM-RSA_CoProcessor is integrated with the Nios II embedded

processor to form the RSA Processor. The proposed RSA Processor is to fit

into an Altera Stratix EP1S40F780C5 FPGA chip (which contains 41250 LEs

(Logic Elements) or an equivalent of 14 x 106 system gates). The running

frequency of the proposed cryptosystem with the RSA Processor is limited to

40 MHz.

4) The proposed RSA cryptosystem must be able to generate the RSA key pairs

on chip, which means the RSA keys does not need to leave the embedded

system. However, the issue of secure storage of the keys generated or used in

the cryptosystem will not be addressed. (In actual applications like the Public

Key Infrastructure, the public key is generated by a Certification Authority)

6

5) The test and validation methodologies are carried out to verify the functional

operations of the RSA Processor. Cryptanalysis techniques to measure the

security level of the embedded system will not be covered in this work.

6) A simple file encryption system is developed to validate the RSA

cryptosystem. The current version is able to encrypt /decrypt a file limited to

size of not more 4 GB. For a file larger than this size, the file needs to be

chopped into multiple smaller files.

1.5 Research Strategies

 The following research strategies have been applied during the course of

research to ensure a complete and quality research is carried out.

1. The speed and area constraints are set based on the problems and stringent

requirements demanded by industries in the commercial environment, which

in turn increases the design challenge many times.

2. The established RSA algorithms are studied and the necessary algorithmic

modifications (without changing the actual algorithm itself) are determined

for efficient mapping of the algorithm onto hardware.

3. The designed RSA co-processor (UTM-RSA_CoProcessor) is integrated with

a general-purpose embedded processor to obtain a complete RSA Processor

on a System-on-Programmable Chip (SoPC) platform.

4. An application demonstration prototype is developed as the means to perform

the RSA cryptosystem’s verification on real-world test patterns.

7

1.6 Research Contribution and Project Delivery

1) A comprehensive design technique for design of an RSA core limited by

computation speed and design area constraints for application in resource

constrained embedded systems.

2) Design of a complete embedded RSA cryptosystem that incorporates a 32-bit

RISC embedded general-purpose Nios II processor. Besides performing

encryption and decryption, it also is able to perform on-chip RSA key

generation.

3) An application demonstration prototype performing a real-world application

that incorporates the UTM-RSA_CoProcessor and the Nios II processor to

form the RSA Processor, and communicating with the standard PC to form

the RSA Cryptosystem. Figure 1.1 below shows the system architecture of

the proposed RSA cryptosystem.

Figure 1.1 : System Architecture of Proposed RSA Cryptosystem

8

1.7 Thesis Organization

The work in this thesis is conveniently organized into eight chapters. The first

chapter presents the motivation and research objectives and follows through with

research scope and research contribution before concluding with thesis organization.

 The second chapter provides brief summaries of the literature reviewed prior

to engaging the mentioned scope of work. Several topics related to this research are

reviewed to give an overall picture of the background knowledge involved. Summary

of the literature review is given to clarify the research rationale.

 Chapter three presents the design methodologies that are employed.

 Chapter four focuses on the discussion of the implemented RSA algorithm,

specifically the modular exponentiation and modular multiplication algorithms. This

is followed by outlines of the necessary algorithmic modifications for better

hardware implementation

 Chapter five delivers the detailed description of the design of the RSA core

based on the modified algorithms. First, a top-level view of the RSA cryptosystem is

given before the design of each module is presented in both the top-down and

bottom-up approach.

 Chapter six explains the design of the RSA cryptosystem. First the design of

the interface module for the RSA core is presented, followed by the development of

the device drivers and embedded subroutines, the APIs and finally the RSA File

Encryption Cryptosystem.

 Chapter seven presents the tests that are carried out to verify the RSA

cryptosystem. First, the hardware simulations of individual modules are presented.

Then, this is followed by tests on the cryptosystem by using embedded software.

9

 In the final chapter of the thesis, the research work is summarized and

deliverables of the research are stated. Suggestion for potential extensions and

improvements to the design is also given.

1.8 Summary

In this chapter, an introduction was given on the background and motivation

of the project. The need for a compact yet fast, hardware implementation of RSA

algorithm is pointed out. Based on those, several objectives were identified and

scope of project was set to achieve the desired implementation. The UTM-

RSA_CoProcessor was proposed to perform RSA computations on resource

constrained embedded systems. The following chapter will discuss the literature

relevant to the research and look into some previous work accomplished on the

design of RSA hardware.

REFERENCES

Altera Corporation. (2003a). “Nios Hardware Development Tutorial”. Altera

Corporation.

Altera Corporation. (2003b). “Introduction to Quartus II”. Altera Corporation.

ALTERA CORPORATION. (2003C). “SOPC BUILDER DATA SHEET”. ALTERA

CORPORATION.

Altera Corporation. (2004a). “Nios II Hardware Development Tutorial”. Altera

Corporation.

Altera Corporation. (2004b). “Nios II Processor Reference Handbook”. Altera

Corporation.

Altera Corporation. (2004c). “Upgrading Nios Processor Systems to Nios II

Processor”. Altera Corporation.

Bajard J, Didier L, and Kornerup P, (1998). An RNS Montgomery Modular

Multiplication Algorithm. IEEE Transactions on Computers, 47(7):766–76.

Bajard J and Imbert L, (2004). A Full RNS Implementation of RSA. IEEE

Transactions On Computers. Vol. 53, No. 6.

Blakley. G.R, (1983). A Computer Algorithm for the Product AB Modulo M. IEEE

Transactions on Computer. 32(5) : 407-500

124

Blum.T & Paar. C, (1999). Montgomery Modular Exponentiation on Reconfigurable

Hardware. 14th IEEE Symposium on Computer Arithmetic. 70-77.

Blum.T & Paar. C, (2001). High-Radix Montgomery Modular Exponentiation on

Reconfigurable Hardware. IEEE Transactions on Computers. Vol. 50(7). Pg: 759-

764.

Brickell. E. F, (1983). A Fast Modular Multiplication Algorithm With Application

To Two Key Cryptography. Advances in Cryptology, Proceedings CRYPTO’82.

Plenum, pp. 51-60.

Certicom Corporation. (1998). “The Elliptic Curve Cryptosystem for Smart Cards.”

Certicom Research.

Certicom Corporation. (2000a). The Elliptic Curve Cryptosystem: Current Public-

Key Cryptographic Systems. Certicom Research.

Ciet M, Neve M, Peeters E and Quisquater J, (2003). Parallel FPGA Implementation

of RSA with Residue Number Systems. 46th IEEE Midwest Symposium on Circuits

and Systems. Egypt.

Cocks. C, (1973). A Note on Non-Secret Encryption. CESG Research Report

Daly A and Marnane W, (2002). Efficient Architectures for implementing

Montgomery Modular Multiplication and RSA Modular Exponentiation on

Reconfigurable Logic. FPGA’02, February 24-26. Monterey, California, USA,.

Diffie, W., and Hellman, M.(1976). New Directions in Cryptography. IEEE

Transactions on Information Theory, November.

DigitalCoreDesign, (2004). DFPADD, DFP2INT, DMAC, DFPSQRT, DR8051.

Bytorn, Poland. Note: http://www.digitalcoredesign.com.

125

Eldridge S.E and Walter C.D, (1993). Hardware implementation of Montgomery’s

modular multiplication algorithm. IEEE Transactions on Computers. Vol .42(6).

Pg :693–699.

Fang Yingli and Gao Zhiqiang, (2001). A new RSA cryptosystem hardware

implementation based on high-radix Montgomery's algorithm. Proceedings. 4th Int.

Conf. on. Page(s):348 – 351

Franklin. M, Levine.L, Anthony. D and Brentrup. R, (2004). PKI: A Technology

Whose Time Has Come in Higher Education. In: EDUCAUSE Review,

Gai. W and Chen. H, (1996). A Systolic Linear Array For Modular Multiplication.

2nd International Conference on ASIC. Pages 171–174.

Grobschsdl J, (2000). The Chinese Remainder Theorem and its Application in a

High-speed RSA Crypto Chip. IEEE.

Hau Y. W. (2005). “An Embedded Cryptosystem Implementing Symmetric Cipher

and Public-Key Crypto Algorithms in Hardware.” Universiti Teknologi Malaysia:

M.Sc.

Ireland D, (2001). BigDigits Multiple-Precision Arithmetic Library Version 1.0. D.I.

Management Services Pty Limited.

Ishii. S, Ohyama. K and Yamanaka. K, (1994).A single-chip RSA processor

implemented in a 0.5 μm rule gate array. Proceedings of Seventh Annual IEEE Int.

ASIC Conf. and Exhibit. Page(s): 433 – 436.

Iwamura. K, Matsumoto. T, and Imai H, (1994). Montgomery Modular-

Multiplication Method And Systolic Arrays Suitable For Modular Exponentiation.

Electronics and Communications. March. Japan. Part 3, 77(3):40–51.

Keller. S.S, (2004). The RSA Validation System (RSAVS). National Institute of

Standards and Technology (NIST). USA.

126

Khalil. M and Tan S.L, (2000). FPGA Implementation of RSA Public-Key

Cryptographic Coprocessor. IEEE TENCON Proceedings. Volume: 3.

Khalil M, Koay K H, (1999). VHDL Module Generator: A Rapid-prototyping

Design Entry Tool for Digital ASICs. Jurnal Teknologi UTM, December. 31:45-61.

Knuth D.E, (1981). The Art of Computer Programming, Volume 2: Seminumerical

Algorithms. 2nd edition, Reading, MA: Addison-Wesley.

Koblitz. N, (1987). Elliptic Curve Cryptosystems. Mathematics of Computation, Vol.

48, n.177, pp. 203-209

Koc.C.K and Hung. C.Y, (1991). Bit Level Systolic Arrays For Modular

Multiplication. Journal of VLSI Signal Processing, Vol 3, pp. 215-223.

Koren. I, (1993). Computer Arithmetic Algorithms. Englewood Cliffs, New Jersey.

Prentice-Hall Inc.

Kung. H.T, (1980). The Structure of Parallel Algorithm. Advances in Computers.

Vol.19. Pg:65-112. Academic Press, Inc.

McIvor C, McLoone M and McCanny J.V, (2004). Modified Montgomery modular

multiplication and RSA exponentiation techniques. Computers and Digital

Techniques, IEE Proc. Volume 151. Issue 6, Page(s):402 – 408.

Menezes A.J, Oorschot P.C and Vanstone S.A (2001). “Handbook of Applied

Cryptography”, CRC Press

Miller V.S, (1986), “Use of Elliptic Curves in Cryptography”, Advances in

Cryptology-CRYPTO 85, Springer-Verlag, pp 417-428

Montgomery P.L, (1985). Modular Multiplication Without Trial Division.

Mathematics of Computation. 44:512-521.

127

MyMS, (2004). A discussion held on the current demands of the commercial

industry on the hardware implementation of the RSA Algorithm in resource

constrained embedded systems. Date of discussion : 4 October 2004. Time of

discussion : 9.00am to 12.00p.m. Involved parties : Prof. Dr. Mohamed Khalil

(UTM), Arul Paniandi (UTM), Hau Yuan Wen (UTM), Lau Boon Leong (MyMS),

Tee Kok Kim (MyMS), Mohammad Khir (MyMS). Place of discussion : Malaysia

Mictrotronic Solutions (M) Sdn. Bhd, 2300 Century Square, 63000 Cyberjaya,

Selangor.

Orup, H, (1995). Simplifying Quotient Determination In High-Radix Modular

Multiplication. Proceedings 12th Symposium on Computer Arithmetic.

Pages : 193–199.

Rivest R.L, Shamir.A, and Adleman.L. (1978). A Method for Obtaining Digital

Signature and Public-Key Cryptosystems, Comm. in ACM, 21:120-126.

Schmeh, K. (2003). “Cryptography and Public Key Infrastructure on the Internet”

John Wiley & Sons, Inc

Schneier, B. (1996). “Applied Cryptography : Protocols, Algorithm and Source Code

in C.” 2nd Edition. N.Y : John Wiley & Sons, Inc.

Shand. M and Vuillemin J, (1993). Fast implementations of RSA cryptography. 11th

IEEE Symposium on Computer Arithmetic, pages 252–259.

Stalling, W. (1999). “Cryptography and Network Security: Principles and Practice”.

2nd Ed. Upper Saddle River, New Jersey: Prentice Hall.

Steffen. A, (2000). Secure Communications in Distributed Embedded Systems.
Security Group of the Zurich Univ.of Applied Sciences. Winterthur.

Takagi.N and Tagima.S, (1992). Modular Multiplication Hardware Algorithms With

A Redundant Representation And Their Application To RSA Cryptosystem. IEEE

Transaction on Computers. Vol 41, no 7, pp. 887-891.

128

Tsai. W.C, Shung. C.B, Wang. S.J, (2000). Two Systolic Architecture for Modular

Multiplication. IEEE Transactions on VLSI Systems. Vol. 8(1). Pg : 102-107

Vuillemin. J.E, Bertin.P, Roncin. D, Shand.M, Touati H.H and Boucard. P, (1996).

Programmable Active Memories : Reconfigurable Systems Come of Age. IEEE

Transactions on VLSI Systems. Vol. 4(1). Pg : 56-59.

Walter C.D, (1993). Systolic Modular Multiplication. IEEE Transactions on

Computers. 42(3):376–8.

Walter C.D, (1999). Montgomery Exponentiation Needs no Final Subtractions.

Electronics Letters. 35(21):1831-1832.

Wang P.A, (1997). New VLSI Architectures Of RSA Public Key Cryptosystems.

Proceedings of 1997 IEEE International Symposium on Circuits and Systems.

Volume 3. Pages 2040–2043.

Win. E.D, Mister. S, Preneel. B, and Wiener. M, (1998). On the Performance of

Signature Schemes Based on Elliptic Curves. Algorithm Number Theory Symposium

III. Springer-Verlag. 252-266.

Wu C.H, Hong J.H, Wu.C.W, (2001). VLSI Design of RSA Cryptosystem Based on

the Chinese Remainder Theorem. Journal Of Information Science And Engineering.

Vol.17. Pg : 967-980.

Zhu Keija; Xu Ke; Wang Yang; Min Hao, (2003). A Novel ASIC Implementation of

RSA Algorithm. Proceedings. 5th Int. Conf. on. 21-24 Oct. 2003. Volume 2.

Page(s):1300 – 1303.

	ACKNOWLEDGEMENTS
	ABSTRACT
	ABSTRAK
	TABLE OF CONTENTS
	
	PAGE
	BACKGROUND AND LITERATURE REVIEW
	TEST& PERFORMANCE EVALUATION
	CONCLUSIONS
	1
	8.1 C
	8.2 R
	1
	1

	LIST OF TABLES
	
	TABLE NO
	PAGE
	LIST OF FIGURES
	
	FIGURE NO
	PAGE
	LIST OF SYMBOLS
	
	LIST OF APPENDICES
	
	APPENDIX
	PAGE
	Figure 2.4 : The RSA Public Key Encryption/Decryption
	Figure 2.5 : Example of a systolic array architecture

	CHAPTER 4
	CHAPTER 5
	Table 5.1 : Parameterizable Settings of the RSA Core
	Description
	CHAPTER 6
	CHAPTER 7
	TEST& PERFORMANCE EVALUATION
	UTM-RSA2048
	UTM-RSA4096
	Clock frequency
	UTM-RSA2048
	UTM-RSA4096

	Clock frequency
	Key Pair Generation Speed
	Specifications

	Sci-worx
	KeySize
	Clock frequency
	Specifications
	KeySize
	Clock frequency

	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E
	APPENDIX F
	APPENDIX G

