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rubber-50 toughened
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contents on
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Abstract
Nanocomposites consisting of polyamide 6 (PA6) matrix with epoxidized natural rubber
50 (ENR-50) and organoclay-modified montmorillonite was prepared by melt blending in
a twin-screw extruder followed by injection molding. The influence of varying amounts
(0–30 phr) of ENR-50 loadings on ENR-50-toughened PA6 nanocomposites was
examined. Morphological characterizations and mechanical and thermal properties of
the blend and nanocomposites were investigated. Addition of ENR-50 resulted in a
decrease in the tensile strength and modulus, while impact strength enhanced until a
maximum at 10 wt% ENR-50. Thermal study revealed no significant change in the
thermal properties with ENR-50 loadings. Exfoliated structure was observed using the
x-ray diffraction patterns and was confirmed by transmission electron microscopic
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images. Scanning electron microscopic images revealed dispersed ENR-50 particles and
increased rubber particles size with increasing ENR-50 loadings.
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toughening

Introduction

Polymer nanocomposites refer to composites where one of the components has at least

one dimension of the order of a few nanometers. Some types of inorganic materials such

as fiber glass, calcium carbonate, talc and clay minerals have been successfully used as

additives or reinforcement to enhance strength and stiffness of polymer matrix. Polymer

nanocomposites based on layered silicates have been developed to overcome the

disadvantages of conventional additive such as glass fiber-reinforced polymers. These have

inferior surface quality, increased density and loss of transparency. Compared with macro-

and microfillers, these nanocomposites exhibit superior properties such as enhanced

mechanical properties, improved flame retardancy and barrier properties as well as heat

resistance. The enhanced properties of polymer nanocomposites are presumably due to the

formation of nanoscale structure, large aspect ratio, large area of the layered silicates and

strong interaction between polymer molecular chains and layered silicates.1–5

Polyamide 6 (PA6) is an excellent polar thermoplastic polymer with regards to its

attractive combination of inexpensive and amazing versatility in terms of properties and

applications such as electronic industries, medical and health applications, food

packaging, and automotive industry.1–3 Furthermore, PA6 has amine and carboxyl

functional groups,6,7 which interacts with many substances such as fillers,8,9 impact

modifiers10,11 and flame retardants12,13 for new applications.

Numerous research described PA6/organoclay nanocomposites to exhibit high modulus,

high distortion temperature and good barrier properties of gas and water.1–3 Russo et al.,14

revealed that the technological relevance of nylon 6-layered silicate nanocomposites is

declared by many patents issued over the last few years which highlight the significant

increases in the structural and functional properties with the addition of very low organoclay

content, usually less than 5 wt%. Tensile modulus and strength were found to increase with

increasing concentration of clay.15 The property improvements are attributed to the high

stiffness and strength of the clay particles and the interaction of the polymer chains with the

exfoliated clay lamellae.5 Conversely, the impact strength and elongation at break decrease

in the presence of organoclay loading.16,17 In addition, the nanocomposites are more brittle

and notch sensitive to crack propagation than pure PA6 at room or lower temperature.18

Some drawbacks such as brittleness and notch sensitive to crack propagation at ambient

or lower temperature of PA6/organoclay limit its application. Numerous research have

been carried out on the improvement of these properties.19 Rubber-toughened plastics

constitute a commercially important class of polymers, which are characterized by a
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combination of fracture resistance and stiffness.20 It is recognized that the toughening of

PA6/organoclay can be achieved by incorporating a low-modulus second component.21 The

philosophy behind this approach is to produce polymer nanocomposite systems that possess

a good balance in stiffness, strength and toughness.19,22 Incorporation of rubber achieved

toughness but resulted in reduced tensile strength and modulus. Compounding with

organoclay enhances modulus and stiffness but decreases toughness. Many researchers have

published articles on PA6 or PA6/MMT nanocomposites toughened by various types of

rubbers to improve impact properties of the nanocomposites. For example, common impact

modifiers used are ethylene propylene diene monomer (EPDM-g-MA),19,22 ethylene

propylene rubber (EPR),11,23 maleated polyethylene-octene (POE-g-MA)24 and styrene-

(ethylene-co-butylene)-styrene (SEBS).25,26

Epoxidation of natural rubber (NR) was first conducted in 1922 by Pummerer and

Bukhard, but the potential applications of epoxidized natural rubber (ENR) were only

realized in the 1980s.27 NR displays high mechanical strength, outstanding resilience and

excellent elasticity. However, NR is known to have poor wet grip properties and poor

weather resistance.27 ENR is now an established commercial rubber polymer, which is

produced by the chemical modification of NR. They have a unique set of properties offering

high strength, due to their ability to undergo strain crystallization, along with increased glass

transition temperature and solubility parameters. These properties are reflected with

increased oil resistance, enhanced adhesion properties, high degree of damping and reduce

gas permeation.28 ENR was selected due to its high polarity, which should be beneficial

when compounding with polar fillers, such as layered silicates.29 The functional group

interactions also result in ENR forming compatible blend with a range of polymers.28 When

ENR-50 is used, its epoxy-containing groups can react with the nylon 6 matrix forming graft

copolymer, ENR-50-g-PA6.30 Nematzadeh et al.31 studied the mechanical and thermal

properties of ENR-25 toughened PA6 nanocomposites at different contents of ENR-25. The

morphological properties of ENR-50-toughened PA6 nanocomposites are not yet reported.

The aim of the current research is to investigate the properties of ENR-50-toughened

PA6 nanocomposites. These nanocomposites (thermoplastics/nanofillers) often show

amazing improvement in the material properties compared with virgin polymer and

microcomposites. In addition, PA6/organoclay-modified montmorillonite (OMMT)

nanocomposite is brittle and notch sensitive; therefore, toughening of PA6/OMMT is

necessary to improve the properties of the nanocomposites. Thus, the need to achieve

new formulation for ENR-50-toughened PA6 nanocomposites by adding ENR-50 as

an impact modifier is necessary. In view of above, the investigation of the effect of

ENR-50 concentration on mechanical and thermal properties and the morphological

characterization of ENR-50 toughened PA6 nanocomposites were carried out.

Experimental

Materials

The PA6 (Amilan CM 1017) was a commercial product from Toray Nylon Resin

(Amilan, Japan). The melt flow index of PA6 was 35 g/10 min at 230�C and 2.16 kg
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(21.2 N), and the density was 1.14 g/cm3. The ENR-50 with 50 mol% epoxidation was

produced by the Malaysian Rubber Board, Malaysia. The organoclay (Nanomer 1.30

TC) was a commercial product from Nanocor Inc. (Arlington Height, Illinois, USA).

It was a white powder containing montmorillonite (70 wt%) intercalated by octadecyla-

mine (30 wt%) suitable for the use in PA6 matrix.

Compounding and test specimen preparation

Prior to melt blending, PA6 pellets were dried for 24 h at 82�C in a vacuum oven to avoid

moisture-induced degradation reactions. ENR-50 was masticated using two-roll mill

then cut into small pieces. The polymers and additives were then melt blended by the

simultaneous addition of all the components into a Brabender 2000 (Germany)

corotating twin screw extruder. The compound formulations are shown in Table 1. The

barrel temperatures were gradually increased from hopper to die at 200, 220, 230 and

240�C and the rotating screw was 50 r/min. The pelletized materials were dried for

8 h at 82�C and injection molded into shapes required for standard tensile, flexural and

impact specimens using a JSW (Muroran, Japan) Model N100B II injection molding

machine with a barrel temperature of 210–240�C. All the specimens were kept under

ambient conditions in a desiccator at least 24 h prior to testing.

Mechanical properties

Tensile and flexural tests were carried out according to ASTM D638 and ASTM 790

using an Instron (Bucks, UK) 5567 Universal Testing Machine under ambient

conditions. The crosshead speed for tensile testing was 50 mm/min and flexural testing

was 3 mm/min. Izod impact tests were carried out on the notched specimens using

Toyoseiki (Tokyo, Japan) impact tester under ambient conditions according to ASTM

D256. The values reported in this study were the average of five values. The notch depth

was 2.6 + 0.02 mm.

Thermal analysis

Differential scanning calorimetry. Analysis of the melting and crystallization behavior of

the blends and nanocomposites was carried out using a Perkin-Elmer (Boston,

Table 1. Materials designation and compositions.

Designation

Composition

PA6 (wt%) OMMT (phr) ENR-50 (wt%)

PA6/F4 100 4 –
PA6/F4/E10 90 4 10
PA6/F4/E20 80 4 20
PA6/F4/E30 70 4 30

PA6: polyamide 6; ENR: epoxidized natural rubber; OMMT: organoclay-modified montmorillonite.
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Massachusetts, USA) DSC7 differential scanning calorimeter. All the experiments were

carried out under nitrogen atmosphere. All specimens were in the range of 6–10 mg in

weight. Samples were heated at 10�C/min from 30 to 280�C and held at the maximum tem-

perature for 1 min. They were then cooled to 30�C and heated for a second time to 280�C
at a heating rate of 10�C/min in other to erase the thermal history. The melting temperature

(Tm) and crystallization temperature (Tc) were taken as the temperatures corresponding to

the peak values of the melting endotherms and exotherms, respectively. The degree of

crystallinity (Xc) was calculated as the ratio of the melting enthalpy to the melting enthalpy

of 100% crystalline PA6 based on weight fraction of PA6 (wPA) in blend from the follow-

ing equation16

XcðPA6Þ ¼ DH

wPA6 � DH�

� �
� 100 ð1Þ

where DH is the measured enthalpy of melting, and DH� ¼ 190.8 J/g16 is the melting

enthalpy of 100% crystalline PA6.

Thermogravimetric analysis. Thermogravimetric analysis (TGA) was performed with a

Perkin-Elmer TGA7 thermal analysis system in order to examine the thermal stability

behavior of the organic and inorganic components in the blends. Approximately,

10–15 mg of samples were scanned under nitrogen from 25 to 950�C, at a heating rate

of 10�C/min.

Morphological characterization

X-Ray diffraction. X-Ray diffraction (XRD) technique was performed with Siemens

(Berlin, Germany) x-ray diffractometer (D5000) in step scan mode using Ni-filtered

Cu K radiation (0.1542 nm wavelength) at a generator voltage of 40 kV. The diffraction

patterns were recorded with a step size of 0.02� from 2y¼ 2–10�. The interlayer spacing

of the organoclay in the nanocomposites was derived from the peak position

(d001-reflection) in XRD scans according to the Bragg’s equation32

nl ¼ 2d sin y ð2Þ

where n ¼ 1 is an integer, y is the diffraction angle giving the primary diffraction

peak, and l ¼ 1.54Å is X-ray wavelength (1nm ¼ 10Å).

Scanning electron microscope. The fractured surface morphology of the samples were

examined using a Philips (ZL 40) scanning electron microscope (SEM) at an operating

voltage of 2.0 kV. Samples were cryogenically fractured in liquid nitrogen and etched in

toluene at room temperature for 4 h to extract the elastomeric ENR-50 phase and then the

fracture surfaces were coated with gold prior to SEM examination for the rubber

particles size and distribution observation.

Transmission electron microscopy. The distribution of OMMT particle characterization

was carried out with transmission electron microscopy (TEM; using Model: JEOL
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(JEM-2100)), which was operating at an accelerating voltage of 120 kV. The samples

were cryogenically cut into ultrathin sections with a diamond knife of about 30–50 nm

thick.

Results and discussion

Mechanical properties

Figure 1(a) shows the effect of ENR-50 contents on tensile strength and modulus of PA6/

OMMT nanocomposites. Tensile strength and modulus decreased as ENR-50 content

increased from 0 to 30 wt% by about 65% and 54%, respectively, when compared with

PA6/OMMT nanocomposite. Similar trends as that of tensile properties were observed

for flexural properties. Flexural strength and flexural modulus as the functions of

ENR-50 reduced by about 63% and 59%, respectively, with similar increase in

ENR-50 concentration as shown in Figure 1(b). These observations are generally found

in various polymer nanocomposites and have been reported to be due to the softening or

dilution effect of a soft elastomeric phase incorporation into the matrix which increases

the chains mobility of PA6 matrix.31,33 The incorporation of ENR-50 causes the formation

of grafted copolymer of PA6-g-ENR-50, which facilitates dispersion of ENR-50 into PA6

matrix. Therefore, low Tg and softening nature of ENR-50 due to its low modulus decrease

the strength and modulus. The specific interaction via epoxide groups has previously been

proposed by Gelling.28 He proposed that the functional groups’ interactions result in ENR

forming a compatible blend with a range of polymers. The decrease in strength and

modulus of the PA6 with the addition of ENR-50 is consistent with two earlier studies

reported by Xie et al.30 and Tanrattanakul et al.34

Figure 1. Effect of ENR-50 contents on tensile and flexural properties of PA6 blend and nanocom-
posites. (a) Tensile strength and tensile modulus and (b) flexural strength and flexural modu-
lus.PA6: polyamide 6; ENR: epoxidized natural rubber.
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Figure 2 shows PA6/OMMT nanocomposites that are successfully toughened using

ENR-50. Impact strength and elongation at break increased by increasing ENR-50

concentration from 0 to 30 wt% ENR-50 in PA6 nanocomposites when compared with

PA6/OMMT blend. Interestingly, impact strength significantly improved until it reaches

a maximum at 10 wt% ENR-50 by about 177%, while elongation at break shows a

significant improvement until it reaches a maximum at 20 wt% ENR-50 by about

254%, when compared with PA6/OMMT blend. The improvement in toughness and

elongation at the break of blends with the addition of ENR-50 when compared with

PA6/OMMT could be ascribed to several factors such as nature of matrix, ENR-50

concentration, interfacial adhesion between rubber particles and matrix, rubber particle

performance (size and shape), blending method and processing conditions. The epoxy

groups in ENR-50 have polarity and possibility to chemically react with carboxyl and

amine groups of PA6. This improves miscibility and compatibility as well as interface

between rubber and PA6 matrix. This results in better distribution of ENR-50 in PA6

matrix and enhances the chains mobility of the polymer matrix. Generally, when force

is applied to rubber-toughened nanocomposites, both the matrix and rubber bear the

force and try to absorb energy. Therefore, good dispersion of rubber can lead to

homogeneous structure and softening that can control crack and cavitation propagation.

In another words, high rubber phase dispersion could act as an effective stress concen-

trator, enhanced both crazing and shear yielding in the matrix. Both the processes are

capable of dissipating larger amount of energy, which will then lead to a significant

increase in the toughness of the blends. It is proved that an interface between

Figure 2. Effect of ENR-50 contents on the elongation at break and impact strength of PA6 blend
and nanocomposites. PA6: polyamide 6; ENR: epoxidized natural rubber.
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ENR-50 and PA6 improved by forming PA6-g-ENR-50 copolymer.30 Many researchers

have explained that the functional group in rubber is believed to react with the terminal

groups of PA6, thus improving the distribution of rubber particles in the polymer

matrix.30,34–36 This indicates that the distribution of ENR-50 with low modulus has a signif-

icant toughening effect, decreased notch-sensitivity and increases toughness at low tempera-

ture. In addition, possible intermolecular attraction between PA6/OMMT and ENR-50/

OMMT contributes to improvement in compatibility between substances. This is supported

with similar observations by numerous researchers.30,34,37

In addition, reduction in impact strength and elongation at break (30% and 43%,

respectively) were observed after further addition of ENR-50 up to 30 wt% compared with

PA6/F4/E10, which is still higher than PA6/F4 blend. It may be ascribed to rubber agglom-

eration due to rubber–rubber interactions, which effects on size, shape and aspect ratio of

ENR-50 particles in PA6 nanocomposites. This is an indication that the rubber particle size

is an important factor in cavitation.38 Another factor related to upper and lower rubber par-

ticle size is critical interparticle distance and interface adhesion between rubber and poly-

mer matrix.39,40 Souheng39 considered that only strong adhesion due to interfacial grafting

between rubber and nylon is not sufficient for toughening. Besides strong adhesion, the

particle size must also be smaller than the critical size to achieve a tough behavior.39

Thermal analysis

Differential scanning calorimetry. Table 2 shows differential scanning calorimetric

(DSC) scan results of PA6/F4 and ternary PA6 nanocomposites, which summarized the

detail results of crystallization temperature (Tc), melting temperature (Tm) and

percentage crystallinity (Xc). Two melting peaks can be seen in Table 2; the higher

temperature corresponds to the melting point of a-form crystal and the lower peak

temperature relates to g-form crystal.4,32,41 The a-form is thermodynamically stable but

the g-form is kinetically favored. Furthermore, Xie et al.30 have reported that ENR-50 is

compatible with PA6 and decreased the crystallinity of PA6.

It is obvious (Table 2) that the melting temperature for a- and g-form decreased by

about 2 and 1�C, respectively, upon adding 10 wt% ENR-50 to PA6 nanocomposites.

Presumably, the melting temperature reduced due to ENR-50 having good interaction

with PA6 and lower Tm of ENR-50 compared with PA6. Addition of ENR-50 (up to

30%) further reduced Tm of the nanocomposites. In addition, Table 2 shows that the

Table 2. DSC results of PA6 nanocomposites with different ENR-50 contents.

Sample Tm (�C) g-form Tm (�C) a-form Tc (�C) Xc (%)

PA6/F4 213.5 220.7 185.4 21.8
PA6/F4/E10 211.7 219.7 183.6 19.6
PA6/F4/E20 210.0 217.2 183.9 18.0
PA6/F4/E30 209.8 216.7 183.4 15.8

PA6: polyamide 6; ENR: epoxidized natural rubber; DSC: differential scanning calorimetry.
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addition of 10 wt% ENR-50 to PA6 nanocomposite (PA6/F4/E10) reduced Tc by about

2�C but remains relatively constant with the further addition of ENR-50. This shows that

ENR-50 contents do not significantly influenced Tc. Xc also reduced in the presence of

10 wt% ENR-50 (PA6/F4/E10) when compared with PA6/OMMT. Addition of ENR-50

up to 30 wt% to PA6 nanocomposites shows further reduction in Xc. This implies that

ENR-50 reduced Xc of PA6 nanocomposites. This is consistent with a previous study

on the effect of ENR-50 on PA6/EPDM blend.30

Thermogravimetric analysis. Thermal stability of PA6 nanocomposites with varying

(0–30 wt%) ENR-50 contents was studied with TGA. The initial degradation tempera-

ture (T10%, taken at 10% weight loss) and final degradation temperature (T90%, taken

at 90% weight loss) from TGA thermograms are listed in Table 3. All the samples show

single step degradation. Thermal stability of rubber-toughened PA6 nanocomposites at

T10% and T90% was reduced with an increase in the ENR-50 contents from 0 to 30 wt%.

This may be ascribed to the lower thermal stability of ENR-50 (approximately 405�C42)

that is amorphous as second phase compared with PA6 that is mostly crystalline. These

results are consistent with Nematzadeh et al.,31 who have studied ENR-25 contents.

Morphological characterization

Morphology is a main determinant of the properties of heterogeneous polymer blends.

For instance, a large particle size and weak adhesion would result in poor mechanical

properties in the blends.20 To comprehend the change in mechanical properties,

particularly, the toughening mechanism in these ternary nanocomposites, it is required to

clarify the dispersion and phase morphology of clay and rubber particles in PA6 matrix.

Clay can either locate in the rubber particles or separately disperse in PA6 matrix.19

X-Ray diffraction. XRD is a widely used technique for characterizing clay dispersibility.

The XRD patterns of neat OMMT, binary PA6/F4 and PA6 nanocomposites that include

various ENR-50 contents (10, 20 and 30 wt%, respectively) are shown in Figure 3. The

characteristic (001) diffraction peak of neat OMMT locates evidently around 2y ¼ 4.14�

(d-spacing: 2.13 nm), but no peaks were observed in the XRD patterns for all PA6 nanocom-

posites (Figure 3). The absence of basal plane peaks also illustrated delamination and well

dispersion of the OMMT particles within the PA6 and ENR-50 consequence formation of an

Table 3. TGA results for PA6/ENR-50/OMMT nanocomposites.

Designation T10% (�C) T90% (�C)

PA6/F4 438 540
PA6/F4/E10 396 477
PA6/F4/E20 390 477
PA6/F4/E30 385 473

PA6: polyamide 6; ENR: epoxidized natural rubber; OMMT: organoclay-modified montmorillonite; TGA:

thermogravimetric analysis.
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exfoliation nanostructure. The increased interlayer distance of organoclay may be the result

of the strong interaction between polar PA6 and ENR-50 and the silicate layer.29,31 Similar

observations have been reported by many other researchers based on the organoclay disper-

sion in PA6 nanocomposites.1,10 TEM study can provide more detailed dispersion status for

OMMT in PA6 nanocomposites.

Scanning electron microscopy. Figures 4(a) to (c) show SEM micrographs of etched

fracture surface of ENR-50 toughened PA6 nanocomposites at various ENR-50 concentra-

tion. Many dark and/or light pits (holes) and knobs correspond to the ENR-50 particles that

proved two-phase morphology, which are clearly visible for all the blends (Figures 4(a) to

(c)). These droplets of ENR-50 are dispersed randomly and uniformly within the blends. The

range and average particles’ size via image analysis data are shown in Table 4. It is obvious

from Figure 4 and Table 4 that average particles size of ENR-50 increased with increasing

ENR-50 contents (10–30 wt%). The increase in ENR-50 particles size with increased ENR-

50 content is attributed to the ENR–ENR interaction in the blends. This is facilitating ENR-

50 agglomeration to form large ENR-50 particles, which reduced the aspect ratio of ENR-50

particles. This is the reason why impact strength reduced at 20 and 30 wt% ENR-50 contents.

Similarly, previous studies have shown an increase in the rubber particles size by blending

rubber in polymer nanocomposites.10,43 Reduced aspect ratio, rubber size and shape, critical

Figure 3. XRD pattern of pure OMMT and PA6 nanocomposites containing different ENR-50
contents. PA6: polyamide 6; ENR: epoxidized natural rubber; XRD: x-ray diffraction; OMMT:
organoclay-modified montmorillonite.
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rubber distance and energy absorbance are the important items that influence on the mechan-

ical properties as reported in many studies.34,40,43,44

Transmission electron microscopy. The most powerful and direct evidence to describe

whether the nanocomposites are exfoliated or intercalated is by the means of TEM.

Figure 4. SEM micrograph of cryogenically fractured surfaces of PA6/ENR-50/OMMT ternary
blends after etching of ENR-50 with toluene: (a) PA6/E10/F4, (b) PA6/E20/F4 and (c) PA6/E30/F4.
PA6: polyamide 6; ENR: epoxidized natural rubber; OMMT: organoclay-modified montmorillonite;
SEM: scanning electron microscopy.

Table 4. Range and average of droplet size of ENR-50 particles in PA6 nanocomposites.

Samples Range of particles size (μm) Average of particles size (μm)

PA6/E10/F4 0.2–2 0.8
PA6/E20/F4 0.5–6 3
PA6/E30/F4 0.5–8 5

PA6: polyamide 6; ENR: epoxidized natural rubber.
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Figure 5 shows the TEM micrograph taken from toughened PA6 nanocomposite which

consists of 4 phr OMMT. The dark lines represent thickness of the individual clay layers

or agglomerates (tactoids and stacks) and the gray part is PA6/ENR-50 blend. Previous

researchers observed the exfoliation of OMMT in PA6 and/or ENR-50.4,29 It is

interesting to observe that the OMMT platelets are well dispersed in the PA6/F4/E10

nanocomposites and penetrated or intrude into both PA6 matrix and ENR-50 particles.

The well dispersion of OMMT remaining in PA6 matrix and ENR-50 is due to

compatibility, which led to miscible blend system results in exfoliation or intercalation

structure. Accordingly, the compatibility and strong interaction facilitate the penetration

of PA6 and ENR-50 molecules into the OMMT layers’ gallery.

Conclusions

The mechanical and thermal properties as well as morphological characterizations of

ENR-50 toughened PA6 nanocomposites have been investigated. The impact strength

and elongation at break of ternary PA6 nanocomposites increased, while tensile and

flexural strength and modulus decreased with increasing ENR-50 content. Maximum

toughness was achieved at 10 wt% ENR-50. DSC analysis showed that ENR-50 contents

have slightly changed the Tm, Tc and Xc. TGA revealed that the incorporation of ENR-50

reduced the thermal stability of ENR-50 toughened PA6 nanocomposites. SEM analysis

showed that ENR-50 particles size increased with an increase in ENR-50 loading and

randomly dispersed in PA6 matrix. XRD provided the evidence of exfoliation in

Figure 5. TEM images of exfoliated PA6/ENR-50/OMMT (90/10/4) nanocomposites. PA6: poly-
amide 6; ENR: epoxidized natural rubber; OMMT: organoclay-modified montmorillonite; TEM:
transmission electron microscopy.
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nanocomposites and OMMT platelets were seen to be well-dispersed at �4 phr in PA6/

ENR-50/OMMT nanocomposites, which was confirmed with TEM.
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