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ABSTRACT 
 
 
 
 

The concern with security problems has been rapidly increasing as computers 

and Internet services become a more pervasive part of our daily life. This need is 

further fueled by the advent of mobile electronic devices like smart cards, mobile 

phones and hardware tokens. Public key cryptographic systems such as RSA (Rivest-

Shamir-Adleman) are vital in providing this security in terms of authentication, 

private key exchange, and digital signatures. Unfortunately, current RSA 

implementations are either resource exhaustive or too slow. In this thesis, a fast and 

configurable hardware implementation of the RSA algorithm for public key 

cryptography is presented that addresses the issues above. The designed RSA co-

processor core is actually a modular exponentiation hardware engine, which is the 

basic arithmetic operation in implementing a RSA public key encryption and 

decryption algorithm. The computation intensive modular multiplication operation is 

based on the Montgomery’s algorithm and implemented using systolic array 

architecture. The modules in the RSA co-processor are modeled using VHDL 

hardware description language before being integrated with Altera’s softcore 

general-purpose processor, Nios II, and standard peripherals to form a complete 

cryptosystem in SoPC environment. Embedded C language codes are then written to 

test the functionality of the RSA co-processor on hardware. Upon verification, a 

demonstration application prototype that performs RSA encryption and decryption is 

developed using Visual Basic 6.0. This RSA co-processor core is able to encrypt and 

decrypt data with variable key lengths up to 4096 bits. The 1024 bit implementation 

uses 7000 Logic Elements (LE) on the Altera Stratix EP1S40-F780C5 FPGA 

development board which roughly translates to 49,000 gates. Encryption takes 2 ms 

while decryption takes 79 ms with the clock frequency of 40MHz. The speed and 

area constraint achieved is comparable and even better than several other research 

and commercial implementations. 
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ABSTRAK 
 
 
 
 

 Penggunaan computer dan Internet yang semakin meluas menyebabkan 

perhatian yang diberikan terhadap isu keselamatannya kian meningkat. Keperluaan 

ini semakin terasa dengan penggunaan alatan elektronik mudah alih seperti kad 

pintar, telefon bimbit dan token perkakasan. Sistem kriptografi kunci-awam seperti 

RSA (Rivest-Shamir-Adleman) amat penting dalam menyediakan sekuriti ini 

daripada aspek autentikasi, pertukaran kunci-persendirian dan tandatangan digital. 

Malangnya, implementasi RSA yang sedia ada sama ada terlalu besar atau terlalu 

perlahan. Dalam tesis ini, suatu implementasi teras kripto berdasarkan algoritma 

RSA, yang laju dan mudah diubah-suai, dicadangkan bagi menangani isu di atas 

untuk sistem kriptografi kunci-awam. Teras RSA yang direka ini sebenarnya adalah 

perkakasan ekponensasi modular, yang merupakan operasi aritmetik asas dalam 

enkripsi dan dekripsi yang dinyatakan oleh algoritma RSA. Operasi pendaraban 

modular yang intensif komputasi adalah berdasarkan algoritma Montgomery dan 

dilaksanakan dengan senibina tatasusunan sistolik. Modul-modul dalam teras RSA 

ini dimodelkan menggunakan bahasa deskripsi perkakasan, VHDL, sebelum 

digabungkan dengan mikropemproses buatan Altera, Nios II dengan persistan 

langsung, untuk membentuk sistem kripto menerusi SoPC. Kod C terbenam 

kemudian ditulis untuk menguji kesahihan implementas iteras RSA atas perkakasan. 

Setelah terbukti sahih, sebuah prototaip aplikasi demonstrasi yang melaksanakan 

enkripsi dan dekripsi RSA dibangunkan menggunakan Visual Basic 6.0. Teras RSA 

ini boleh enkrip dan dekrip data dengan variasi panjang kunci sehingga 4096 bit. 

Implementasi 1024 bit menggunakan 7000 Elemen Logic (LE) perkakasan FPGA 

Altera Stratix EP1S40-F780C5, iaitu lebih kurang 49,000 get logik. Enkripsi 

mengambil masa lebih kurang 2 ms manakala dekripsi 79 ms dengan frekuensi 40 

MHz. Kelajuan dan limitasi saiz yang dicapai adalah sama ada standing atau lebih 

baik berbanding implementasi penyelidikan atau komersial yang lain.
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 

This thesis proposes the design and implementation of a RSA cryptographic 

co-processor on FPGA. The design applies the System-on-Chip (SoC) technology to 

produce a RSA cryptosystem that performs operations such as encryption, decryption 

and key generation.  The aim is to produce a RSA co-processor that strikes a balance 

between speed and area so that it is both compact and fast enough for commercial 

implementation. This first chapter covers background of research, problem 

statement, research objectives, scope of work, significance and contribution of the 

research, and finally thesis organization. 

 
 
 
 
1.9 Background 

 
 

The use of mobile electronic devices like smart cards, wireless handsets, 

PDAs, PCs, and network equipment, are becoming more prevalent since the turn of 

the new millennium. Their various applications cover almost every aspect of human 

life, including some very important fields like commerce and person identification. 

These embedded systems are ubiquitously used to capture, store, manipulate, and 

exchange sensitive information over insecure mediums, and consequently, they are 

subject to increasing security concerns.  
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This concern can be addressed effectively by the application of crypto 

algorithms in these devices. Security mechanisms utilize crypto algorithms (public-

key ciphers, symmetric encryption, hashing functions, etc.) as building blocks in a 

suitable scheme to achieve the desired security services. The fundamental security 

requirements include confidentiality, authentication, data integrity, and non-

repudiation. To provide such security services, normally systems use public key 

cryptography. Among the various public key cryptography algorithms, the RSA 

cryptosystem [Rivest et al, 1978] is the best known and widely used public key 

crypto algorithm today. It is named after Ron Rivest, Adi Shamir and Len Adleman, 

who invented it in 1977.  

 
 

Since RSA is the current de-facto public key crypto algorithm, numerous 

implementations of RSA have been done throughout the world. Two main 

approaches are pursued, which are software implementations and hardware 

implementations. Software solutions are slower in performance compared to 

hardware implementations since they are not dedicated to the RSA operation. To 

achieve optimal system performance while maintaining physical security, it is 

desirable to implement the RSA algorithm in hardware. Hardware implementations 

also can be made tamper-resistant and clone-free.  

 
 
 
 
1.2 Problem Statement 

 
 

Public key cryptosystems have proved to be essential in the security of 

electronic transactions especially with the sudden boom in electronic commerce and 

transmissions of secure personal data. Since their invention in 1976 by Whitfield 

Diffie and Martin Hellman [1976] to solve the key management problem in 

symmetric key cryptography, various public key cryptosystems such as RSA, El-

Gamal and ECC, have been proposed. Public key cryptography can be used not only 

for privacy (encryption), but for authentication as well. Unfortunately, its drawback 

is that it performs much slower compared to symmetric key cryptography. 
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As the RSA algorithm provides high security and easy to implement, it 

quickly became the most widely used public key cryptosystem. Its advantage is that 

it is able to provide privacy, confidentiality and digital signatures using the same key 

pair, and based on the same mathematical operation. However, due to its underlying 

complex wide-operand modular arithmetic, the RSA operation requires a long 

computation time. Software implementations of RSA are about 100 times slower 

than DES while hardware implementations of RSA are about 1000 times slower than 

DES. (Schneier, 1996) 

 
 

Due to increasing data rates and complexity of security protocols, software 

solutions are not sufficient to keep up with the computational demands of crypto 

processing. Thus, hardware implementation presents a viable solution to implement a 

RSA cryptosystem. Unfortunately, due to its underlying complex wide-operand 

modular arithmetic, the implementation of RSA in hardware poses a design 

challenge in itself. Coupled with the very fast speed requirement, the design 

challenge increases dramatically when we further add in the resource constraint issue 

of mobile electronic devices. 

 
 

Although a plethora of RSA cryptosystems in hardware exists, most of them 

are tailored to high-speed applications thus do not display a suitable compromise 

between speed and utilized hardware resources. As hardware resources are cost 

critical factors in devices like smart cards and hardware tokens, current 

implementations of RSA cores are unsuitable for them.  

 
 

Therefore, a compact yet reasonably fast RSA co-processor core is much 

needed to facilitate the upcoming of cryptographic functions in mobile devices. The 

RSA co-processor core design should be able to strike good a balance between speed 

and resource utilization. The design should also be parameterized so that it can be 

scaled up or down from the 1024 bits for either a more compact implementation with 

some compromise to the level of security, or a larger design with higher security. 
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This flexibility in design could not be provided by full custom and semi 

custom ASIC solutions. However, reconfigurable logic like FPGA and CPLD can 

provide this flexibility. In hardware implementation, the FPGA has become the 

chosen platform for any proof-of-concept design, before being committed to an 

ASIC (Application-Specific Integrated Circuit) or VLSI implementation. Other than 

that, FPGA also allows for rapid prototyping which makes them suitable for 

implementations of crypto hardware on embedded systems. 

 
 
 
 
1.3 Objectives 

 
 

From the discussion in the previous sections, the objectives of the work 

presented in this thesis are as follows: 

 
 

1) To design and implement a 1024 bit RSA core which is able to perform RSA 

encryption and decryption within stipulated area and speed constraints. The 

design also has to be parameterizable so that it can be reconfigured for 

different key lengths.  

 
 
2) To design an embedded RSA cryptosystem that integrates the RSA core with 

an embedded processor on a System-on-Programmable Chip (SoPC) 

platform. 

 
 

3) To develop a prototype for demonstration of real-world RSA cryptography as 

a verification system in PC environment through the use of Graphical User 

Interface (GUI). A simple file encryption system is developed as the 

demonstration application prototype. 
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1.4 Scope of Work 

 
 

Based on the outlined objectives above, available hardware and software 

resources, and the time frame allocated, this research project is narrowed down to the 

following scope of work. 

 
 

1) As specified by the research objectives, a hardware implementation of 1024 

bit RSA must consist of approximately 50,000 gates and must be able to 

perform the RSA encryption and decryption operation in less than 100 ms. 

Similarly, a 2048 bit RSA implementation must consist of approximately 

100,000 gates and must be able to perform the RSA encryption and 

decryption operation in less than 400 ms. (MyMS, 2004) 

 
2) The RSA co-processor, henceforth known as UTM-RSA_CoProcessor, is 

designed using VHDL. The design must be parameterizable so that the co-

processor can be reconfigured to other key sizes, based on the security level 

and the hardware resources required by targeted applications. 

 
3) The UTM-RSA_CoProcessor is integrated with the Nios II embedded 

processor to form the RSA Processor. The proposed RSA Processor is to fit 

into an Altera Stratix EP1S40F780C5 FPGA chip (which contains 41250 LEs 

(Logic Elements) or an equivalent of 14 x 106 system gates). The running 

frequency of the proposed cryptosystem with the RSA Processor is limited to 

40 MHz.  

 
4) The proposed RSA cryptosystem must be able to generate the RSA key pairs 

on chip, which means the RSA keys does not need to leave the embedded 

system. However, the issue of secure storage of the keys generated or used in 

the cryptosystem will not be addressed. (In actual applications like the Public 

Key Infrastructure, the public key is generated by a Certification Authority) 
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5) The test and validation methodologies are carried out to verify the functional 

operations of the RSA Processor. Cryptanalysis techniques to measure the 

security level of the embedded system will not be covered in this work. 

 
6) A simple file encryption system is developed to validate the RSA 

cryptosystem. The current version is able to encrypt /decrypt a file limited to 

size of not more 4 GB. For a file larger than this size, the file needs to be 

chopped into multiple smaller files.  

 
 
 
 
1.5 Research Strategies 
 
 
 The following research strategies have been applied during the course of 

research to ensure a complete and quality research is carried out.  

 
 

1. The speed and area constraints are set based on the problems and stringent 

requirements demanded by industries in the commercial environment, which 

in turn increases the design challenge many times. 

 

2. The established RSA algorithms are studied and the necessary algorithmic 

modifications (without changing the actual algorithm itself) are determined 

for efficient mapping of the algorithm onto hardware. 

 

3. The designed RSA co-processor (UTM-RSA_CoProcessor) is integrated with 

a general-purpose embedded processor to obtain a complete RSA Processor 

on a System-on-Programmable Chip (SoPC) platform. 

 

4. An application demonstration prototype is developed as the means to perform 

the RSA cryptosystem’s verification on real-world test patterns. 
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1.6 Research Contribution and Project Delivery 
 
 

1) A comprehensive design technique for design of an RSA core limited by 

computation speed and design area constraints for application in resource 

constrained embedded systems. 

 
 

2) Design of a complete embedded RSA cryptosystem that incorporates a 32-bit 

RISC embedded general-purpose Nios II processor. Besides performing 

encryption and decryption, it also is able to perform on-chip RSA key 

generation. 

 
3) An application demonstration prototype performing a real-world application 

that incorporates the UTM-RSA_CoProcessor and the Nios II processor to 

form the RSA Processor, and communicating with the standard PC to form 

the RSA Cryptosystem. Figure 1.1 below shows the system architecture of 

the proposed RSA cryptosystem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1 : System Architecture of Proposed RSA Cryptosystem 
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1.7 Thesis Organization 

 
 

The work in this thesis is conveniently organized into eight chapters. The first 

chapter presents the motivation and research objectives and follows through with 

research scope and research contribution before concluding with thesis organization. 

 
 
 The second chapter provides brief summaries of the literature reviewed prior 

to engaging the mentioned scope of work. Several topics related to this research are 

reviewed to give an overall picture of the background knowledge involved. Summary 

of the literature review is given to clarify the research rationale. 

 
 
 Chapter three presents the design methodologies that are employed. 

 
 
 Chapter four focuses on the discussion of the implemented RSA algorithm, 

specifically the modular exponentiation and modular multiplication algorithms. This 

is followed by outlines of the necessary algorithmic modifications for better 

hardware implementation 

 
 
 Chapter five delivers the detailed description of the design of the RSA core 

based on the modified algorithms. First, a top-level view of the RSA cryptosystem is 

given before the design of each module is presented in both the top-down and 

bottom-up approach. 

 
 
 Chapter six explains the design of the RSA cryptosystem. First the design of 

the interface module for the RSA core is presented, followed by the development of 

the device drivers and embedded subroutines, the APIs and finally the RSA File 

Encryption Cryptosystem.  

 
 
 Chapter seven presents the tests that are carried out to verify the RSA 

cryptosystem. First, the hardware simulations of individual modules are presented. 

Then, this is followed by tests on the cryptosystem by using embedded software.  



 

 

9

 In the final chapter of the thesis, the research work is summarized and 

deliverables of the research are stated. Suggestion for potential extensions and 

improvements to the design is also given. 

 
 
 
 
1.8 Summary 
 
 

In this chapter, an introduction was given on the background and motivation 

of the project. The need for a compact yet fast, hardware implementation of RSA 

algorithm is pointed out. Based on those, several objectives were identified and 

scope of project was set to achieve the desired implementation. The UTM-

RSA_CoProcessor was proposed to perform RSA computations on resource 

constrained embedded systems. The following chapter will discuss the literature 

relevant to the research and look into some previous work accomplished on the 

design of RSA hardware.  
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